
1/17

June 2, 2020

In-depth analysis of the new Team9 malware family
blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/

Author: Nikolaos Pantazopoulos
 Co-author: Stefano Antenucci (@Antelox)

 And in close collaboration with NCC’s RIFT.

1. Introduction

Publicly discovered in late April 2020, the Team9 malware family (also known as ‘Bazar [1]’) appears to
be a new malware being developed by the group behind Trickbot. Even though the development of the
malware appears to be recent, the developers have already developed two components with rich
functionality. The purpose of this blog post is to describe the functionality of the two components, the
loader and the backdoor.

About the Research and Intelligence Fusion Team (RIFT):
RIFT leverages our strategic analysis, data science, and threat hunting capabilities to create
actionable threat intelligence, ranging from IOCs and detection rules to strategic reports on
tomorrow’s threat landscape. Cyber security is an arms race where both attackers and defenders
continually update and improve their tools and ways of working. To ensure that our managed services
remain effective against the latest threats, NCC Group operates a Global Fusion Center with Fox-IT
at its core. This multidisciplinary team converts our leading cyber threat intelligence into powerful
detection strategies.

2. Early variant of Team9 loader

We assess that this is an earlier variant of the Team9 loader
(35B3FE2331A4A7D83D203E75ECE5189B7D6D06AF4ABAC8906348C0720B6278A4) because of its
simplicity and the compilation timestamp. The other variant was compiled more recently and has
additional functionality. It should be noted that in very early versions of the loader binaries
(2342C736572AB7448EF8DA2540CDBF0BAE72625E41DAB8FFF58866413854CA5C), the
developers were using the Windows BITS functionality in order to download the backdoor. However, we
believe that this functionality has been dropped.

Before proceeding to the technical analysis part, it is worth mentioning that the strings are not
encrypted. Similarly, the majority of the Windows API functions are not loaded dynamically.

https://blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/
https://twitter.com/antelox
https://twitter.com/antelox
https://www.bleepingcomputer.com/news/security/bazarbackdoor-trickbot-gang-s-new-stealthy-network-hacking-malware/

2/17

When the loader starts its execution, it checks if another instance of itself has infected the host already
by attempting to read the value ‘BackUp Mgr’ in the ‘Run’ registry key
‘Software\Microsoft\Windows\CurrentVersion\Run’ (Figure 1). If it exists, it validates if the current
loaders file path is the same as the one that has already been set in the registry value’s data (BackUp
Mgr). Assuming that all of the above checks were successful, the loader proceeds to its core
functionality.

Figure 1 – Loader verifies if it has already infect the host

However, if any of the above checks do not meet the requirements then the loader does one of the
following actions:

1. Copy itself to the %APPDATA%\Microsoft folder, add this file path in the registry ‘Run’ key under
the value ‘BackUp Mgr’ and then execute the loader from the copied location.

2. If the loader cannot access the %APPDATA% location or if the loader is running from this location
already, then it adds the current file path in the ‘Run’ registry key under the value ‘BackUp Mgr’
and executes the loader again from this location.

When the persistence operation finishes, the loader deletes itself by writing a batch file in the Windows
temporary folder with the file name prefix ‘tmp’ followed by random digits. The batch file content:

@echo off
set Module=%1
:Repeat
del %Module%
if exist %Module% goto Repeat
del %0

Next, the loader fingerprints the Windows architecture. This is a crucial step because the loader needs
to know what version of the backdoor to download (32-bit or 64-bit). Once the Windows architecture has
been identified, the loader carries out the download.

The core functionality of the loader is to download the Team9 backdoor component. The loader contains
two ‘.bazar’ top-level domains which point to the Team9 backdoor. Each domain hosts two versions of
the Team9 backdoor on different URIs, one for each Windows architecture (32-bit and 64-bit), the use of
two domains is highly likely to be a backup method.

