Detecting PoshC2 — Indicators of Compromise

labs.nettitude.com/blog/detecting-poshc2-indicators-of-compromise/

Rob Bone June 17, 2020

]

L1
[]
]

v

3

L 4
|

-
)

T

y CON 1
Perimeter C2 Broxy
Firewall Serwer

Connect To:
https: //www.domainfrontablesite.com
GET / HTTP/1.1:
Host: my.cdn.com
k 4
Compromised PoshC2
ozt Server

As a counterpart to the release of PoshC2 version 6.0 we are providing a list of some of its
Indicators of Compromise (IoCs), particularly as used out-of-the-box, as well as some other
effective methods for detecting it in your environment.

We also introduce the new PoshC2 Detections GitHub repository at
https://github.com/nettitude/PoshC2_|OCs that will be continually updated as development
continues, in order to assist blue teams with detecting PoshC2, particularly when used by
less sophisticated attackers that do not alter or configure it to change the default 1oCs. We
encourage the community to contribute to and help update and improve this repository.

It is worth noting that PoshC2 is open source, so while these are |oCs for PoshC2 if used it
its default state, ultimately it can be altered either through configuration or by changing the
source code itself. The default configuration is subject to change, however where possible
the location of that value is pointed out to the reader in order to allow these values to be
monitored and updated, in addition to providing the GitHub repository.

Communications

1/19

https://labs.nettitude.com/blog/detecting-poshc2-indicators-of-compromise/
https://labs.nettitude.com/blog/introducing-poshc2-v6-0/
https://github.com/nettitude/PoshC2_IOCs

One way to detect PoshC2 is to focus on the communications. Compromised hosts have to
communicate with the C2 server somehow in order to pick up tasks and return task output.
This is unavoidable and PoshC2 can currently only do this through the use of HTTP(S)
requests.

That isn’t to say this this makes it easy to detect; a huge amount of HTTP traffic is present in
most environments and the flexibility of the protocol allows for traffic to be hidden and routed
through legitimate websites using techniques such as Domain Fronting and reverse proxies.

LIC] —
L] L

L———————];———————J CON 'y
Perimeter C2 Broxy
Firewall Serwer

Connect To:
https: //www.domainfrontablesite.com
GET / HTTP/1.1:
Host: my.cdn.com
k 4
Compromised PoshC2
ozt Server

An example of HTTP comms when domain fronting.

Something very helpful for catching C2 communications is SSL Inspection. By being able to
inspect SSL traffic leaving the perimeter, the contents of that traffic can be checked and
statistics acquired for detecting C2 communications. Without this, network defenders are
largely blind, particularly against domain fronted communications which travel via legitimate
third-party websites.

If SSL Inspection is implemented then the HTTP traffic can be viewed, and while PoshC2
encrypts the contents of the HTTP bodies, the HTTP URLs and headers can still be viewed.

URLs

2/19

PoshC2 has two different ways of generating URLs to use for communications. Operators
can either use a static list of URLs or provide a wordlist from which random URLs will be
generated, and these files are stored at resources/urls.txt and
resources/wordlist.txt respectively, with the static URL list being the default option.
These URLs are then loaded into the database when the project is first created, and a
random URL is chosen by each implant each time it beacons. The default URL list is below:

/adsense/troubleshooter/1631343/
/adServingData/PROD/TMClient/6/8736/
/advanced_search?hl=en-GB&fg=
/async/newtab?ei=
/babel-polyfill/6.3.14/polyfill.min.js=
/bh/sync/aol?rurl=/ups/55972/sync?origin=
/bootstrap/3.1.1/bootstrap.min. js?p=
/branch-locator/search.asp?WT.ac&api=
/business/home.asp&ved=
/business/retail-business/insurance.asp?WT.mc_id=
/cdba?ptv=48&profileId=125&av=1&ch=
/cisben/marketqg?bartype=AREA&showheader=FALSE&showvaluemarkers=
/classroom/sharewidget/widget_stable.html?usegapi=
/client_2047&atyp=1&biw=1920&bih=921&ei=
/load/pages/index.php?t=
/putil/2018/0/11/po.html?ved=
/qqzddddd/2018/1oad.php?lang=en&modules=
/status/995598521343541248/query=
/T0S?1loc=GB&hl=en&privacy=
/trader-update/history&pd=
/types/translation/vl/articles/
/uasclient/0.1.34/modules/
/usersync/tradedesk/
/utag/lbg/main/prod/utag.15.js?utv=
/vfe0ls/1/vsopts.js?
/vssf/wppo/site/bgroup/visitor/
/wpaas/load.php?debug=false&lang=en&modules=
/web/20110920084728/

/webhp?hl=en&sa=X&ved=
/work/embedded/search?oid=
/GoPro5/black/2018/

/Philips/v902/

While these URLs were originally copied from legitimate requests, if you see several of them
being repeated to a site, particularly if they do not seem relevant to that site and if the
response does not make sense, then it could be PoshC2 beacon traffic.

