
1/21

Threat Intelligence Team May 31, 2021

Revisiting the NSIS-based crypter
blog.malwarebytes.com/threat-analysis/2021/05/revisiting-the-nsis-based-crypter/

This blog post was authored by hasherezade

NSIS (Nullsoft Scriptable Install System) is a framework dedicated to creating software
installers. It allows to bundle various elements of an application together (i.e. the main
executable, used DLLs, configs), along with a script that controls where are they going to be
extracted, and what their execution order is. It is a free and powerful tool, making distribution
of software easier. Unfortunately, its qualities are known not only to legitimate developers but
also to malware distributors.

For several years we have been observing malware distributed via NSIS-based crypters. The
outer layer made of a popular and legitimate tool makes for a perfect cover. The flexibility of
the installer allows to implement various ideas for obfuscating malicious elements. We wrote
about unpacking them in the past, i.e. here, and here. With time their internal structure has
evolved, so we decided to revisit them and describe the inside again using samples from
some of the Formbook stealer campaigns.

Samples

This analysis is based on the following samples:

https://blog.malwarebytes.com/threat-analysis/2021/05/revisiting-the-nsis-based-crypter/
https://twitter.com/hasherezade
https://nsis.sourceforge.io/Main_Page
https://blog.malwarebytes.com/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://blog.malwarebytes.com/threat-analysis/2015/07/revisiting-the-bunitu-trojan/
https://hshrzd.wordpress.com/2016/07/03/unpacking-nsis-based-crypter-step-by-step/

2/21

8F80426CEC76E7C9573A9C58072399AF
carrying a Formbook sample: 05dc8c8d912a58a5dde38859e741b2c0

98061CCF694005A78FCF0FBC8810D137
carrying a Formbook sample: f34bd301f4f4d53e2d069b4842bca672

Inside

Like every NSIS-based installer, this executable is an archive that can be unpacked with the
help of 7zip. The older versions of 7zip (i.e. 15.05) were also able to extract the NSIS script:
[NSIS].nsi. Unfortunately, in the newer releases script extraction is no longer supported.

Once we unpack the file, we can see several elements, as well as directories typical for
NSIS:

The System.dll is a DLL typical for any NSIS installer, responsible for executing the
commands from the script. It is the first component of the archive to be loaded. We can find it
in each of the samples.

What is more interesting are the files in the main directory. The first one, 1 KB in size, is a
shellcode. It starts from bytes:

0x55, 0x8B, 0xEC, 0x81, 0xEC

https://www.virustotal.com/gui/file/507dbfd6aa22a40c64e153af688a18c03616e3473eee95f5312f6e9b2b3beb5a/community
https://www.virustotal.com/gui/file/7e8635287dabea0a70c9b3ff4935356b5191c55e114ce77fdbfb877c45bf33db/details
https://www.virustotal.com/gui/file/5285e7eca4c9b0ce96a5fc6983eaf7c08ad000c5388606fe77c5d72b97d70cf3/detection
https://www.virustotal.com/gui/file/62c43f60d9b9eb52a642f6a52fbd4659d3257e075db44dc7e44c3e006903d9b3/detection
https://nsis.sourceforge.io/Can_I_decompile_an_existing_installer
https://sourceforge.net/projects/sevenzip/files/7-Zip/15.05/
https://gist.github.com/hshrzd/1c3e9a5cb168065d3e93c7f3d877a9b8

3/21

Analogous shellcode can be found in the second sample from this campaign.

In the same directory there are two other files. One of them is around 7 KB, and the next:
much bigger. Both of them are encrypted, and to find out what they contain we need to
analyze the full chain of loading.

