Microsoft IIS servers hacked by Blue Mockingbird to
mine Monero

bleepingcomputer.com/news/security/microsoft-iis-servers-hacked-by-blue-mockingbird-to-mine-monero/

Ax Sharma

By

Ax Sharma
« May 28, 2020
e 01:13 PM
e 0

This month news broke about a hacker group, namely Blue Mockingbird, exploiting a critical
vulnerability in Microsoft IS servers to plant Monero (XMR) cryptocurrency miners on
compromised machines.

According to the security firm Red Canary, the estimated number of infections is thought to
have surpassed 1,000.

Exploiting a Telerik vulnerability

The CVE-2019-18935 vulnerability, with its critical 9.8 severity score, is an untrusted
deserialization vulnerability within the proprietary Progress Telerik Ul (for ASP.NET AJAX)
library which is often bundled with .NET components, including some open-source ones.

While originally published in December 2019, the flaw continues to be exploited even today
despite patches and fixes having been made available. The reason for this could be that
patching production IS systems running vulnerable Telerik Ul DLLs may be a challenge in
practice.

1/5


https://www.bleepingcomputer.com/news/security/microsoft-iis-servers-hacked-by-blue-mockingbird-to-mine-monero/
https://www.bleepingcomputer.com/author/ax-sharma/
https://redcanary.com/blog/blue-mockingbird-cryptominer/
https://nvd.nist.gov/vuln/detail/CVE-2019-18935
https://nvd.nist.gov/vuln/detail/CVE-2019-18935
https://www.telerik.com/products/aspnet-ajax.aspx

As previously highlighted by BleepingComputer, multiple government organisations
including the NSA and Australian authorities have issued warnings against this and related
Progress Telerik Ul vulnerabilities, because of their prominent exploitation by hackers to
gain backdoor and web shell access.

It is interesting to note the vulnerability isn’t all that novel either. Versions of Telerik Web Ul
were previously reported to have path traversal, remote code execution, and weak
encryption flaws such as CVE-2014-2217, CVE-2017-11317, and CVE-2017-11357, with
exploits and PoCs readily available.

All of these vulnerabilities and the current CVE-2019-18935 somewhat concern the same
functionality, RadAsyncUpload: the class responsible for asynchronously (via AJAX)
uploading files to a temporary folder and keeping them there up until a postback event
occurs.

[DefaultValue ("~/App_Data/RadUploadTemp")]
[Category ("Behavior")]
[Description ("Gets or sets the path to a folder where RadAsyncUpload should save files temporarily until a postback occurs.™)]
public string TemporaryFolder {
get {
string text = ConfigurationManager.AppSettings ["Telerik.AsyncUpload.TemporaryFolder"];
if (!string.IsNullOrEmpty ((string)ViewState ["TemporaryFolder"])) {
return (string)ViewState ["TemporaryFolder"];
}
return text ?? "~/App_Data/RadUploadTemp";

set {
ViewState ["TemporaryFolder"] = value;

}
}

A screenshot taken from the decompiled Telerik Ul DLL showing the default location of the
uploaded temporary files. The DLL is often bundled with open source components e.qg.
select versions of DotNetNuke. Web.

The asynchronous uploader uses encryption as a security mechanism to prevent an
attacker from influencing sensitive settings: such as the ‘type’ of the uploaded file (used to
prepare the deserializer), and the ultimate destination of the uploaded file on the server
(values such as ‘TempTargetFolder’ and ‘TargetFolder’).

Therefore, for a successful exploit to occur, an attacker needs to know beforehand the
encryption keys being used by the Telerik Ul async uploader. These could be obtained as a
result of the attacker exploiting older Telerik Ul vulnerabilities on the same vulnerable 1S
server.

There’s also an easier route: if the server is using the default encryption keys, which were
never regenerated afresh (see hardcoded PublicKeyToken below).

Older versions of Telerik.Web.UI.d11 ship with a hardcoded PublicKeyToken and its
private key counterpart in several places within the code. Unless these strings are manually
changed, the attacker can trivially obtain prior knowledge necessary to conduct this exploit.