HTTP Responses

PoshC2 also has static HTML responses that it responds with. The default is six HTTP 200
responses and one 404 response. These are stored in files at resources/responses/ and
also loaded into the database when the server is first created. The server responds with a

3/19

random 200 response to POST requests that do not error or require a specific response, and

with the single 404 response to all unexpected URLs or when the C2 server errors. Other
responses return context relevant data, such as tasks, implant code and so on.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL was not found on this server.</p>
<hr>

<address>Apache (Debian) Server</address>
</body></html>

This static HTML file then at resources/responses/404_response.html is an loC and if
returned from a webserver that you are investigating is suggestive of PoshC2. Similarly, the
200 _response*files in the same directory are 10Cs if returned by POST requests.

Note however, that it is recommended that operators change these files before creating a
PoshC2 project, as is the use of a C2 proxy, so as with the other indicators the absence of
this particular response is not unexpected for a PoshC2 installation.

SSL Certificate

PoshC2 by default creates a self-signed certificate for its HTTP server, the values for which
are stored in poshc2/server/config.py file. These values are not in the ‘normal’
configuration file config.yml and are less documented and are therefore harder to
change.

Cert_C = "us"

Cert_ST = "Minnesota"
Cert_L = "Minnetonka"
Cert_0 = "Pajfds"

Cert_OU = "Jethpro"

Cert_CN = "P18055077"

Cert_SerialNumber = 1000

Cert_NotBefore = 0

Cert_NotAfter = (10 * 365 * 24 * 60 * 60)

An experienced operator will not expose their C2 server to the internet, but will instead use a

proxy server with a valid certificate and filter firewall traffic to the C2 server that is not from
that proxy, however if these steps are not taken and a certificate with the below values is
presented then it is another strong indicator that PoshC2 is in use, likely by less
sophisticated adversaries.

4/19

wh Certificate >

Gereral Detals Certification Path

Show: | <All= w

Field Value 2
DSignaMrE hash algarithm shal

= 1ssuer P18055077, Jethpro, Pajfds, ...

= valid from 04 May 2020 13:46:24

D'l.l'alidb:: 02 May 2030 13:46:24

DSubject P 18055077, Jethpra, Paifds, ...
[=|Public key RSA (2043 Bits)

DPuinc key parameters 05 00

=] Thimbring 1ARAAR-FREEFI5041A5haR 111 N
CM =P18055077
OU = Jethpro
O = Pajfds
L = Minnetonka
5 = Minnesota

C=Us

Edit Properties. .. Copy to File. ..

The issuer data can be viewed using Chrome and the default values suggest this is a PoshC2 server.

JA3 Signatures

Another method for signaturing C2 traffic without SSL Inspection is to fingerprint the Client
Hello packet that initialises the TCP connection. The specific bytes that make up the packet
are dependent upon the type of connection being formed and the underlying packages and
methods used to do so.

As these packets are sent before encryption has been established they are cleartext and can
be intercepted and read. It turns out that the packet contents are quite unique and can be
fingerprinted. Salesforce have an excellent blog_post on JA3 fingerprinting, but essentially
the details are extracted from the packets that make up this TCP handshake and hashed to
create a quick and easy signature, that can be used to identify not only that PoshC2 is in
use, but also the specific implant type.

5/19

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967

The current Windows 10 PoshC2 signatures are below:

PowerShell: c12f54a3f91dc7bafd92cbh59fe®09a35
Sharp: fc54e0d16d9764783542f0146a98b300

JA3 fingerprinting has been incorporated into security products such as Splunk and
Darktrace to provide quick and easy identification of C2 traffic, and can be utilised with these
fingerprints. These fingerprints are available and will be maintained in the PoshC2
Detections GitHub repository.

Telemetry

Another mechanism for detecting C2 traffic, with or without SSL Inspection, is through the
use of telemetry.

