
1/2

born

String Obfuscation in the Hamweq IRC-bot
blag.nullteilerfrei.de/2020/05/31/string-obfuscation-in-the-hamweq-irc-bot/

In this blog post, we will follow one of herrcore's awesome videos and re-implement the
automation as a Ghidra script in Java. The video in question is part of a series about a
legacy malware family called Hamweq. CERT Polska published an extensive analysis of
Hamweq: The malware implements a IRC-based botnet with worm-like capabilities. In this
post we will solely focus on the string deobfuscation functionality in the malware. ##
Identifying the String Deobfuscation Method Instantly after opening the sample
4eb33ce768def8f7db79ef935aabf1c712f78974237e96889e1be3ced0d7e619 in Ghidra,

you can see four calls to GetProcAddress . This method resolves an API function
dynamically, basically turning a string referencing a name of an API function into a pointer to
the corresponding function. According to the documentation, the second argument to
GetProcAddress is that string. Following the memory address in Ghidra (by double-

clicking) does not lead to any printable strings though. Hence _before_ these four calls to
GetProcAddress , these memory regions have to be modified during runtime. Otherwise,
GetProcAddress would return the null pointer and calling that pointer, would crash the

program. The only two functions that can do this deobufscation step are FUN_00402781
and FUN_004027e1 . The first of the two seems to be doing something related to privileges,
but since we want to focus on string obfuscation right now, we will not waste any time
reverse engineering it but take a look at the function FUN_004027e1 . This function accepts
one string argument which is hard-coded to be I0L0v3Y0u0V1rUs at this call. This is
probably a reference to the famous ILOVEYOU virus from 2000 left by the malware author to
our amusement. Because we are feeling lucky, let's rename FUN_004027e1 to
pr_StringDeobfusaction . ## Optimizing Crappy Crypto pr_StringDeobfusaction

references the data at 0x00405020 and interprets it as an array of pointers to strings. Each
of these strings is then deobfuscated with a custom Xor-algorithm using the passed
argument as a key. The deobfuscation algorithm is called on each of the referenced strings
separately: it first Xors each byte of the passed key onto each byte of the obfuscated data
and then inverts every byte of the result. Since the Xor-operation is associative, the key can
be reduced to a single-byte Xor-key: For simplicity's sake, let us assume, the Xor key is not
I0L0v3Y0u0V1rUs but the sequence of numbers 23, 42 and 36. Now let x be a

single byte to be deobfuscated and let \otimes denote bit-wise Xor, then the following
equation is true: \[((x \otimes 23) \otimes 42) \otimes 36 = x \otimes (23 \otimes 42 \otimes
36) = x \otimes 25 \] so instead of using the key 23, 42, 36 one could simply use the
key 25. Similarly, the key I0L0v3Y0u0V1rUs can be reduced to 95. The following Java
function implements this key-reduction:

https://blag.nullteilerfrei.de/2020/05/31/string-obfuscation-in-the-hamweq-irc-bot/
https://www.youtube.com/watch?v=JPvcLLYR0tE
https://malpedia.caad.fkie.fraunhofer.de/details/win.hamweq
https://www.cert.pl/wp-content/uploads/2011/06/201106_hamweq.pdf
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

2/2

private byte[] reduceKey(String key) {
 byte ret[] = new byte[1];
 for (byte b : key.getBytes()) {
 ret[0] ^= b;
 }
 return ret;
}

Scripting We now want to write a script where the user specifies the address of the array
of pointers to the obfuscated strings and Ghidra should then deobfuscate them all, print the
result, patch the data in memory, set the correct data-type and create bookmarks for all
deobfuscated strings:

public void run() throws Exception {
 byte[] key = reduceKey("I0L0v3Y0u0V1rUs");
 Address stringTable = askAddress("Enter Address", "Specify address of string
table");
 while (true) {
 Address stringAddress = unpackAddressLE(getOriginalBytes(stringTable, 4));
 if (stringAddress.getOffset() == 0)
 break;
 byte data[] = getOriginalBytes(stringAddress, 0x40);
 if (data == null) {
 break;
 }
 byte cypherText[] = readUntilZeroByte(data);
 byte plainText[] = cryptXorAndInvert(cypherText, key);
 println(String.format("0x%08X %s", stringAddress.getOffset(), new
String(plainText)));

 setBytes(stringAddress, plainText);
 clearListing(stringAddress, stringAddress.add(plainText.length - 1));
 createData(stringAddress, new ArrayDataType(CharDataType.dataType,
plainText.length, 1));
 createBookmark(stringAddress, "DeobfuscatedString", new String(plainText));

 stringTable = toAddr(stringTable.getOffset() + 4);
 }
}

The only missing part now is the actual decryption routine:

private byte[] cryptXorAndInvert(byte[] data, byte[] key) {
 final byte[] ret = new byte[data.length];
 for (int k = 0; k < data.length; k++)
 ret[k] = (byte) (~(data[k] ^ key[k % key.length]));
 return ret;
}

As always, the complete script to deobfuscate strings from a Hamweq sample can be found
on GitHub.

https://github.com/nullteilerfrei/reversing-class/blob/master/scripts/java/HamweqStrings.java