Any received files from the command and control server are sent in an encrypted format. In order to
decrypt a file, the loader uses a bitwise XOR decryption with the key being based on the infected host’s
system time (Year/Month/Day) (Figure 2).

3/17

Figure 2 – Generate XOR key based on infected host’s time

As a last step, the loader verifies that the executable file was decrypted successfully by validating the
PE headers. If the Windows architecture is 32-bit, the loader injects the received executable file into
‘calc.exe’ (Windows calculator) using the ‘Process Hollowing’ technique. Otherwise, it writes the
executable file to disk and executes it.

The following tables summarises the identified bazar domains and their URIs found in the early variants
of the loader.

URI Description

/api/v108 Possibly downloads the 64-bit version of the Team9 backdoor

/api/v107 Possibly downloads the 32-bit version of the Team9 backdoor

/api/v5 Possibly downloads an updated 32-bit version of the Team9 loader

/api/v6 Possibly downloads an updated 64-bit version of the Team9 loader

/api/v7 Possibly downloads the 32-bit version of the Team9 backdoor

/api/v8 Possibly downloads the 64-bit version of the Team9 backdoor

Table 1 – Bazar URIs found in early variants of the loader

The table below (table 2) summarises the identified domains found in the early variants of the loader.

Bazar domains

bestgame[.]bazar

forgame[.]bazar

zirabuo[.]bazar

tallcareful[.]bazar

coastdeny[.]bazar

Table 2 – Bazar domains found in early variants of the loader

Lastly, another interesting observation is the log functionality in the binary file that reveals the following
project file path:

4/17

d:\\development\\team9\\team9_restart_loader\\team9_restart_loader

3. Latest variant of Team9 loader

In this section, we describe the functionality of a second loader that we believe to be the latest variant of
the aforementioned Team9 loader. This assessment is based on three factors:

1. Similar URIs in the backdoor requests
2. Similar payload decryption technique
3. Similar code blocks

Unlike its previous version, the strings are encrypted and the majority of Windows API functions are
loaded dynamically by using the Windows API hashing technique.

Once executed, the loader uses a timer in order to delay the execution. This is likely used as an anti-
sandbox method. After the delayed time has passed, the loader starts executing its core functionality.

Before the malware starts interacting with the command and control server, it ensures that any other
related files produced by a previous instance of the loader will not cause any issues. As a result the
loader appends the string ‘_lyrt’ to its current file path and deletes any file with this name. Next, the
loader searches for the parameter ‘-p’ in the command line and if found, it deletes the scheduled task
‘StartDT’. The loader creates this scheduled task later for persistence during execution. The loader also
attempts to execute hijacked shortcut files, which will eventually execute an instance of Team9 loader.
This functionality is described later.

The loader performs a last check to ensure that the operating systems keyboard and language settings
are not set to Russian and creates a mutex with a hardcoded name ‘ld_201127’. The latter is to avoid
double execution of its own instance.

As mentioned previously, the majority of Windows API functions are loaded dynamically. However, in an
attempt to bypass any API hooks set by security products, the loader manually loads ‘ntdll’ from disk,
reads the opcodes from each API function and compares them with the ones in memory (Figure 3). If
the opcodes are different, the loader assumes a hook has been applied and removes it. This applies
only to 64-bit samples reviewed to date.

Figure 3 – Scan for hooks in Windows API functions

The next stage downloads from the command and control server either the backdoor or an updated
version of the loader. It is interesting to note that there are minor differences in the loader’s execution
based on the identified Windows architecture and if the ‘-p’ parameter has been passed into the
command line.

5/17

Assuming that the ‘-p’ parameter has not been passed into the command line, the loader has two loops.
One for 32-bit and the other for 64-bit, which download an updated version of the loader. The main
difference between the two loops is that in case of a Windows x64 infection, there is no check of the
loader’s version.