PoshC2'’s default values for beacon time and jitter in the config.yml file are 5 seconds
and a 20% jitter, as can be seen below, which is both a fast beacon rate and a small jitter,
making it relatively easy to detect using this method.

DefaultSleep: "5s"
Jitter: 0.20

With these values the implants are going to beacon every 4-6 seconds by default, with an
average of 5 seconds.

After capturing some traffic, filtering by the C2 server host and only checking TLS Client
Hello packets, we can see that the TLS connection is created roughly every five seconds,
confirming what we expect.

6/19

https://github.com/nettitude/PoshC2_IOCs

£ “Ethemetd - O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mad® RE Re=2=F 8 |Eaqan
[Jip-dst == 192.168.213.1 && ssl.handshake. type == 1 [X] -]+
No. Time Source Destination Protocol Length Info ~
| i 4.601666 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
44 9.649968 192.163.213.132 192.168.213.1 TLSv1.2 361 Client Hello
69 13.715747 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
94 19.775269 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
121 24.823869 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
146 28.886231 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
158 33.916277 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
183 38.973428 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
288 43.887701 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
233 49.825732 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
259 54.856581 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
389 68.868842 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
335 64.185470 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
363 69.168948 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
392 75.192486 192.163.213.132 192.168.213.1 TLSv1.2 361 Client Hello
418 86.223908 192.163.213.132 192.168.213.1 TLSv1.2 361 Client Hello
456 85.239685 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
468 89.271620 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
586 95.348147 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
518 99.38581@ 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
543 183.442443 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
581 188.489625 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
593 112.543649 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
618 118.683521 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
656 123.638279 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello
681 128.692773 192.168.213.132 192.168.213.1 TLSv1.2 361 Client Hello 4
€ >

Frame 18: 361 bytes on wire (28838 bits), 361 bytes captured (2888 bits) on interface \Device\NPF_{3C2891A5-9C77-4A87-93AD-FB4A4AF27D14}, id @
Ethernet II, Src: VMware_c4:cf:34 (8@:@c:29:c4:cf:34), Dst: VMware_c@:00:88 (@0:50:56:c0:00:08)
Internet Protocol Version 4, Src: 192.168.213.132, Dst: 192.168.213.1
Transmission Control Protocol, Src Port: 58122, Dst Port: 443, Seq: 1, Ack: 1, Len: 307
¥ Transport Layer Security
¥ TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (@x@8383)
Length: 382
Handshake Protocol: Client Hello

2830
aaas
2850
aB68
@870
aase
2896
aaa8
@abe

W

O 7 Handshake protocol message (Hs.handshake), 302 bytes || Packets: 902 - Displayed: 34 (3.8%%) || Profile: Default

We can see the difference between each session initialisation is between 4 and 6 seconds.

By exploring this small sample of data, we can determine that the average time between the
requests is 5.05 seconds, with a standard deviation of 0.81 or 16%, close to the 5 second
beacon with the 20% jitter we expect from PoshC2'’s defaults.

Security products that can provide telemetry data, e.g. Splunk can be used to detect C2
traffic in this way by checking for repetitive beacons at a relatively fixed frequency, whether
it's at the above defaults for PoshC2 or at any frequency, given that it is configurable.

PowerShell Implant

PoshC2 has three implant types; PowerShell, C#, and Python, with the latter being a
lightweight implant type mostly intended for compromising *nix hosts.

The PowerShell Implant runs by loading System.Management.Automation.dll , the
engine behind PowerShell.exe , into the desired process and executing PowerShell
commands directly using this DLL.

7/19

\bob @ BEEROC NSNS

The PowerShell iplnt spports uII PowerShell execution from any process (here netsh.exe) by
loading System.Management.Automation.dlI.

While this does not utilise PowerShell.exe, bypassing many restrictions and controls, it is
still subject to PowerShell specific constraints such as Constrained Language mode and
ScriptBlock logging. The latter, in particular, can be used to detect PoshC2 and any other
malicious PowerShell commands, whether via PowerShell.exe or otherwise.

Note, however, that ScriptBlock logging was only enabled in PowerShell v5.0 and above, so
if PowerShell v2.0 is available on the target then a downgrade attack can be performed and
PowerShell 2.0 used, bypassing Constrained Language mode, ScriptBlock logging, AMSI
and other controls added in v5.0.

PS Logging

Enabling ScriptBlock logging and Transcript Logging for PowerShell allows logging of
processes running PowerShell commands.

