
1/13

Retread Ransomware
blog.reversinglabs.com/blog/retread-ransomware

Threat Research | June 5, 2020

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

https://blog.reversinglabs.com/blog/retread-ransomware
https://blog.reversinglabs.com/blog/tag/threat-research
https://blog.reversinglabs.com/blog/author/robert-simmons

2/13

In March of 2020, MalwareHunterTeam discovered a downloader which installed both a KPot
infostealer as well as a second payload which was a ransomware variant that used the string
"CoronaVirus". This sample was leveraging ongoing current events and appears to be some
form of cover for or distraction from the infostealer trojan that was installed alongside it. Via
code analysis of this "CoronaVirus" sample, it is clear that it reuses a large amount of code
from a four year old sample of ransomware detected as "Satana".

This older malware sample was first seen on June 29, 2016. This old sample and the recent
one share two decoding algorithms that are used to hide strings, code, and a little, tiny PE
file. This embedded file is run via a modification to the BootExecute registry key. The new file
has some changes to the strings that are encoded along with the encoded data hiding the
ransom note and the Bitcoin wallet addresses used to collect payment.

These are new addresses with a number of payments made during the same time that the
new file was observed in the wild. The ransom amount demanded is quite small: $50. All in
all, this is a strange executable. What follows is an examination of the two decoding
algorithms and a method for discovering the old samples based on YARA rules that focus on
these algorithms.

String Decoding

Many malware families obfuscate the strings that are used during their execution as a way to
foil static analysis and detections based on the decoded forms of the strings. In the samples
examined here, the string encoding is very simple. It is a substitution cipher which shifts one
character then subtracts the position index of the character in the encoded string to reveal
the decoded character. This algorithm is highlighted in Figure 1.

https://twitter.com/malwrhunterteam/status/1238113568442265602
https://attack.mitre.org/techniques/T1060/
https://attack.mitre.org/techniques/T1027/

3/13

Figure 1: String Decoding Algorithm

By focusing on the algorithm itself, which can be more stable than surrounding code when
reused, one may locate other malware samples that could be related to the sample being
analyzed. Figure 2 shows the same algorithm, but in a debugger where the first encoded
string that is operated on in the sample can be seen in the dump at the bottom.

Figure 2: First Encoded String in Sample

This same algorithm can be easily translated into Python and the strings from the sample
decoded without executing the sample. A small Python program for decoding these strings is
shown in Figure 3. The first string in the sample, which decodes to "CoronaVirus", is shown
here.

https://cdn2.hubspot.net/hubfs/3375217/image10.jpg
https://cdn2.hubspot.net/hubfs/3375217/image11.jpg

4/13

Figure 3: Python Implementation of String Decoder Algorithm

Taking only the bytes of the instructions that comprise this algorithm, a byte string for a YARA
rule is identified.

$op1 = { 8A 14 06 2A D1 FE CA 88 14 07 }

By then deploying this YARA rule as a retrohunt in the Titanium Platform, a number of
additional samples are found. The results of this retrohunt are shown in Figure 4.

https://cdn2.hubspot.net/hubfs/3375217/image6.jpg
https://www.reversinglabs.com/products/malware-analysis-platform

5/13

Figure 4: Retrohunt Results

Old Satana Sample

In the results of the retrohunt there are a number of samples from 2016. The sample with the
earliest ‘first seen’ date is shown in Figure 5.

Figure 5: Earliest Related Satana Sample from 2016

This file is well detected as Satana via the TitaniumCore YARA classification as well as being
classified as ransomware by the TitaniumCore Machine Learning classification. Both of these
classifications are seen in Figure 6.

https://cdn2.hubspot.net/hubfs/3375217/image1-2.jpg
https://cdn2.hubspot.net/hubfs/3375217/image5.jpg
https://www.reversinglabs.com/products/automated-static-analysis-tools
https://www.reversinglabs.com/products/explainable-machine-learning

6/13

Figure 6: Detection and Classification

In addition to this first sample, there are nine other samples that have been identified as
related to the first based on the ReversingLabs Hash Algorithm (RHA). These other samples
are seen in Figure 7.