The download process is the same with the previous variant, the loader resolves the command and
control server IP address using a hardcoded list of DNS servers and then downloads the corresponding
file. An interesting addition, in the latest samples, is the use of an alternative command and control
server IP address, in case the primary one fails. The alternative IP address is generated by applying a
bitwise XOR operation to each byte of the resolved command and control IP address with the byte
0xFE. In addition, as a possible anti-behaviour method, the loader verifies that the command and
control server IP address is not ‘127.0.0.1’. Both of these methods are also present in the latest Team9
backdoor variants.

As with the previous Team9 loader variant, the command and control server sends back the binary files
in an encrypted format. The decryption process is similar with its previous variant but with a minor
change in the XOR key generation, the character ‘3’ is added between each hex digit of the day format
(Figure 4). For example:

332330332330330335331338 (ASCII format, host date: 2020-05-18)

Figure 4 – Add the character ‘3’ in the generated XOR key

If the ‘-p’ parameter has been passed into the command line, the loader proceeds to download the
Team9 backdoor directly from the command and control server. One notable addition is the process
injection (hollow process injection) when the backdoor has been successfully downloaded and
decrypted. The loader injects the backdoor to one of the following processes:

1. Svchost
2. Explorer
3. cmd

Whenever a binary file is successfully downloaded and properly decrypted, the loader adds or updates
its persistence in the infected host. The persistence methods are available in table 3.

Persistence
Method

Persistence Method Description

Scheduled
task

The loader creates two scheduled tasks, one for the updated loader (if any) and one
for the downloaded backdoor. The scheduled task names and timers are different.

6/17

Winlogon
hijack

Add the malware’s file path in the ‘Userinit’ registry value. As a result, whenever the
user logs in the malware is also executed.

Shortcut in
the Startup
folder

The loaders creates a shortcut, which points to the malware file, in the Startup folder.
The name of the shortcut is ‘adobe’.

Hijack
already
existing
shortcuts

The loader searches for shortcut files in Desktop and its subfolders. If it finds one then
it copies the malware into the shortcut’s target location with the application’s file name
and appends the string ‘__’ at the end of the original binary file name. Furthermore,
the loader creates a ‘.bin’ file which stores the file path, file location and parameters.
The ‘.bin’ file structure can be found in the Appendix section. When this structure is
filled in with all required information, It is encrypted with the XOR key 0x61.

Table 3 – Persistence methods loader

The following tables summarises the identified bazar domains and their URIs for this Team9 loader
variant.

URI Description

/api/v117 Possibly downloads the 32-bit version of the Team9 loader

/api/v118 Possibly downloads the 64-bit version of the Team9 loader

/api/v119 Possibly downloads the 32-bit version of the Team9 backdoor

/api/v120 Possibly downloads the 64-bit version of the Team9 backdoor

/api/v85 Possibly downloads the 32-bit version of the Team9 loader

/api/v86 Possibly downloads the 64-bit version of the Team9 loader

/api/v87 Possibly downloads the 32-bit version of the Team9 backdoor

/api/v88 Possibly downloads the 64-bit version of the Team9 backdoor

Table 4 – Identified URIs for Team9 loader variant

Bazar domain

bestgame[.]bazar

forgame[.]bazar

Table 5 – Identified domains for Team9 loader variant

4. Team9 backdoor

We are confident that this is the backdoor which the loader installs onto the compromised host. In
addition, we believe that the first variants of the Team9 backdoor started appearing in the wild in late
March 2020. Each variant does not appear to have major changes and the core of the backdoor
remains the same.

7/17

During analysis, we identified the following similarities between the backdoor and its loader:

1. Creates a mutex with a hardcoded name in order to avoid multiple instances running at the same
time (So far the mutex names which we have identified are ‘mn_185445’ and ‘{589b7a4a-3776-
4e82-8e7d-435471a6c03c}’)

2. Verifies that the keyboard and the operating system language is not Russian
3. Use of Emercoin domains with a similarity in the domain name choice

Furthermore, the backdoor generates a unique ID for the infected host. The process that it follows is:

1. Find the creation date of ‘C:\Windows’ (Windows FILETIME structure format). The result is then
converted from a hex format to an ASCII representation. An example is shown in figures 5 (before
conversion) and 6 (after conversion).