There are multiple 10Cs here, not least that the Host Application is not Powershell.exe , as
should be expected, but instead netsh.exe .

8/19

FHHHHHHHHHHHHHHHHHHHHH

Windows PowerShell transcript start

Start time: 20280584164342

Username: BEEROCLOCK\bob

Runfs User: BEEROCLOCKMbob

Configuration MName:

Machine: BEEROCLOCK (Microsoft Windows NT 16.8.18362.8)
Host Application: C:\Windows\system32\netsh.exe

Process ID: 7772

PSVersion: 5.1.18362.145

PSEdition: Desktop

PSCompatibleVersions: 1.8, 2.8, 3.8, 4.8, 5.8, 5.1.18362.145
BuildVersion: 18.8.18362.145

CLEVersion: 4.8.38319.42808

W5Man5tackVersion: 3.8

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.8.1

Command start time: 202080584164342

PowerShell transcripts provide valuable information. Alerting on Host Applications that are not
PowerShell.exe is a good way to find PowerShell implants from any C2 framework.

Similarly in the Event Viewer for ScriptBlock logging:

Event 800, PowerShell (PowerShell)

General Details

Pipeline execution details for command line: SRandomURI = Get-Random SURLS

Context Information:
DetailSequence=1
DetailTotal=1

SequenceMumber=15696

Userld=BEEROCLOCK\bob

HostMame=Default Host

HostVersion=5.1.18362.145
Hostld=d3651eaf-4ef53-4ee9-9398- d3bf776f34ed
HostApplication=C:\Windows\system32\netsh.exe
EngineVersion=5.1.18362.145
Runspaceld=feBad3c2-9eae-421f-b407-b22ce5ed 1892
Pipelineld=1

ScriptMlame=

CommandLine= SRandomURI = Get-Random SURLS

Details:
Commandinvocation{Get-Random): "Get-Random”
ParameterBinding(Get-Random): name="Maximum"; value="adServingData/PROD/TMClient/8/8736/, qqzddddd/2018/, vfel1s/1/, babel-polyfill/6.3.14/, usersync/tradedesk/, cisben/,

PowerShell ScriptBlock logging can reveal a wealth of information, here including the beacon URLs
for PoshC2 and again netsh.exe as a host process.

This also includes the ‘command line’ of the ScriptBlock being executed, which includes the
beacon URLs from which a random element is being chosen, therefore listing all the C2
URLs that are in use by this implant.

9/19

Aside from the wealth of information ScriptBlock logging provides for any threat hunter, an
event command line specific to PoshC2 that can be used to identify the PowerShell implant
is below:

Event 200, Powershell (PowerShell)

General Details

Pipeline execution details for command line: S5erverClean = Get-Random 55erverlRLS

Context Information:
Detail5equence=1
DetailTotal=1

SequenceMumber=15698

Userld=BEEROCLOCK\bob

HostName=Default Host

HostVersion=5.1.18362.145

Hostld=d3651 eaf-4ef3-4ee3-9358-dBbf770f 34ed
HostApplication=CA\Windows\system32\netsh.exe
EngineVersion=5.1.18362.145
Runspaceld=fe8al3cZ-9eae-421f-b407-b22ce5ed1892
Pipelineld=1

ScriptMames=

CommandLine= $5erverClean = Get-Random $5erverlRLS

Details:
Commandlnvocation(Get-Random): "Get-Random”
ParameterBinding(Get-Random): name="Maximum"; value="https://192.168.213.1:443, https://192.168.213.1:443"

The $ServerClean variable is specific to PoshC2 and a clear loC.

CommandLine= $ServerClean = Get-Random $ServerURLS

This ScriptBlock is part of the beaconing process and will be repeated frequently in the Event
Viewer making it easy to identify.

System.Management.Automation.dll

As mentioned earlier, the PowerShell implant does not function by invoking
PowerShell.exe , butinstead by loading System.Management.Automation.dll into the
implant process.

This means that this is an loC, and if we find a process that should not have this DLL loaded,
particularly if it is an unmanaged code binary (so not .NET) then it is highly likely that this is a
process that has been injected into by a PowerShell implant, PoshC2 or otherwise.

