Mustang Panda Recent Activity: DII-Sideloading trojans
with temporal C2 servers

Recently, from Lab52 we have detected a recent malware sample, using the DII-Sideload
technique with a legitimate binary, to load a threat.

This particular sample has a very small DLL, that loads an encrypted file, which after being
decrypted consists of a sample of the PlugX Trojan. This technique, and final threat together,
consists of one of the most common TTPs among some APT groups generally of Chinese
origin such as APT1, APT27 and Mustang Panda.

The sample in question is downloaded from the following link
“http://miandfish.]store/player/install_flash_player.exe” and although in previous months, it
had another hash, currently the sample hosted under that name has the following hash
“c56ac01b3af452fedc0447d9e0fe184d093d3fd3c6631aa8182¢c752463de570c”.

The binary consists of an installer, which drops in the folder “C:\ProgramData\AAM
Updatesnnk” the legitimate binary vulnerable to dll sideload, the small dll that acts as a
loader for the final threat, and the binary file, which consists of the encrypted PlugX sample.

C:\Usersh\Lucas\Desktophinstall_flashplayer.exe\STEMPY,

Archive Editar Ver Favoritos Herramientas Ayuda

o] - v ngp =p

Agregar Extraer Probar Copiar Maowver
;i C\Users\LucashDesktophinstall_flashplayer.exe\ STEMPY,
Mombre Tamafic Tamafic comp.. P
=] O .
i = H0400 s exe | 190144 176613 =
IFF || adobeupdate.dat 138 763 2
install_flashpla... || hex.dll z

After deploying the three files, the installer runs the legitimate binary, causing the final PlugX
threat to be loaded by it.

1/6

https://lab52.io/blog/mustang-panda-recent-activity-dll-sideloading-trojans-with-temporal-c2-servers/

(=] IpOverlUsbSvc.exe 1156 8,8 MB NT AUTHORITY\SYSTEN Windows IP Over USB PC Serv... H -

=] sqlwriter.exe
()] Propiedades: AAM Updates.exe (2792)
=] Sysmonbd.exe

% wc:ost.exe General |S13tistics I Performance I Threads | Token | Modules I Memory | Environment | Handles I Job | Disk and Netwark | Commentl
svchost.exe
[sppsve.exe File
[5 SearchIndexer.e Ache CEF Helper
2] taskhost.exe (verified) Adobe Systems Incorporated
1 Isass.exe Version: 3.9.0.327
57 lsm.exe Image file name:
51 csrss.exe C:\ProgramData\4AM Updatesnnk\AAM Updates.exe
n winlogon.exe
4 explorer.exe Process
1% ProcessHacker.exe Command line: "C:\ProgramData'\AAM Updatesnnk\AAM Updates.exe™ 124

AAM Updates.exe Current directory: C:\UserslLucas\AppDataiLocal {Temp},

Started: 2 seconds ago (15:06:51 19/05/2020)
PEE address: 0x7efdf000 (32-bit: 0xTefdelDO)
Parent: MNon-existent process (2152)

Mitigation polides: DEP (permanent)

Protection: Mone

In this case, the legitimate vulnerable binary is part of Adobe’s Swite which will load any
library named “hex.dll” that is next to the executable.

Signature Verification

Signed file, valid signature

File Version Information

Copyright Copyright 2013-2016 Adobe Systems Incorporated. All rights reserved.
Product Adobe CEF Helper
Description Adobe CEF Helper

Original Name Adobe CEF Helper.exe
Internal Name Adobe CEF Helper.exe
File Version 3.9.0327

Date signed 1:22 AM 101372006

Signers
4+ Adobe Systems Incorpeorated

4+ Symantec Class 3 Extended Validation Code Signing CA - G2

+ VeriSign

That hex.dll, in this case is a very simple and relatively small loader:

2/6

Function name Segrent

[] sub_10001000 text
|E| nreoiyoaynioytrupeyfk Jdext
E oojgwhnfjutcrejlbroeds Jtext
E dgysrefgdhwpbagfudfbhlsgurhrdpwu Jtext
E lujmewahkm Jdext
DecodeFile Jgext
|#] OtroReadrile text
|E| Open_file Jtext
|E| CEFProcessForkHandlerEx Jfext
7] DliMain(x,x,%) text
E operator delete(void *) text
| 7] memset text
E operator new(uint) text
7] exit text
| 7] strncat text
|E| strncpy dext
| 7] strlen text
|E| strrchr bext
7] fclose text
7] frell text
7] fseek text
E fopen text
[F] _CRT_INIT(x,x,x) text

iThas 4 exports that return 0 without doing anythirrwg, the Main function of the library, on the
other hand, calls a function that checks the existence of the .dat file which is hardcoded
(adobeupdate.dat in this case), loads it, extracts the first string of the binary and uses it as
XOR key to decode the rest of the file, which consists on the final threat.