Looking inside the NSIS script we can see the performed actions that are very simple:

Function .onInit
 InitPluginsDir

 SetOutPath $INSTDIR
 File 5e9ikl8w3iif7ipp6
 File 3ugs67ip868x5n
 File tjdorfrldbgdlq
 System::Alloc 1024
 Pop $0
 System::Call "kernel32::CreateFile(t'$INSTDIR\tjdorfrldbgdlq', i 0x80000000, i 0, p
0, i 3, i 0, i 0)i.r10"
 System::Call "kernel32::VirtualProtect(i r0, i 1024, i 0x40, p0)p.r1"
 System::Call "kernel32::ReadFile(i r10, i r0, i 1024, t., i 0) i .r3"
 System::Call ::$0()
 Call func_80
[...]

https://gist.github.com/hshrzd/1c3e9a5cb168065d3e93c7f3d877a9b8#file-nsis-nsi-L245

4/21

The first file of the set (containing the shellcode) is read into the executable memory. Then,
the loaded module is just called.

Shellcode #1 – functionality

If we load those shellcodes into IDA we can see their functionality very clearly, as they are
not obfuscated.

Shellcode from sample #1:

Shellcode from sample #2

5/21

Although the code is a bit different in both, they can be divided with the same steps and
building blocks.

1. The name of the next file is loaded as a stack-based wide string
2. The base of kernel32.dll is fetched from PEB

6/21

3. A set of function from kernel32.dll is retrieved – each of them by the name’s
checksums. Functions are always the same – dedicated to reading the file from the
disk: CreateFileW, GetTempPathW, lstrcatW, ReadFile, VirtualAlloc, GetTempPathW.

4. The function GetTempPathW is used to retrieve the path to the %TEMP% directory,
where all the components from the archive were automatically extracted at runtime of
the NSIS file

5. The name of the next file is concatenated to the the %TEMP% path
6. Memory is allocated for the file content, and the file is read into this buffer
7. A custom decryption algorithm is being applied on the buffer (the algorithm is different

for different samples). The buffer turns out to be a next shellcode
8. Finally, the next shellcode is executed

The name of the

next file is loaded as a stack-based wide string
The hashing function used for import resolving follows the same pattern in both cases, yet
the constant used to initialize it (denoted as HASH_INIT) is different across the samples.

int __stdcall calc_hash(char *name)

{

int next_chunk;

int hash;

for (hash = HASH_INIT; ; hash = next_chunk + 33 * hash)

{

7/21

next_chunk = *name++;

if (!next_chunk)

break;

}

return hash;

}

view raw nsis_calc_hash.cpp hosted with ❤ by GitHub
The algorithm used for the buffer decryption differs across the samples.

https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e/raw/409b267fb9d305c178f89b4ba7b72355a5a7b347/nsis_calc_hash.cpp
https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e#file-nsis_calc_hash-cpp
https://github.com/

8/21

The

second shellcode revealed after the unpacking algorithm finished processing

Shellcode #2 – functionality

9/21

This shellcode is used for decrypting and loading the final payload (PE file) from the third of
the encrypted files. It is unpacked and ran by the previous layer. In the analyzed cases, this
element was around 7-8 KB.

This shellcode is similarly structured as the previous one. It starts by preparation of the
strings: stack-based strings are being pushed. One of them is the name of the next file that is
going to be loaded. Also, the key that will be used for the decryption is prepared.

10/21

The next step is loading of the imported functions. As before, they are resolved by their
hashes.

11/21

Then the functions are used to load and decrypt the payload. If loading the next stage has
failed, the installer will restart itself.

The decryption function is custom, similar (but not identical) to RC4:

void __stdcall decrypt_buf(BYTE *data, BYTE *key, unsigned int size)

12/21

{

BYTE key_stream[512];

int j;

char next;

int i;

int v6 = 0;

int v4 = 0;

for (i = 0; i < 256; ++i)

{

key_stream[i + 256] = i;

key_stream[i] = key[i % size];

}

for (i = 0; i < 256; ++i)

{

v6 = (key_stream[i] + v6 + key_stream[i + 256]) % 256;

next = key_stream[v6 + 256];

key_stream[v6 + 256] = key_stream[i + 256];

key_stream[i + 256] = next;

