
1/22

ShellReset RAT Spread Through Macro-Based
Documents Using AppLocker Bypass

zscaler.com/blogs/research/shellreset-rat-spread-through-macro-based-documents-using-applocker-bypass

As we've mentioned in previous blogs, cybercriminals will often tie their attacks to current
events. So, it isn't surprising that we noticed another one of these, with this particular
one using tech events in London as the bait.

In February 2020 and May 2020, we observed four malicious macro-based Microsoft Word
documents hosted on newly registered sites with top-level domains of .space and .xyz. We
attribute these attacks to the same threat actor due to the similar tactics, techniques and
procedures (TTPs) used to deploy the final payload.

The final .NET payload, to the best of our knowledge, has not been observed in the wild
before. It has a small code section in it that overlaps with the QuasarRAT. However, this
code was not used at runtime. We have assigned the name - ShellReset to this RAT based
on the unique strings found inside the final payload.

Due to the limited instances we have observed in the wild, we suspect this to be a low-
volume targeted attack. Some of the themes used in these attacks by the threat actor are
related to important events that were originally scheduled to take place in London earlier
this year, including the 5G Expo and Futurebuild.

The infection chain involves interesting techniques, such as compiling the payload at
runtime on the endpoint using trusted Windows utilities to bypass security mechanisms and
downloading the next stages in the form of obfuscated source code from the attacker’s
server.

https://www.zscaler.com/blogs/research/shellreset-rat-spread-through-macro-based-documents-using-applocker-bypass
https://www.zscaler.com/blogs/research/30000-percent-increase-covid-19-themed-attacks
https://5gexpo.net/global/
https://www.futurebuild.co.uk/

2/22

In this blog, we provide a detailed description of the distribution strategy and the technical
analysis of the attack.

Distribution strategy

The first instance of the document related to this campaign was found on February 24,
2020. It was hosted at the URL: hxxps://documentsharing.space/files/5G%20Expo.doc?
clientEmail=

MD5 hash: 93f913f3b9e0ef3f5cedd196eae3f2ae

File name: 5G Expo.doc

The content of this document was related to 5G Expo event, which was scheduled to take
place on March 17-18, 2020 in London as shown in Figure 1.

3/22

Figure 1: This document displays the 5G Expo 2020 theme after macros are enabled.

On the same day, we observed another instance of a document hosted on the same
domain at the URL: hxxps://documentsharing.space/files/FutureBuild.doc?clientEmail=

MD5 hash: b34b74effbd8647c4f5dc61358e1555f

File name: FutureBuild.doc

The content of this document was related to Futurebuild 2020 conference, which was
supposed to take place between March 3-5, 2020 in London. The document spoofed the
contents to look like an admission voucher for this conference as shown in Figure 2.

Figure 2: The document displays the Futurebuild 2020 theme after macros are enabled.

4/22

In both cases, the domain used to host the file was documentsharing[.]space. As per the
Whois records of the domain, it was registered on October 21, 2019.

The next two instances of the documents from the same threat actor were observed in May
2020.

On May 19, 2020, we found a malicious macro-based Word document hosted at the URL:
hxxps://misrmarket[.]xyz/files/Get%20Stared.doc?clientEmail=

MD5 hash: 7bebf686b6e1d3fa537e8a0c2e5a4bdc

File name: Get%20Stared.doc

The content of this document was a message about a personal data revolution and included
a list of legitimate sites as shown in Figure 3.

Figure 3: The document displays a message about a personal data revolution.

5/22

Upon further research, we found that this text was copied from a legitimate site,
datacoup.com, as shown in Figure 4. Attackers use such tactics for social engineering
purposes to make the content of the file look relevant and legitimate.

Figure 4: The message displayed in the document was copied from datacoup.com.

The site that was used to host this document is a spoof of the popular site, anonfiles.com,
which allows the users to upload their files anonymously. There is a slight difference
between the user interface of this spoofed site and the original site.

Figure 5 shows the user interface of the spoofed site.

6/22

Figure 5: The web user interface of the spoofed version of anonfiles.com.

Figure 6 shows the user interface of the original site.

7/22

Figure 6: The original site, anonfiles.com, and the differences with the spoofed version.

The regions of the site marked in red were not present in the spoofed domain. As per Whois
data, the spoofed site, misrmarket[.]xyz, was registered on February 26, 2020.

A common pattern we observed in all the URLs hosting the documents was: “?clientEmail=”

This parameter of the URL contained the email address of the targeted user.

Technical analysis of the macro

When the macro-based document is opened, it will display a message that asks the user to
enable macros to view the contents as shown in Figure 7.

Figure 7: The message displayed by the document, which asks the user to enable macros.

When the macros are enabled, the Auto_Open() subroutine of the macro is called, which
will hide the above image and display the image corresponding to the theme of the
document (5G Expo, Future Build 2020, and others) as described in previous section.