2/5


https://www.bleepingcomputer.com/news/security/nsa-hackers-exploit-these-vulnerabilities-to-deploy-backdoors/
https://nvd.nist.gov/vuln/detail/CVE-2014-2217
https://nvd.nist.gov/vuln/detail/CVE-2017-11317
https://nvd.nist.gov/vuln/detail/CVE-2017-11357
https://www.exploit-db.com/exploits/43874
https://know.bishopfox.com/research/cve-2019-18935-remote-code-execution-in-telerik-ui
https://docs.telerik.com/devtools/aspnet-ajax/controls/asyncupload/overview
https://www.nuget.org/packages/DotNetNuke.Web/6.0.0
https://www.telerik.com/support/kb/aspnet-ajax/upload-%28async%29/details/unrestricted-file-upload

[TelerikToolboxCategory (“Telerik AJAX Upload Components™)]

[RequiredScript (typeof(Core))]

[RequiredScript (typeof(jQueryPlugins))]

[ClientScriptResource ("Telerik.Web.UI.RadAsyncUpload", "Telerik.Web.UI.AsyncUpload.RadAsyncUploadScripts.js")]

[EmbeddedSkin ("Upload", typeof(RadAsyncUpload))]

[EmbeddedSkin ("Upload", "Default", typeof(RadAsyncUpload))l

[Designer ("Telerik.Web.Design.RadAsyncUploadDesigner, Telerik.Web.Design, Version=2012.3.1016.35, Culture=neutral, PublicKeyToken=121fae78165ba3d4")]

[ToolboxData ("<{@}:RadAsyncUpload runat=server></{@}:RadAsyncUpload>")]
[ToolboxBitmap (typeof(RadAsyncUpload), "Telerik.Web.UI.AsyncUpload.png")]
public class RadAsyncUpload : RadWebControl, ILocalizableControl

{

Older Telerik Web Ul DLLs using a hardcoded PublicKeyToken at several places

Given the vulnerability isn’t entirely new and improvements have been made to Telerik Ul
over the years to remediate older CVEs, the actual exploitation involves two key steps.

The first, is to trick the uploader into accepting a POST request (a “rawData” object, also
referred to as “rauPOSTData”) which looks legitimate but contains a carefully crafted DLL
file of the attacker’s choice rather than purely an “|AsyncUploadConfiguration” object that
the deserializer is expecting. The second step involves influencing the application into
deserializing objects of types other than 1AsyncUploadConfiguration, such as DLLs.

NOTE: The AsyncUploadConfiguration class is simply the implementation of the
IAsyncUploadConfiguration interface. I've used these names interchangeably.

using System;
using Telerik.Web.UI.AsyncUpload;

internal IAsyncUploadConfiguration GetConfiguration (string rawData)
string[] array = rawData.Split (new char[1] {
g

});

string obj = array [@];

Type type = Type.GetType (CryptoService.Decrypt (array [11));

IAsyncUploadConfiguration asyncUploadConfiguration = (IAsyncUploadConfiguration)SerializationService.Deserialize (obj, type, decrypt: true);
asyncUploadConfiguration.TargetFolder = DecryptFolder (asyncUploadConfiguration.TargetFolder);

asyncUploadConfiguration.TempTargetFolder = DecryptFolder (asyncUploadConfiguration.TempTargetFolder);

return asyncUploadConfiguration;

The “rawData” object represents the POST request. The ‘&’ delimits the actual ‘obj’ (object)
to be deserialized and its ‘type’ in the POST request. The ‘type’ parameter may be
overridden to allow DLL deserialization, if the encryption keys are known to an attacker.

Having referred to the PoC, the exploit is conducted in the following steps:

1. The attacker first crafts a malicious POST request to the async upload file handler
(WebResource.axd), specifying the type as the normal
“Telerik. Web.Ul.AsyncUploadConfiguration” which is what the deserializer expects.
But in the AsyncUploadConfiguration JSON ‘object’ itself, the attacker provides a
custom target directory path (where the file will be uploaded to on the server).
Therefore, this is a fully valid AsyncUploadConfiguration object expected by the
deserializer with the exception of a customized target upload path provided.
Additionally, in the same request the attacker sneaks in the malicious DLL file. The
DLL is simply uploaded in this step to the target directory (remote path) of the
attacker’s choice, and not deserialized.