Figure 7: Cluster of Ten Files Related via RHA

The earliest files in the cluster, each of which are also first seen in 2016, are very minor
changes to the earliest file. These may be researchers testing or other types of analysis
artifacts. One such minor change is highlighted in Figure 8 which shows a side-by-side

https://cdn2.hubspot.net/hubfs/3375217/image8.jpg
https://www.reversinglabs.com/technology/reversinglabs-hash-algorithm
https://cdn2.hubspot.net/hubfs/3375217/image12.jpg

7/13

comparison of the two files using HexFiend.

Figure 8: Side-by-side Comparison of Satana Samples

More recently observed files from this same cluster are clearly analysis artifacts from
researchers or analysis tools. Many of them simply have the encoded strings decoded in the
sample and no other changes. Knowing that all the files in the cluster are essentially the
same file, only the earliest sample
(ee937717efe9a2e076b9497498b628beb0c84a8476bd288105a59c5aeea01f3d) is used for
comparison with the CoronaVirus sample.

Data Decoding

Another common method used to encode data to avoid detection and identification is the
"exclusive or" operation or XOR. The sample analyzed here uses this operation to hide large
blobs of data. It specifically encodes the ransom note as well as a very small PE file which is
used to display a variation of the ransom note on reboot. The location where this XOR
operation is carried out is shown in Figure 9.

Figure 9: XOR Decoding Process

https://github.com/ridiculousfish/HexFiend/
https://cdn2.hubspot.net/hubfs/3375217/image14.jpg
https://en.wikipedia.org/wiki/Exclusive_or
https://cdn2.hubspot.net/hubfs/3375217/image9.jpg

8/13

This is a loop which uses the first byte of the data as the key and then operates using that
key on the rest of the bytes in the data. The encoded data before this operation has started
is shown in Figure 10. The XOR key is the very first byte, 0x58.

Figure 10: First Byte of Encoded Data is XOR Key

After this decoding process is complete, the embedded PE file begins to appear. This data is
still compressed, but the file magic "MZ" and the DOS stub string are clear. The decoded
version of the data shown above is seen in Figure 11.

https://cdn2.hubspot.net/hubfs/3375217/image4.jpg

9/13

Figure 11: Decoded Data with PE File Starting to Appear

The next step after decoding the data is to decompress it. The instructions that perform this
action utilize the library function "RtlDecompressBuffer". The function name is loaded
dynamically by decoding a string using the string decoding capability examined earlier. As
puzzling as it sounds, something like a comic book supervillain telling you their next step
before doing something evil, the meaning of these instructions is stated clearly by the
additional string, "DeCompressor", which is not encoded or hidden in any way. These
instructions as seen in the debugger are shown in Figure 12.

Figure 12: Disassembled Decompression Instructions

https://cdn2.hubspot.net/hubfs/3375217/image3-1.jpg
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer
https://cdn2.hubspot.net/hubfs/3375217/image18.jpg

10/13

Aside from the tiny PE file and the ransom note template, the decoded list of Bitcoin wallet
addresses is provided. One of these addresses is selected to be used with the ransom note
template to generate the note that is dropped by the ransomware. These decoded and
decompressed Bitcoin wallet addresses are shown in Figure 13.

Figure 13: Decoded and Decompressed Bitcoin Wallet Addresses

These addresses are listed in Table 1. The list of wallet addresses in the sample have two
duplicates, so the total set of addresses has 22 members each of which is of type Bech32
SegregatedWitness address format.

