
1/5

0verfl0wz2a June 7, 2020

Dealing with Obfuscated Macros, Statically – NanoCore
zero2auto.com/2020/06/07/dealing-with-obfuscated-macros

Author: Zero2Automated Course Team (Theory from courses.zero2auto.com)

When analyzing Maldocs, you will mostly be dealing with obfuscated macros, and until a new

vulnerability (or “feature”) is discovered and exploited, that is unlikely to change. Therefore,

it’s quite important to know how to analyze these macros, both statically, and dynamically.

Dynamic analysis is by far the easiest, as it means you can avoid the eye-watering levels of

obfuscation malware authors put into their macros, but it does mean you need to a) have the

resources to detonate it safely, and b) hope there is no anti-analysis in it. 

When it comes to neglecting static analysis, a lot of information is missed out, such as

possible commonalities in the scripts, as well as techniques used by the threat actors; both

common and uncommon. This information can be quite crucial for Threat Intel, as it allows

you to attribute functionality and design to different threat groups, say for example one of the

many pushing ISFB. Being able to understand commonalities in macros also allows you to

implement auto-IOC extractors, meaning you can point a script at a Maldoc, have it extract

the payload URL, immediately download that payload, and so on – assuming they use the

same code obfuscator using the same tricks.

Aside from that, you get to pick up some neat VBA tricks too, that, while not very useful as an

analyst, if you were to transition over to an offensive position, you would have a great idea of

how to emulate malicious threat actors, increasing your effectiveness.

So, enough with the intro, let’s take a look at how best to reverse engineer obfuscated macros,

statically. To do this, I will be reversing a malicious Nanocore document.

https://zero2auto.com/2020/06/07/dealing-with-obfuscated-macros/


2/5

There are a few different methods that macros use to execute without the user specifically

calling them – these methods are the auto_*() and Document_*() functions, such as

auto_open() and Document_Close(), which as you may have guessed, execute upon

document open, and document close. These are the first things you should look for when

dealing with malicious documents, as they are the first functions to execute, meaning you can

follow execution a lot easier.

Once you have identified and located the “entry point” function, your next task is to identify

the obfuscation used. The difficulty of this depends on how much effort the attackers put into

it – if their entire payload is stored inside the macros, you better believe they will put as

much obfuscation into it as possible (such as the MuddyWater APT), but in the case of

Nanocore, they only need it to download their payload, so the obfuscation is fairly easy to

recognize. In this case, the obfuscation is just junk string and function names added to the

macros, and so the best thing to do here is to rename everything you see (CTRL+F in Sublime



3/5

Text, and then “Find All” to edit every instance). Now you’ve identified the obfuscation/what

exactly is obfuscated and what isn’t, you can go about removing those specific strings, either

manually, or automatically using Regex and something like Python.

In cases where you have values that look like they’re possibly important, I recommend using

a brilliant tool: CTRL+F – most of the time, obfuscators will add a line of junk code, and

then never reference that line again. Therefore, if there is only one mention to a variable

inside of a macro, there is a high probability that it is just junk.

Once you’ve removed all of the obfuscated junk code, the next step is to simply clean up the

code by adding indents, removing blank lines, shortening variable/function names etc., to

make the code much easier to read. Once this has been done, it’s time to start understanding



4/5

the code!

When deobfuscating these macros, I went with naming variables and functions literally,

rather than working out what they were used for first. As a result, we don’t have to deal with

any obfuscation, and after looking over the code for a few minutes we can work out what each

function does.

With everything named correctly based on functionality, we can fully understand how the

macro operates; first it will get the path to the Templates folder, and append what is most

likely the name of the file it will create. Then it will perform a GET request to the encrypted

URL, and save the response to the file path. The macro will then execute the file from disk.



5/5

And that brings an end to our short analysis! We could go about reversing the decryption

routine, but that wasn’t the focus of this particular topic, it was more about deobfuscation

than analyzing!

So, to recap, when reversing obfuscated macros:

1. Locate the entry point function

2. Identify the obfuscation used (junk code, functions, etc.) and the differences between

junk and actual code (format of string, number of references in code, etc.)

3. Remove the junk code from the macro

4. Clean up the remaining code 

5. Analyze it!

Interested in learning more about obfuscated macros, exploited Word Documents, and a

huge number of other malware analysis and reverse engineering topics? Check out our

Advanced Malware Analysis Course, Zero2Automated!

 

 

http://courses.zero2auto.com/