2. Repeat the same process but for the folder ‘C:\Windows\System32’
3. Append the second string to the first with a bullet point as a delimiter. For example, 01d3d1d8

b10c2916.01d3d1d8 b5b1e079
4. Get the NETBIOS name and append it to the previous string from step 3 along with a bullet point

as a delimiter. For example: 01d3d1d8 b10c2916.01d3d1d8 b5b1e079.DESKTOP-4123EEB.
5. Read the volume serial number of C: drive and append it to the previous string. For example:

01d3d1d8 b10c2916.01d3d1d8 b5b1e079.DESKTOP-SKCF8VA.609fbbd5
6. Hash the string from step 5 using the MD5 algorithm. The output hash is the bot ID.

Note: In a few samples, the above algorithm is different. The developers use hard-coded dates, the
Windows directory file paths in a string format (‘C:\Windows’ and ‘C:\Windows\system32’) and the
NETBIOS name. Based on the samples’ functionality, there are many indications that these binary files
were created for debugging purposes.

Figure 5 – Before conversion

Figure 6 – After conversion

4.1 Network communication

The backdoor appears to support network communication over ports 80 (HTTP) and 443(HTTPS). In
recent samples, a certificate is issued from the infected host for communication over HTTPS. Each
request to the command and control server includes at least the following information:

1. A URI path for requesting tasks (/2) or sending results (/3).
2. Group ID. This is added in the ‘Cookie’ header.

Lastly, unlike the loader which decrypts received network replies from the command and control server
using the host’s date as the key, the Team9 backdoor uses the bot ID as the key.

4.2 Bot commands

The backdoor supports a variety of commands. These are summarised in the table below.

8/17

Command
ID

Description Parameters

0 Set delay time for the command and
control server requests

Time to delay the requests

1 Collect infected host information Memory buffer to fill in the collected
data

10 Download file from an address and inject
into a process using either hollowing
process injection or Doppelgänging
process injection

DWORD value that represents the
corresponding execution method.
This includes:

Process hollowing injection
Process Doppelgänging
injection
Write the file into disk and
execute it

Process mask – DWORD value that
represents the process name to
inject the payload. This can be one
of the following:

1. Explorer
2. Cmd
3. Calc (Not used in all variants)
4. Svchost
5. notepad

Address from which the file is
downloaded
Command line

11 Download a DLL file and execute it Timeout value
Address to download the DLL
Command line
Timeout time

12 Execute a batch file received from the
command and control server

DWORD value to determine if the
batch script is to be stored into a
Windows pipe (run from memory) or
in a file into disk
Timeout value.
Batch file content

13 Execute a PowerShell script received from
the command and control server

DWORD value to determine if the
PowerShell script is to be stored into
a Windows pipe (run from memory)
or in a file into disk
Timeout value.
PowerShell script content

14 Reports back to the command and control
server and terminates any handled tasks

None

9/17

15 Terminate a process PID of the process to terminate

16 Upload a file to the command and control
server. Note: Each variant of the backdoor
has a set file size they can handle.

Path of the file to read and upload to
the command and control server.

100 Remove itself None

Table 6 – Supported backdoor commands

Table 7 summarises the report structure of each command when it reports back (POST request) to the
command and control server. Note: In a few samples, the backdoor reports the results to an additional
IP address (185.64.106[.]73) If it cannot communicate with the Bazar domains.