The relevant macro code section, which unhides the image after macros are enabled, is
shown in Figure 8.

8/22

Figure 8: The macro code used to unhide the image.

For the purpose of analysis, we will take the file with MD5 hash:
7bebf686b6e1d3fa537e8a0c2e5a4bdc

The contents of the macro are shown in Figure 9.

Figure 9: The macro code in the document.

The main functions performed by this macro code are:

It sets the working directory and the name of the dropped file to ServiceHostV1000.
It contains the complete C# code embedded inside the macro, which will be written at
runtime to the file: ServiceHostV1000.cs in the working directory. The C# code is
obfuscated at the source level. The obfuscation is simple. Only the variable, class and
method names are obfuscated.

9/22

It sets the compiler directory to the location of the file, csc.exe, on the machine.
Csc.exe is the command line compiler for C# code and is installed by default with
Microsoft .NET framework. The macro searches for versions 3.5 and 4.0.x on the
machine. It sets the compiler directory accordingly based on the version of .NET
framework installed on the machine as shown in Figure 10.

Figure 10: The macro code used to compile C# code on the machine.

It compiles the code using csc.exe and the command line parameter:”-target:winexe -
out:”. The compiled binary will be present in the Startup directory.
It deletes the working directory that contained the source code.
It executes the compiled binary.

AppLocker bypass

MSbuild.exe was used in this case to compile the code on the machine using a .csproj file
as a method to bypass Windows security mechanisms, such as AppLocker and Device
Guard. This technique was made public for the first time by Casey Smith a few years ago.

Analysis of .NET binary

MD5 hash: 4e0f9f47849949b14525c844005bb567

File name: ServiceHostV1000.exe

The main subroutine of the .NET binary is shown in Figure 11.

https://twitter.com/subtee

10/22

Figure 11: The main subroutine of .NET binary.

Below are the main operations performed by this .NET binary.

It sends an HTTP GET request to the URL: misrmarket[.]xyz/files/app-provider/getApp and
sets the Content-type request header field to: “application/json”.

Figure 12 shows the contents of the response from the server, which contains a JSON file.

11/22

Figure 12: The server response containing the JSON data.

This JSON file contains three keys:

Version: Set to null.

csproj: Contains project file used by msbuild.exe at the time of compiling the C# project.

cs: Contains the C# code that needs to be compiled at runtime.

1. The C# code used DataContractJsonSerializer class to parse the JSON response
from the server and extract the individual members. The .cs and .csproj files were
dropped in the location: %USERPROFILE%\ServiceTaskV1001 with the file names,
w.cs and w.csproj.

2. For compiling the C# code, it uses msbuild.exe. The versions of .NET framework
checked on the machine to find msbuild.exe are version 3.5 and 4.0.x as shown in
Figure 13.

Figure 13: Code section which checks version of .NET framework on the machine.

12/22

Analysis of .NET-based RAT

MD5 hash of the payload: 8f62d7499d5599b9db7eeddf9c01a061

System information gathering

The first activity performed by the payload is to gather information about the system as
shown in Figure 14.

Figure 14: The code section used to gather system information.

Information about the following properties are collected from the machine:

Bot ID: A unique identifier for the machine. The calculation of this field is detailed later
in this blog.
CPU name: Processor details.
RAM – The total amount of RAM installed on the machine.
User name
Host name
System drive name
System directory path
Uptime
Operating system type: This field is set to windows.

Calculation of unique bot ID: The payload first calculates a unique identifier for the
machine which will be used to identify the bot. It calculates this ID using various properties
of the machine as detailed below.

a = “SerialNumber” field from the output of WMI query: SELECT * FROM Win32_DiskDrive

b = “Name” field from the output of WMI query: SELECT * FROM Win32_Processor

c = “Manufacturer” and “SerialNumber” field from the output of WMI query: SELECT *
FROM Win32_BaseBoard

d = “Manufacturer” field from the output of WMI query: SELECT * FROM Win32_BIOS

13/22

The final ID is calculated by linking all the above values (a, b, c and d), then calculating the
MD5 hash and using the first 12 characters of the resulting MD5 hash.

This can be represented as: MD5(a+b+c+d)[0:12]

A unique integer value of 15 is appended to it to generate the final ID.

Once the above information is collected from the machine, it is sent to the server in an
HTTP POST request as shown in Figure 15.

Figure 15: The code section used to register the bot with the Command and Control (C&C)
server.

The request is sent to the URL: hxxp://theashyggdrasil[.]xyz/api/clients/identifyClient and
the Content-Type field is set to “application/json”. This first network request post-infection is
used to register the bot with the attacker’s server with a unique identifier.

The network request is shown in Figure 16.

14/22

Figure 16: The system information sent to C&C server in an HTTP POST request.

C&C communication

Once the bot is registered with the server, it sends a GET request to the path:
/api/orders/getOrders/<bot_id> to fetch the command that needs to be executed on the
machine. The response from the server will be in JSON format that will be parsed by the
bot.