3/5


https://know.bishopfox.com/research/cve-2019-18935-remote-code-execution-in-telerik-ui
https://docs.telerik.com/devtools/aspnet-ajax/controls/asyncupload/how-to/how-to-preserve-upload-configuration
https://github.com/noperator/CVE-2019-18935/blob/8ebecaf3b2619b5ac8c127d5e44c630b095bee72/CVE-2019-18935.py
https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py#L61
https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py#L44
https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py#L77

2. The second step concerns the actual deserialization of the uploaded DLL. This time
around, the attacker makes another request to the async file handler. Instead of
sending a valid “AsyncUploadConfiguration” JSON object, however, the attacker
sends a JSON object specifying_the remote path (on the server) of the previously
uploaded DLL and nothing else. The ‘type’ of the object is now specified as
System.Configuration.Install. Assemblylnstaller (that of the DLL) with no other files
uploaded in the request. Once the request is processed, the deserializer will attempt
to load the malicious DLL present at the specified remote path, effectively resulting in
remote code execution.

Therefore, with the knowledge of encryption keys to craft malicious requests and after
running a successful two-step exploit, an attacker has gained the ability to execute arbitrary
code on the enterprise server.

In malware campaigns involving the hacker group Blue Mockingbird, their choice of malice
involves targeting enterprise |IS servers on a large scale, and turning them into Monero
(XMR) cryptocurrency miners.

Remediation Guidance

It is important that any vulnerable IS instances running Telerik Ul components be
immediately scanned, and patched for this vulnerability. Telerik’s official advisory lists
comprehensive scenarios in ways the vulnerability can be exploited and the appropriate
remediation guidance.

Markus Wulftange of Code White GmbH has been credited with the discovery of the flaw
and Paul Taylor (@bao7u0), for assisting with public disclosure and additional research.

Related Articles:

New IceApple exploit toolset deployed on Microsoft Exchange servers

U.S. Treasury sanctions Russian cryptocurrency mining_companies

New malware targets serverless AWS Lambda with cryptominers

Blue Mockingbird
e IS

Miners

Monero

Ax Sharma

Ax Sharma is a Security Researcher and Tech Reporter. His works and expert analyses
have frequently been featured by leading media outlets including Fortune, Business Insider,
The Register, TechRepublic, etc. Ax's expertise lies in vulnerability research, malware

4/5


https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py#L99
https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py#L102
https://www.telerik.com/support/kb/aspnet-ajax/details/allows-javascriptserializer-deserialization
https://www.code-white.com/
https://github.com/bao7uo
https://www.bleepingcomputer.com/news/security/new-iceapple-exploit-toolset-deployed-on-microsoft-exchange-servers/
https://www.bleepingcomputer.com/news/cryptocurrency/us-treasury-sanctions-russian-cryptocurrency-mining-companies/
https://www.bleepingcomputer.com/news/security/new-malware-targets-serverless-aws-lambda-with-cryptominers/
https://www.bleepingcomputer.com/tag/blue-mockingbird/
https://www.bleepingcomputer.com/tag/iis/
https://www.bleepingcomputer.com/tag/miners/
https://www.bleepingcomputer.com/tag/monero/
https://www.bleepingcomputer.com/author/ax-sharma/

analysis, and open source software. He's an active community member of the OWASP
Foundation, Open Source Security Foundation (OpenSSF), and the British Association of
Journalists (BAJ). Send any tips via email or Twitter DM.

e Previous Article

o Next Article

Post a Comment Community Rules

You need to login in order to post a comment

Not a member yet? Register Now

You may also like:

5/5


https://www.bleepingcomputer.com/news/security/michigan-state-university-network-breached-in-ransomware-attack/
https://www.bleepingcomputer.com/news/security/minted-discloses-data-breach-after-5m-user-records-sold-online/
https://www.bleepingcomputer.com/posting-guidelines/
https://www.bleepingcomputer.com/forums/index.php?app=core&module=global&section=register