Command ID/Description Command execution results structure

1/ Collect infected host information The POST request includes the following
information:

Operating system information
Operating system architecture
NETBIOS name of the infected host
Username of the infected user
Backdoor’s file path
Infected host time zone
Processes list
Keyboard language
Antivirus name and installed applications
Infected host’s external IP
Shared drives
Shared drives in the domain
Trust domains
Infected host administrators
Domain admins

11/ Download a DLL file and execute it The POST request includes the following
parameters:

Command execution errors (Passed in the
parameter ‘err’)
Process identifier (Passed in the ‘pid’
parameter)
Command execution output (Passed in the
parameter ‘stdout’, if any)
Additional information from the command
execution (Passed in the parameter ‘msg’, if
any)

12/ Execute a batch file received from the
command and control server

Same as the previous command (11/ Download a
DLL file and execute it)

13/ Execute a PowerShell script received from
the command and control server

Same as the previous command (11/ Download a
DLL file and execute it)

10/17

14/ Reports back to the command and control
server and terminate any handled tasks

POST request with the string ‘ok’

15/ Terminate a process Same as the previous command (11/ Download a
DLL file and execute it)

16/ Upload a file to the command and control
server

No parameters. The file’s content is sent in a POST
request.

100/ Remove itself POST request with the string ‘ok’ or ‘process
termination error’

Table 7 – Report structure

5. Appendix

5.1 struct shortcut_bin

struct shortcut_bin

{
BYTE junk_data[434];
BYTE file_path[520];
BYTE filepath_dir[520];
BYTE file_loader_parameters[1024];
};

5.2 IOCs

File hashes

Description SHA-256 Hash

Team9
backdoor
(x64)

4F258184D5462F64C3A752EC25FB5C193352C34206022C0755E48774592B7707

Team9
backdoor
(x64)

B10DCEC77E00B1F9B1F2E8E327A536987CA84BCB6B0C7327C292F87ED603837D

Team9
backdoor
(x64)

363B6E0BC8873A6A522FE9485C7D8B4CBCFFA1DA61787930341F94557487C5A8

Team9
backdoor
(x64)

F4A5FE23E21B6B7D63FA2D2C96A4BC4A34B40FD40A921B237A50A5976FE16001

Team9
backdoor
(x64)

A0D0CFA8BF0BC5B8F769D8B64EAB22D308B108DD8A4D59872946D69C3F8C58A5

11/17

Team9
backdoor
(x64)

059519E03772D6EEEA9498625AE8B8B7CF2F01FC8179CA5D33D6BCF29D07C9F4

Team9
backdoor
(x64)

0F94B77892F22D0A0E7095B985F30B5EDBE17AB5B8D41F798EF0C708709636F4

Team9
backdoor
(x64)

2F0F0956628D7787C62F892E1BD9EDDA8B4C478CF8F1E65851052C7AD493DC28

Team9
backdoor
(x64)

37D713860D529CBE4EAB958419FFD7EBB3DC53BB6909F8BD360ADAA84700FAF2

Team9
backdoor
(x64)

3400A7DF9EC3DC8283D5AC7ACCB6935691E93FEDA066CC46C6C04D67F7F87B2B

Team9
backdoor
(x64)

5974D938BC3BBFC69F68C979A6DC9C412970FC527500735385C33377AB30373A

Team9
backdoor
(x64)

C55F8979995DF82555D66F6B197B0FBCB8FE30B431FF9760DEAE6927A584B9E3

Team9
backdoor
(x86)

94DCAA51E792D1FA266CAE508C2C62A2CA45B94E2FDFBCA7EA126B6CD7BC5B21

Team9
backdoor
(x86)

4EE0857D475E67945AF2C5E04BE4DEC3D6D3EB7C78700F007A7FF6F8C14D4CB3

Team9
backdoor
(x86)

8F552E9CA2BEDD90CE9935A665758D5DE2E86B6FDA32D98918534A8A5881F91A

Team9
backdoor
(x86)

AE7DAA7CE3188CCFE4069BA14C486631EEA9505B7A107A17DDEE29061B0EDE99

Team9
backdoor
(x86)