10/19

System. Management. Automation.
Property Value

File Mame C\Program Files (x86)\Reference Assemblies\Microsoft\WindowsPo...
File Type Portable Executable 32 .MET Assemnbly
File Info Microsoft Visual Studio MET

System.Management.Automation.dll, the engine behind PowerShell, is a .NET library.

netsh.exe
| Property Value

File Mame ChWindows\System32inetsh.exe

File Type Portable Executable 64

File Info Microsoft Visual C++ 8.0

netsh.exe is a C++ binary and should not be loading .NET libraries.

We can see this DLL loaded into an implant process using Process Hacker:

11/19

[55] netsh.exe (1808) Properties — O >
Handles MET assemblies NET performance GPU Disk and Netwark Comment
General Statistics Performance Threads Token Modules Memaory Environment
Mame Base address Size Description &

schannel.dll Ox7ffocds4, .. 544kB TLS /S5L Security Provider

sechost.dll OxFffbcic3... 804kE Host for SCM/SDDL/LSA Lookup APIs

secur32.di Ox7ffbba1f... 43 kB Security Support Provider Interface

SHCore.dll 0xFffbcass... 676 kB SHCORE

shell32.dl x7ffbc7de... 6,89 MB Windows Shell Common DI

shlwapi.dll Ox7ffbcaad. .. 328kB Shell Light-weight Utility Library

SortDefault.nls Ox2958fedc. .. 3.21 MB

sspicli.dll Ox7ffbcs2b. .. 188 kB Security Support Provider Interface

System. Configuration. Install.ni.dll 0x7ffbalds. .. 180 kB .MET Framework

System. Configuration.ni.dll OxFfbosf4... 1.2MB System.Configuration.dll

System. Core.ni.dll Ox7ffb9908... 10,46 MB .MET Framework

System.Data.dl 0xFfhac23... 3.41MB .MET Framewaork

System,Data.ni.dll Ox7balf2... 9.44ME .MET Framework

System. DirectoryServices. ni,dll Ox7ffba1af... 1.4MB .MET Framewark

System.Management. Automation.ni.dll 0x7fba32c... 32.4MB System.Management. Automation

System.Management.ni.dll 0x7ftbalab... 1.4MB .MET Framework

System.ni.dll Ox7ffb9cie... 12.44MB .MET Framework

System. Mumerics. ni.dll Ox7ffbals9... 324kB .MET Framewaork

System. Transactions. dll Ox7ffba0ds. .. 316 kB .MET Framewark

System. Transactions. ni.dll Ox7ffha0dd. .. 876 kB .MET Framewaork

System.Xml.ni.dll Ox7fhaga9... 8.67MB .MET Framewark

ucrtbase, dll OxFffbca2d. .. 0.93MB Microsoft® C Runtime Library

ucrtbase_dro400.dll 0x7ffha%2a... 7565 kB Microsoft® C Runtime Library

umpde, dll 0x7fbcs39... a4 kB

user32.dl Ox7ffbcs73... 1.58 MB Multi-User Windows USER. API Client DLL

usereny.dl Ox7ffbc525. .. 148 kB Usereny

weruntime 140 _dro400. dll Ox7ffbag3z... 88 kB Microsoft® C Runtime Library

vergion. dll Ox7ffobdb3... 40 kB Version Checking and File Installation Libraries

vmhgfs.dll 0x65140000 144 kB VYMware HGFS Provider

win32u.dl 0x7ffbcss7. . 132kE Win32u

windows, storage, dll 0x7ffbcsaa... 7.5MB Microsoft WinRT Storage API

winhttp, dll Ox7fbbecb... 950 kB Windows HTTP Services "

winnlsres.dl < >
Cloge

System.Management.Automation.dll loaded into netsh.exe.

Similarly we can view the .NET Assemblies in the process:

12/19

netsh.exe: 1808 Properties

— O X

This tab shouldn’t even be present for a genuine netsh.exe process as it is unmanaged

code!