The following_code in python imitates the logic of decoding:

3/6

https://raw.githubusercontent.com/Bondey/PlugxScripts/master/PlugDecoder.py

XorKey Data.split(chr(exe))[e]
XorKeyLength len({XorKey)

res

range(DatalLenth-XorKeyLength-1):
chr{ord(Data[i+XorKeyLength+1]) "ord(XorKey[i*:XorKeyLength]))

When it finishes deciphering it, it loads the malware into memory, makes a “Memprotect” to
make it executable and launches its logic from the byte O of the binary.

It is a functional PE, so this should not work, since it starts with the “MZ” header of a normal
binary:

kD sn E2 00 00 00 00 5B 52 45 55 8B EC 81 C3 69 MzZé....[REU<i.Ai

3 00 00 FF D3 C9 C3 00 40 00 00 00 0O 00 00 00 ...V0FA.@.......
0O 0D 00 OO0 OD OO0 00 0D OO0 00 00 00 00 D0 00 00 tuvvuneernneenns
0O 0D 00 OO0 0D OO0 00 OO0 OO0 00 D0 0D FB 00 00 00 vvvuueernnn. B
OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 &8 ..°.. .I!, .Li'Th

69 T3 20 T0 72 eF o7 72 61 6D 20 63 61 6E 6E 6F 1is program canno
T 20 62 65 20 ']"2 Td 6E 20 6% 6E 20 44 4F 533 20 t be run in DO3

Em £ £A £c b A An A Aan afd Aan o ana AN an an L

But in this case it uses a technique already seen before in tools Ilke the Cobalt Strike Beacon
that by modifying some bytes of the MZ header, it becomes meaningful executable code.

If we open the binary as a shellcode (de-compiling from byte 0) we see how they have
modified the first bytes into a routine that jumps to a code zone, consisting of a PE loader:

4/6

Seghes : pepapape sub @ proc near ; DATA XREF: sub_12218+54r

seglea : aaaaaaaae ;3 sub_122184+3Edw ...
seghbe : BaeeaRaa 40 dec ebp
Seghoe: epeeeeal SA pop edx
seglln: aaeeRa2 ES B8 B0 B8 88 call 45
segede : epaeaaa7 sB pop ebx
segkoe: epeeeeas 52 push edx
segloe: epeReeaa 45 inc ebp
segede : epaaaaas 55 push ebp
seghba : Beeeaeas 58 EC mov ebp, esp
Seghon:eppeeeed 81 C3 89 13 @ oe add ebx, 1369h
segeds:epeeeals FF D3 call ebx
segede :epeeaals C9 leave

Seghon: apepaals C3 retn

segkde: eaaaaele sub @ endp

After loading the IAT and leaving everything ready as a normal executable, this threat
decrypts its own config, which is encrypted in XOR in the .data section of the binary. This
time the decryption key is hardcoded in the binary, and is the string “123456789".

After decrypting its configuration, it contains the folder where the binary must be installed, a
XOR key that will use to encrypt it’s traffic and a list of up to 4 domains or IP addresses of
command and control servers together with the port to be used. Generally the 4 C2 elements
consists of the same domain repeated 4 times or 2 domains repeated twice each.

After the analysis, both the loader in DLL format and the final encrypted threat (after
decryption) have been compared with different campaign samples of groups known to use
this dll sideload technique, and it has been possible to verify how both the loader and the
final threat coincide in a high percentage with the samples of the “Mustang Panda” group
analyzed in the following reports [1] [2] [3]. In fact, the loader of this campaign is able to load
and run the samples of the campaigns analyzed in those reports, and the final threat uses
exactly the same XOR key to decipher its configuration as the samples in those reports, so
there is a high probability that it is a new campaign from this same group.

This particular sample has the domains “www.destroy2013.]Jcom” and “www.fitehook.]Jcom”
as c2 servers, and we have seen that they have a very characteristic behavior, since most of
the day they resolve to 127.0.0.1, but from 1-3 AM (UTC) to 8-9 AM (UTC) it resolves to the
IP “107.150.112.]250, except for weekends that it resolves constantly to 127.0.0.1, which
could indicate that it is a campaign that is focused on a time zone in which those hours are
working hours.

P 81.16.28.130

P 107.150.112.]250

DOMAIN www.destroy2013.]Jcom

DOMAIN www.fitehook.Jcom

DOMAIN miandfish.]store

SHA256 c56ac01b3af452fedc0447d9e0fe184d093d3fd3c6631aa8182c752463de570c

5/6

https://www.anomali.com/blog/covid-19-themes-are-being-utilized-by-threat-actors-of-varying-sophistication
https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc.html
https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc-phan2.html

SHA256 9c0f6f54e5ab9a86955f1a4beffd6f57c553e34b548a9d93f4207e6a7a6¢8135

6/6