F3C6D7309F00CC7009BEA4BE6128F0AF2EA6B87AB7A687D14092F85CCD35C1F5

Team9
backdoor
(x86)

6CBF7795618FB5472C5277000D1C1DE92B77724D77873B88AF3819E431251F00

Team9
backdoor
(x86)

B0B758E680E652144A78A7DDECC027D4868C1DC3D8D7D611EC4D3798358B0CE5

12/17

Team9
backdoor
(x86)

959BA7923992386ABF2E27357164672F29AAC17DDD4EE1A8AD4C691A1C566568

Team9
backdoor
(x86)

3FE61D87C9454554B0CE9101F95E18ABAD8AC6C62DCC88DC651DDFB20568E060

Team9
loader (x64)

B3764EF42D526A1AE1A4C3B0FE198F35C6BC5C07D5F155D15060B94F8F6DC695

Team9
loader (x64)

210C51AAB6FC6C52326ECE9DBD3DDAB5F58E98432EF70C46936672C79542FBD0

Team9
loader (x64)

11B5ADAEFD04FFDACEB9539F95647B1F51AEC2117D71ECE061F15A2621F1ECE9

Team9
loader (x64)

534D60392E0202B24D3FDAF992F299EF1AF1FB5EFEF0096DD835FE5C4E30B0FA

Team9
loader (x64)

9D3A265688C1A098DD37FE77C139442A8EB02011DA81972CEDDC0CF4730F67CF

Team9
loader (x64)

CE478FDBD03573076394AC0275F0F7027F44A62A306E378FE52BEB0658D0B273

Team9
loader (x64)

5A888D05804D06190F7FC408BEDE9DA0423678C8F6ECA37ECCE83791DE4DF83D

Team9
loader (x64)

EB62AD35C613A73B0BD28C1779ACE80E2BA587A7F8DBFEC16CF5BF520CAA71EE

Team9
loader (x64)

A76426E269A2DEFABCF7AEF9486FF521C6110B64952267CFE3B77039D1414A41

Team9
loader (x64)

65CDBDD03391744BE87AC8189E6CD105485AB754FED0B069A1378DCA3E819F28

Team9
loader (x64)

38C9C3800DEA2761B7FAEC078E4BBD2794B93A251513B3F683AE166D7F186D19

Team9
loader (x64)

8F8673E6C6353187DBB460088ADC3099C2F35AD868966B257AFA1DF782E48875

Team9
loader (x86)

35B3FE2331A4A7D83D203E75ECE5189B7D6D06AF4ABAC8906348C0720B6278A4

Team9
loader (x86)

65E44FC8527204E88E38AB320B3E82694D1548639565FDAEE53B7E0F963D3A92

Team9
loader (x86)

F53509AF91159C3432C6FAF4B4BE2AE741A20ADA05406F9D4E9DDBD48C91EBF9

Team9
loader (x86)

73339C130BB0FAAD27C852F925AA1A487EADF45DF667DB543F913DB73080CD5D

Team9
loader (x86)

2342C736572AB7448EF8DA2540CDBF0BAE72625E41DAB8FFF58866413854CA5C

13/17

Team9
loader (x86)

079A99B696CC984375D7A3228232C44153A167C1936C604ED553AC7BE91DD982

Team9
loader (x86)

0D8AEACF4EBF227BA7412F8F057A8CDDC54021846092B635C8D674B2E28052C6

Team9
loader (x86)

F83A815CE0457B50321706957C23CE8875318CFE5A6F983A0D0C580EBE359295

Team9
loader (x86)

3FA209CD62BACC0C2737A832E5F0D5FD1D874BE94A206A29B3A10FA60CEB187D

Team9
loader (x86)