Image Performance Performance Graph Disk and Metwaork GPU Graph Threads TCR/IP
Security Environment NET Assemblies MET Performance Strings
Structure Flags Path
B CLR v40.30315.0 ConcumentGC...
= Appdomain: SharedDomain Shared
mscorib DomainMeutr... CANWINDOW S assembhyMativelmages_v4.0.30315_64'\mscorib cebbe]
= Appdomain: Default Domain Defautt, Exec...
Anonymously Hosted Dynamic... | Dynamic Anonymously Hosted DynamicMethods Assembly
Microsoft Microsoft
Microsoft. Management Infrastr... | Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft. MF45F8
Microsoft. PowerShell. Comman .. | Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft. P 1704
Microsoft. PowerShell. Comman .. | Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft Pas 34
Microsoft. PowerShell. Comman .. | Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft P5212
Microsoft. PowerShell Console. .. |Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft Pb 378
Microsoft. PowerShell. Securty | Mative CAWINDOW ShassemblytMativelmages_v4.0.30319_64\Microsoft PEF7S
Microsoft. W SMan.Management | Mative CAWINDOW ShassemblyMativelmages_v4.0.30319_64\Microsoft Wel7
System Mative CAWINDOW ShassemblytMativelImages_v4.0.30315_64"System 580358
System . Corfiguration Mative CAWINDOW ShassemblytMativeImages_v4.0.30319_64"\System Configun
System Configuration. Install Mative CAWINDOW ShassemblytMativelImages_v4.0.30319_64"\System Confeb4
System Core Mative CAWINDOW ShassemblytMativeImages_v4.0.30319_64"System Core’54
System.Data Mative CAWINDOW ShassemblytMativelImages_v4.0.30319_64'\System Dataef
System. DirectoryServices Mative CAWINDOW ShassemblytMativeImages_v4.0.30319_64"System Dired 1.3
System.Management Mative CAWINDOW Shassemblyt MativeImages_v4.0.30315_64"\System Manage
System.Management . Automati ... | Mative CAWINDOW ShassemblytMativelmages_v4.0.30319_64'\System Manaak
System.Mumerics Mative CAWINDOW ShassemblytMativeImages_v4.0.30319_64"System Numeric
System. Transactions Mative CAWINDOW ShassemblytMativeImages_v4.0.30319_64'\System . Transac
System. ¥ml Mative CAWINDOW Shassemblyt MativelImages_v4.0.30319_64"System ¥ml'e41
£ >
Cancel

We can view the .NET Assemblies in the netsh.exe process and see PowerShell is loaded.

13/19

[5=] netsh.exe (3256) Properties — O >

Handles GPU Disk and Metwork Comment
General Statistics Performance Threads Token Modules Memory Environment
Mame Base address Size Description 2

netsh.exe 0x7ff6585... 140 kB Network Command Shell
activeds.dl Ox7ffbae43... 276 kB ADs Router Layer DLL

adsldpc.dil Ox7ifbebs4... 264kE ADs LDAP Provider C DLL
advapi32.di Ox7ffbcasd. .. 652kE Advanced Windows 32 Base API
authfwefg.dll Ox7ffbalde... 540 kB Windows Defender Firewall with Ad
berypt.di 0x7ffbcssa... 152kE Windows Cryptographic Primitives L
beryptprimitives. dll Ox7ffbcsaz... 512kE Windows Cryptographic Primitives L
cabinet.dll Ox7ffbbe7a... 164 kB Microsoft® Cabinet File API
cfgmar32.dll OxFffhca22. .. 296 kB Configuration Manager DLL
combase.dl Ox7ffbcad4... 3.21ME Microsoft COM for Windows
crypt32.dll Ox7ffbc5ad. .. 1.29ME Crypto API32

cryptbase. dll Ox7ffbcddd. .. 43 kB Base cryptographic API DLL
cryptsp.dll Ox7ffbcs45... 92kB Cryptographic Service Provider API
dhcpemonitor, dil x7fthaefe... 32kB DHCP Client Monitor Dl
dhopesve.dil O 7ffbbels. .. 112kE DHCP Client Service

dhepesves.dil Ox7ffbbe0s. .. 83 kB DHCPva Client

dnsapi.dl 0x7ffbc4as. .. 808 kB DNS Client API DLL

The module is not loaded in a genuine netsh process and the .NET tabs are not available.

An operator can be smarter about their migration by injecting into .NET processes, however
it is still unlikely that a legitimate process (that isn’t Powershell.exe) would load

System.Management.Automation.dll , so this is a great loC to look out for in your
environment.

This can be implemented at scale by searching for loaded modules in an EDR product, for
example in CarbonBlack with a query of:

modload:System.Management.Automation* AND -process_name:powershell.exe AND
-process_name:powershell_ise.exe

This searches for process with System.Management.Automation.dll or
System.Management.Automation.ni.d1ll (the Native Image version)loaded into a
process when that process is not PowerShell.exe or PowerShell ISE.exe . Other

legitimate exclusions may need to be added for your particular environment.