bc1qc9axh3fq2ypgcd92j582v9khfrn52strql7ztn

bc1qzww0kjteu52w50m3d2ucp72zh5dwchph9vqj6k

bc1q5e8pwyk9rqtq400agngmq5h23cuz42x0wlqw3q

bc1qrkp9cx6svxguxupx9p0z5ss4nmyr4fwhvgkasg

bc1qjl0ufmwct84ww69zwyxe99gext7za6qkyhx200

bc1q6ryyex33jxgr946u3jyre66uey07e2xy3v2cah

bc1qlmu9xk8wdnydnlcvy9uvcepzklcv7kxyhk8ymy

bc1qftwqsaw57v6cstwrdvclmkz63plvf5q3vqvw4k

bc1qegps92ddvgv8t45lfcn02afsjlyf7mynuqvpmm

bc1quwc6yqgdcgm6z2663vpjm9cgtfwf7mhk2n7gtn

bc1q9dd5nkqrxsny93r9u09jwq8agvkf04afxh67jg

bc1qt6ypzfv25hwv70zs8nvrdhjl962jzyymkl7y9d

bc1qgd3nj0486k35ra42a550ntyafdr7s5lmyzjn29

bc1q8r42fm7kwg68dts3w70qah79n5emt5m76rus5u

bc1q3v6far85gtdsrk4zu4fuhphheyqprwmuv62n92

bc1qpvguajy4rxr7743hzuwfmz32krzzfcjl9rf0qx

https://cdn2.hubspot.net/hubfs/3375217/image17.jpg
https://en.bitcoin.it/wiki/Bech32

11/13

bc1qe9gj2sj3an73dq37vpe34xflc83yjp4u3pzfgz

bc1qpaksevt2w6cqdeqjvm8dapvz66y3hs3jjy4x66

bc1qt3uf3wx569z5z9wdeanuj4rwq7m06grhxt96v3

bc1qzv6h2zaedjgduc6xmyn86hdsu0skuunt9lhkxn

bc1q2x9h8wlh2cuxjd9rv94v6syz7lpxxk2wwrndmv

bc1qxsjfw0jftfr9n5urdyh7xmz4cspls8qefuyetr

Table 1: Bitcoin Wallet Addresses

The ransom note template has four locations where string replacement is used to generate
the final note text that is dropped to the ransom note file. These locations in the template are
highlighted in Figure 14.

Figure 14: Ransom Note Template

The email address, coronaVi2022[@]protonmail[.]ch, along with the amount demanded in
Bitcoin (BTC), 0.008, are both hard coded. The unique ID is generated by concatenating the
drive serial number collected from PhysicalDrive0 and the HwProfileGuid and then
generating an MD5 from this string. The Bitcoin wallet address is chosen from the list
decoded and decompressed as documented above. These four values just before the call to
sprintf can be seen in Figure 15.

https://cdn2.hubspot.net/hubfs/3375217/image15.jpg
https://cdn2.hubspot.net/hubfs/3375217/image2.jpg

12/13

Figure 15: String Replacement into Ransom Note Template

The payment demand of 0.008 BTC, interestingly, does not line up with any of the seven
payments made to the set of wallet addresses from the binary. Each is a single payment.
Some of the payments are larger than the demand and some are smaller than the demand. It
is unknown whether these payments are in fact connected with the ransomware.

Old Satana Sample Differences

The majority of the instructions that handle the generation of randomness and moving that
random data around in memory are all identical between the Satana and the Coronavirus
samples. Library and compiler added code along with these identical functions are shown in
Figure 16 as analyzed using Relyze's binary difference feature.

Figure 16: Binary Difference Showing Identical Functions

There are a number of functions that have some amount of change according to binary
difference, however, most of these instruction changes do not have a significant effect on the
malware sample's behavior. The strings that are operated on are different and one significant
location of change is the BTC demand amount which was 0.5 BTC in the older sample and
0.008 BTC in the newest. This change in price in the disassembly is shown in Figure 17.

https://cdn2.hubspot.net/hubfs/3375217/image7.jpg

13/13

Figure 17: Difference in Hard-Coded BTC Demand

Conclusion

As can be seen through comparison between the older Satana sample and the new
Coronavirus sample, these two are very closely related. This old sample, or the source code
for it, has been repurposed and redeployed as "CoronaVirus" ransomware. However, due to
the distribution alongside the KPot sample, the very low demand amount of approximately
$70, and the payments that are oddly larger or smaller than the demand: this may be a faux
ransomware campaign. Totaling all the payments received, the set of wallet addresses only
collected 0.10417322 BTC or about $930, a strangely low amount.

YARA Rule

private rule WindowsPE
 {
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550
 }

 rule SubstCipher_MinusIndex
 {
 meta:
 author = "Malware Utkonos"
 date = "2020-04-13"
 exemplar =
"ee937717efe9a2e076b9497498b628beb0c84a8476bd288105a59c5aeea01f3d"
 strings:
 $op1 = { 8A 14 06 2A D1 FE CA 88 14 07 }
 condition:
 WindowsPE and all of them
 }

MORE BLOG ARTICLES

https://cdn2.hubspot.net/hubfs/3375217/image13.jpg