05ABD7F33DE873E9630F9E4F02DBD0CBC16DD254F305FC8F636DAFBA02A549B3

Table 8 – File hashes

Identified Emercoin domains

Domains

newgame[.]bazar

thegame[.]bazar

portgame[.]bazar

workrepair[.]bazar

realfish[.]bazar

eventmoult[.]bazar

bestgame[.]bazar

forgame[.]bazar

Zirabuo[.]bazar

Table 9 – Identified Emercoin domains

Command and Control IPs

C&C IPs

34.222.222[.]126

71.191.52[.]192

77.213.120[.]90

179[.]43.134.164

185[.]65.202.62

220[.]32.32.128

14/17

34[.]222.222.126

51[.]81.113.26

71[.]191.52.192

77[.]213.120.90

85[.]204.116.58

Table 10 – Command and Control IPs

Identified DNS IPs

DNS IPs

51[.]254.25.115

193[.]183.98.66

91[.]217.137.37

87[.]98.175.85

185[.]121.177.177

169[.]239.202.202

198[.]251.90.143

5[.]132.191.104

111[.]67.20.8

163[.]53.248.170

142[.]4.204.111

142[.]4.205.47

158[.]69.239.167

104[.]37.195.178

192[.]99.85.244

158[.]69.160.164

46[.]28.207.199

31[.]171.251.118

81[.]2.241.148

82[.]141.39.32

50[.]3.82.215

15/17

46[.]101.70.183

5[.]45.97.127

130[.]255.78.223

144[.]76.133.38

139[.]59.208.246

172[.]104.136.243

45[.]71.112.70

163[.]172.185.51

5[.]135.183.146

51[.]255.48.78

188[.]165.200.156

147[.]135.185.78

92[.]222.97.145

51[.]255.211.146

159[.]89.249.249

104[.]238.186.189

139[.]59.23.241

94[.]177.171.127

45[.]63.124.65

212[.]24.98.54

178[.]17.170.179

185[.]208.208.141

82[.]196.9.45

146[.]185.176.36

89[.]35.39.64

89[.]18.27.167

77[.]73.68.161

185[.]117.154.144

176[.]126.70.119

16/17

139[.]99.96.146

217[.]12.210.54

185[.]164.136.225

192[.]52.166.110

63[.]231.92.27

66[.]70.211.246

96[.]47.228.108

45[.]32.160.206

128[.]52.130.209

35[.]196.105.24

172[.]98.193.42

162[.]248.241.94

107[.]172.42.186

167[.]99.153.82

138[.]197.25.214

69[.]164.196.21

94[.]247.43.254

94[.]16.114.254

151[.]80.222.79

176[.]9.37.132

192[.]71.245.208

195[.]10.195.195

Table 11 – Identified DNS IPs

Mutexes

Component Mutex name

Team9 backdoor mn_185445

Team9 backdoor {589b7a4a-3776-4e82-8e7d-435471a6c03c}

Team9 loader ld_201127

Table 12 – Mutex names Team9 components

17/17

Host IOCs

1. Files ending with the string ‘_lyrt’
2. Scheduled tasks with names ‘StartAT’ and ‘StartDT’
3. Shortcut with file name ‘adobe’ in the Windows ‘StartUp’ folder
4. Registry value name ‘BackUp Mgr’ in the ‘Run’ registry key

Network detection

alert dns $HOME_NET any -> any 53 (msg:”FOX-SRT – Suspicious – Team9 Emercoin DNS Query
Observed”; dns_query; content:”.bazar”; nocase; dns_query;
pcre:”/(newgame|thegame|portgame|workrepair|realfish|eventmoult|bestgame|forgame|zirabuo)\.bazar/i”;
threshold:type limit, track by_src, count 1, seconds 3600; classtype:trojan-activity; metadata:created_at
2020-05-28; metadata:ids suricata; sid:21003029; rev:3;)

Source(s):

[1] https://www.bleepingcomputer.com/news/security/bazarbackdoor-trickbot-gang-s-new-stealthy-
network-hacking-malware/

https://www.bleepingcomputer.com/news/security/bazarbackdoor-trickbot-gang-s-new-stealthy-network-hacking-malware/