14/19

Q modload:system.management.automation® and -process _name:powershell.exe and -process name:powershell ise.exe

+ ADD SEARCH TERMS € RESET SEARCH GROUP BY PROCESS
Results
Process Endpoint
N rundi32.exe win7-client1
ciwindows\syswowG4\rundlli32.exe T
N rundli32 exe o
- .) win7-clientd
clwindows\system32irundli32.exe
" rundli32 exe o
- .) win7-clientd
clwindows'system32irundli32.exe
svchost.exe
- win2016-s1
| cwindows\system32\svchost.exe ' °
pagsee win2016-51
clwindows\system32\rundli32.exe
j poshG4 exe e i
isclientishare\poshéd exe wino-clientt

Here we can see various processes that have loaded System.Management.Automation.dll into
memory that are likely implants.

C# Implant

The C# or Sharp implant is PoshC2’s ‘next gen’ implant, written (unsurprisingly) in C#. The
key difference from a detection perspective is that this implant does not require loading
System.Management.Automation.dll in order to function. Most of the functionality of the
C# implant is custom-written and while it can load System.Management.Automation.dll
in order to execute PowerShell, this is an operator decision and is by no means necessary.

A similar process to the above can be applied, but is a little harder to implement. .NET
processes load the mscoree.dll library which is the core library behind the .NET CLR
(Command Language Runtime), so again any unmanaged code processes that are loading
this library could have been migrated into. The issue here is finding these processes, as it’s

not as simple as searching for just ‘module loaded and process name is not powershell.exe’.

A blacklist can be created of common target processes that are unmanaged, always
available and should not be loading the .NET runtime, and these can be monitored, as well
as noting this during manual triage.

15/19

[8=] netsh.exe (1600) Properties - O x
Handles MET azsemblies .MET performance GPU Dizsk and Metwork Comment
General Statistics Performance Threads Taoken Modules Memaory Environment
Mame Jase address Size Description &3

MpClient.dl w7ffbb5sh... 336 kB Client Interface

MpOAy.di w7fbbhas2... 280 kB IOfficeAntiVirus Module

msasnl.dl I 7fbc543... 72kB ASM.1Runtime APIs

mscoree. dll ®7ffbagsi... 400 kB Microsoft .NET Runtime Execution Engine
mscores.dll 1 Ffbag3c... 676 kB Microsoft .NET Runtime Execution Engine
mscorlib.ni.dll ®7ffbadsa... 22MBE Microsoft Common Language Runtime Class Libr
mskeyprotect. dil x7ffbb4ed... 84kE Microsoft Key Protection Provider
msvep_win.dll 1 Ffbcs7d. .. 632kB Microsoft® C Runtime Library

mevert.dil 1x7ffbcd3e... 632 kB Windows NT CRT DLL

mawsodk, dl IxFffbcdcd... 412 kB Microsoft Windows Sockets 2.0 Service Provider
ncrypt.dil 1 Fffbcded. .. 152 kB Windows MCrypt Router

ncryptssip.dil InFfbbaf... 148 kB Microsoft SChannel Provider

A C# implant loads mscoree.dll if it is not already present in the process — another loC if the process
is supposed to be unmanaged.

Note that the PowerShell implant will also load this library as it is also a .NET process,
however the presence of System.Management.Automation.dll marks it as an implant
that can run PowerShell.

The C# implant has the ability to load compiled binaries into memory over C2 and run them,
which is extremely powerful. There are indicators of this however, as a new virtual runspace
is created for each module and their namespace is listed in the AppDomain to which they are
loaded.

Viewing the .NET Assemblies in Process Explorer or Process Hacker for example then
reveals what modules have been run.

16/19

[85] netsh.exe (1600) Properties — O ot
General Statistics Performance Threads Taoken Modules Memaory Environment
Handles MET assemblies .MET performance GPU Disk and Metwork Comment

Structure ID Flags Path
“ CLR v4.0,30319.0 6 COMCURRENT_GC, ...
* AppDomain: DefaultDomain 29943734... Default, Executable
Core 29953121... Core
CustomMarshalers 29953183... MNative C:WINDOWS\Microsoft. Metiassembly
dropper_cs 29943742... dropper_cs
Microsoft 29945739... Microsoft
Seatbelt 29953122... Seatbelt
SharpUp 29953121... SharpUp
System 29943739... MNative C:WINDOWS \Microsoft. Met\assembly
System. Configuration 29943742... MNative C:WINDOWS \Microsoft. Met\assembly
System,Core 29945742... Mative CAWINDOWS Microsoft, Netiassembly
System.Management 29953122... Mative CAWINDOWS Microsoft, Netiassembly
System.Web,Extensions 29953183... CAWINDOWS Microsoft, Netiassembly
System, Xml 29945742... Mative CAWINDOWS Microsoft, Netiassembly
~ AppDomain: SharedDomain 14071863... Shared
mscorlib 29945737... DomainMeutral, Native C:\WINDOWSMicrosoft. Netiassembly

In the C# implant loaded modules have their namespace visible in the AppDomain, making it clear
what has been loaded into the implant.