}

v6 = 0;

for (j = 0; j < DATA_SIZE; ++j)

{

i = (i + 1) % 256;

v6 = (v6 + key_stream[i + 256]) % 256;

next = key_stream[v6 + 256];

key_stream[v6 + 256] = key_stream[i + 256];

13/21

key_stream[i + 256] = next;

v4 = (key_stream[v6 + 256] + key_stream[i + 256]) % 256;

data[j] ^= key[j % size];

data[j] ^= key_stream[v4 + 256];

}

}

view raw nsis_decrypt.cpp hosted with ❤ by GitHub
This algorithm is common to both analyzed samples – yet the decryption key differs.

Loading PE

After the PE is decrypted, the function for its loading is deployed.

The payload is implanted into a newly created suspended process (a new instance of the
current executable) using one of the most popular techniques of PE injection: Process
Hollowing (a.k.a. RunPE). The content of the payload is mapped into the new process using
low level APIs: NtCreateSection, NtMapViewOfSection. Then, the Entry Point is redirected to
the new executable via SetThreadContext, and finally the execution is resumed with
NtResumeThread.

The authors used several common techniques to obfuscate this process.

As before, the used functions are loaded by their checksums. The PE loading function
makes a use of the following set:

The low-level functions, directly related with performing the injection, are called via raw
syscalls retrieved directly from NTDLL. Also in this case, functions has been resolved by
their hashes.

List of used functions (with corresponding hashes).

https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e/raw/409b267fb9d305c178f89b4ba7b72355a5a7b347/nsis_decrypt.cpp
https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e#file-nsis_decrypt-cpp
https://github.com/
https://github.com/hasherezade/libpeconv/blob/master/run_pe/run_pe.cpp

14/21

4b1a50d1 : NtCreateSection
e0ddd5cb : NtMapViewOfSection
20b0f111 : NtResumeThread
81af6d4e : NtUnmapViewOfSection
be530033 : NtWriteVirtualMemory

The code used to resolve the hashes is available here: hash_resolver.cpp.

Overview of the PE loader

Manual syscalls calling

https://gist.github.com/hshrzd/7264136e485ad63bb28de53f7da24504#file-hash_resolver-cpp

15/21

In order to make the injection stealthier, the loader uses a common technique of “stealing
syscalls”, also known as “hell’s gate”. This technique is based on the fact that some low-level
DLLs, such as NTDLL, contain numbers of raw syscalls. By extracting the syscalls, and
executing them manually, the malware can use the API of the operating system, without a
need of calling functions from the DLL. That allows to bypass some monitoring in the
situation if the system DLLs are hooked. More in-depth analysis of this technique was
described here.

Firstly, a fresh copy of NTDLL is loaded from the file on the disk, an manually mapped. Then,
a function defined by its hash is retrieved (using the same hashing algorithm that was used
to retrieve imports from normally loaded DLLs):

After the pointer to the beginning of the function is fetched, a small disassembling loop is
used to find the familiar pattern: moving the ID of the syscall into EAX register.

https://twitter.com/vxunderground/status/1267865030495789056?s=20
https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/

16/21

The syscall ID is returned for further use.

Once the syscall number has been extracted, the malware intends to execute it from its own
code. However, a 32-bit application cannot make direct syscalls on 64-bit system, since it is
not native. In such cases, syscalls are usually made via Wow64 emulation layer. In order to
make them directly, the authors of the malware switch to the 64-bit mode first: using a
technique called “Heaven’s Gate”.

The malware comes with two variants of the stub executing a syscall. The decision for which
of the versions should be applied is made based on the check if the process runs as Wow64
(emulated 32 bit on 64 bit Windows):

If the process runs on a 32-bit system, the syscall can be made in a direct way, using
SYSENTER:

https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

17/21

If the system is 64-bit, the malware (that is 32-bit) switches into 64-bit mode via “Heaven’s
Gate”.