The subroutine that handles the C&C communication is shown in Figure 17.

Figure 17: The subroutine that handles the C&C communication.

15/22

There are four operations supported by the bot, which are described below.

cmdExec: This operation allows the attacker to execute code on the machine. By parsing
the JSON response, a CmdReq structure is retrieved which has two members:

shellId

command

The subroutine for cmdExec operation is shown in Figure 18.

Figure 18: The subroutine that handles the cmdExec command.

If the command is equal to “***reset*shell***”, then a new instance of cmd.exe is spawned
on the machine as shown in Figure 19.

16/22

Figure 19: The subroutine used to spawn a new shell.

For any other command, the same shell will be used to execute.

getDir: This command can retrieve the complete list of all the files present in a specific path
on the machine.

17/22

Figure 20: The subroutine that handles the getDir command.

This information will be exfiltrated to the server in an HTTP GET request to the path:
/api/files/onGetDirRun

uploadFile: This command is used to upload a file from a given path on the machine to the
attacker’s server as shown in Figure 21.

18/22

Figure 21: The subroutine that handles the uploadFile C&C command.

AwsInfoRes is a class with two members:

uploadUrl

fileKey

This information is retrieved from the server by sending an HTTP GET request to the
path: /api/assets/getAwsUploadUrl

From the JSON response, the uploadURL and fileKey values are extracted.

The file will be exfiltrated by sending an HTTP PUT request to the URL defined in the
uploadURL member of the AwsInfoRes object.

getScreenshot: This command allows the attacker to remotely take screenshots of the
machine as shown in Figure 22.

19/22

Figure 22: The subroutine that handles the getScreenshot command.

QuasarRAT code overlap

There is a small code section in this .NET binary that has a code overlap with the
QuasarRAT. The overlap is only with the StringHelper class of the QuasarRAT.

Figure 23 shows this section of code from the .NET binary.

20/22

Figure 23: The code section that has overlap with the QuasarRAT.

These functions are similar to the ones defined in the StringHelper class of QuasarRAT.
However, most of these functions are not called in the .NET binary in this case.

Cloud Sandbox detection

Figure 24 shows the Zscaler Cloud Sandbox successfully detecting this document-based
threat.

Figure 24: The Zscaler Cloud Sandbox detection.

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators at various levels, as seen here: Win32.RAT.ShellReset

Conclusion

This threat actor leverages themes relevant to current events, such as conferences and
exhibitions, to spread malicious macro-based documents. Users should verify the source of
such documents before opening them.

As an extra precaution, users should not enable macros for Microsoft Office files that are
received from untrusted sources since these macros have the capability to run malicious
code on the machine.

The Zscaler ThreatLabZ team will continue to monitor this attack, as well as others, to help
keep our customers safe.

https://github.com/quasar/QuasarRAT/blob/3aed553e1aa8cb506dec96125d2fe2c9f6fd8dc2/Quasar.Common/Helpers/StringHelper.cs#L7
https://www.zscaler.com/products/sandboxing
https://threatlibrary.zscaler.com/?keyword=Win32.RAT.ShellReset

21/22

MITRE ATT&CK TTP Mapping

Tactic Technique

T1064 Macros in document used for code execution.

T1127 Uses MSBuild.exe to proxy execution of code through a trusted Windows
Utility.

T1060 Startup directory-based persistence.

T1113 Takes screen captures of the desktop.

TA0010 Data exfiltrated from the machine to the server.

T1083 File and Directory discovery.

T1059 Uses cmd.exe to execute commands remotely on the machine.

Indicators of Compromise (IOCs)

Hashes of the macro-based documents

93f913f3b9e0ef3f5cedd196eae3f2ae

b34b74effbd8647c4f5dc61358e1555f

7bebf686b6e1d3fa537e8a0c2e5a4bdc

1d94b086996c99785f78bf484295027a

URLs hosting the documents

hxxps://documentsharing.space/files/5G%20Expo.doc?clientEmail=

hxxps://documentsharing.space/files/FutureBuild.doc?clientEmail=

hxxps://misrmarket.xyz/files/Get%20Stared.doc

hxxps://consumerspost.xyz/files/Swissin-Voucher.doc

URLs used to download next stage

hxxps://misrmarket.xyz/files/app-provider/getApp

hxxps://misrmarket.xyz/files/app-provider/getLatestVersion

hxxps://centeralfiles.xyz/files/app-provider/getApp

22/22

hxxps://centeralfiles.xyz/files/app-provider/ getLatestVersion

Post-infection domains

theashyggdrasil.xyz

API endpoints used in post-infection domains

/api/cmd/onCmdRun

/api/clients/identifyClient

/api/assets/onCreated

/api/assets/getAwsUploadUrl

/api/files/onGetDirRun

/api/orders/getOrders/