Above we can see the Core and dropper_cs modules that make up the core functionality of
the C# implant, as well as some native modules from Microsoft that are required to run.
These modules will always be present in the PoshC2 C# implant and are a clear IoC. We
also see Seatbelt and SharpUp, two common C# offensive modules from SpectreOps, and
we can surmise that they have been on the target.

In General

Migration

We have used netsh.exe asthe example implant process in this post and that is for a
good reason. The default migration process for PoshC2 in the C# and PowerShell implants is
C:\Windows\System32\netsh.exe , so when the migrate or inject-shellcode
commands are used and a specific process ID or name is not set, then a new netsh.exe
process is spawned and migrated into.

This itself is a common loC for PoshC2, as netsh.exe is not typically frequently run in
environments, and certainly not on most end user’s hosts. Therefore, if there is a sudden
uptick in the number of these processes being run in the environment or if several are
running on a host then it could be worth investigating.

Persistence

17/19

https://github.com/GhostPack/Seatbelt
https://github.com/GhostPack/SharpUp

PoshC2 has three quick persistence commands available to the PowerShell implant. Each of

these installs a Powershell.exe one liner payload to the registry in the key at
HKCU\Software\Microsoft\Windows\CurrentVersion\themes with a name
Wallpaper777, Wallpaper555 or Wallpaper666, depending on the command being run.

This payload is then triggered by either:

o A registry key at HKCU\Software\Microsoft\Windows\CurrentVersion\run with
the name IEUpdate

¢ A Scheduled Task, also with the name IEUpdate

o A shortcut file placed at %APPDATA%\Microsoft\Windows\Start
Menu\Programs\Startup\IEUpdate.lnk

All of these can be alerted upon and used to determine that the adversary using PoshC2, in
addition to alerting on the invocation of PowersShell.exe with encoded parameters, and so

on.

Binary payloads

Some of the more common payloads that are dropped on targets are the PoshC2
executables and DLLs that can be run using rundl1132.exe .

For the DLLs, there are different versions for PowerShell and Sharp implants across versions
2 and 4 of PowerShell and x86 and x64 bit architectures, however all the DLLs have a single
entry-point common to all: voidFunc .

Sharp_v4_x64.dll

Memlber Offset Size Value
Characteristics 00013420 Dword 00000000
TirneDateStamp 00013424 Dword FFFFFFFF
MajorVersion 00013428 Word 0000
MinorWersion 00013424 Word 0000

Mame 00013A2C Dword 00014852
Base 00013430 Dword 00000007
MumberOfFunctions 00013A34 Dword 00000001
MumberOfMames 00013A38 Dword 00000001
AddressOfFunctions 00013A3C Dword 00014243
Ordinal Function RVA | Name Ordinal | Mame RVA Mame
(nFunctions) Dword Word Dword srhnsi
0000000 0000175C 0000 0001485F YoidFunc

18/19

All the DLL payloads have the same single entry point of VoidFunc.

This entry-point is hard-coded in PoshC2 and cannot be changed without hacking the
compiled binary itself.

For the common executable and DLL payloads we’ve also added Yara rules for detecting
them. These are based on signaturable parts of the binaries that will not change across
different installs of PoshC2, for example with different comms options. These are also
available in the new PoshC2 Detections GitHub repository.

In Summary

We've looked at a few different detections for catching PoshC2 when used out-of-the-box.
Using these in your environment will help protect against the less sophisticated users of
PoshC2 in addition to further understanding how the tool works.

Any new detections or amendments can be added to the
https://github.com/nettitude/PoshC2_|OCs repository and we encourage the community to
add their own detections or rules and configurations for other security tools to help build a
centralised data store for everyone.

19/19

https://github.com/nettitude/PoshC2_IOCs
https://github.com/nettitude/PoshC2_IOCs