Far return to the address

prefixed with 0x33 segment – entering the 64-bit mode
Once the execution mode is changed into 64 bit, the syscall is called, its results stored, and
the application can switch back to 32-bit mode to continue normal execution.

https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

18/21

The 64-bit code, executed after the mode is switched via Heaven’s Gate

Evolution

This crypter has been around for several years, and during this time it went through several
phases of evolution. In this part of the analysis we will compare it with the earlier version
from February of this year, described in the following writeup.

In contrast to the current one, the version from February contained a malicious component in
the form of a DLL. We can also find a second, encrypted component, which carries the
payload.

The extracted NSIS script contains a different sequence of commands:

https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/
https://gist.github.com/hshrzd/9c1bbed161efa2f3bbb2c8ba428e0125#file-nsis-nsi

19/21

Function .onInit
 SetOutPath $INSTDIR
 File $INSTDIR\o15bmldpqdxcin.dll
 File $INSTDIR\emvmcmzr.n
 System::Call $INSTDIR\o15bmldpqdxcin.dll::Gxkeoxkzs(w$\"$INSTDIR\emvmcmzr.n$\")
 DetailPrint label
 StrCpy $0 9
 IntOp $0 $0 + 4
 Goto $0
 DetailPrint done
FunctionEnd

In this case, the standard NSIS component (System.dll) is used to call the function exported
from the DLL, passing the path to the encrypted component as a parameter.

Looking inside the exported function we can find a significant similarity to the Shellcode #1
which was described in the former part of this writeup.

As before, we can see decryption of the next stage with the help of a custom algorithm. This
time, the next stage is contained in a buffer hardcoded in the DLL (rather than stored in a
separate file). It contains a very similar function dedicated to decrypting and loading the final
payload. Yet, we can see some minor differences.

20/21

First of all, the file name is passed dynamically rather than hardcoded.

Second, we can see a check against blacklisted processes. Their names are hashed, and
compared to the hardcoded list of hashes (i.e. 0x26090612 -> “avgui.exe”). This type of
checks are among common evasion techniques. However, in this case, detection of a
forbidden process only delays execution, and does not suspend it or terminate. Possibly it is
a bug in the implementation, and the if statement was intended to be a while loop instead.
Nevertheless, the authors decided to give up the check in the latest version.

Apart from those details, this stage is identical to the Shellcode #2 from the newer version.

Popular and persistent

This packer has been around for many years, and probably will stay with us for some years
to come. Its structure shows that it is created by experienced authors, using well known, yet
not trivial techniques. Its evolution is slow but steady. Usage of a popular installation engine

21/21

makes it easy to blend in with legitimate applications.

Its popularity and diversity of payloads suggests that it is not linked to one specific actor, but
rather sold as an independent component on one of many underground forums.

Appendix

Other materials about previous versions of NSIS-based crypters:

https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/
https://www.welivesecurity.com/2021/01/12/operation-spalax-targeted-malware-attacks-
colombia/
https://news.sophos.com/en-us/2020/05/14/raticate/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ransomware-families-use-nsis-
installers-to-avoid-detection-analysis/
https://www.microsoft.com/security/blog/2017/03/15/ransomware-operators-are-hiding-
malware-deeper-in-installer-packages/
https://isc.sans.edu/forums/diary/Quick+analysis+of+malware+created+with+NSIS/237
03/

https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/
https://www.welivesecurity.com/2021/01/12/operation-spalax-targeted-malware-attacks-colombia/
https://news.sophos.com/en-us/2020/05/14/raticate/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ransomware-families-use-nsis-installers-to-avoid-detection-analysis/
https://www.microsoft.com/security/blog/2017/03/15/ransomware-operators-are-hiding-malware-deeper-in-installer-packages/
https://isc.sans.edu/forums/diary/Quick+analysis+of+malware+created+with+NSIS/23703/

