Weaponized Disk Image Files: Analysis, Trends and
Remediation

. crowdstrike.com/blog/weaponizing-disk-image-files-analysis/

Guillermo Taibo May 26, 2020

PDF

DOWNLOADING...
/

Throughout 2019 and the beginning of 2020, the CrowdStrike® Falcon Complete™ team
continuously observed a spike in the delivery of weaponized disk image files. Files such as
ISO and IMG were sent to infect systems with the goal of delivering remote access trojans
(RATs) as well as a few other malware variants. We’ve identified that these files are typically
delivered via phishing campaigns as an attachment or link — a malicious URL in the body of
the email or within crack software downloads.

Cyber criminals have been taking advantage of built-in Windows capabilities to mount disk
image files once they are opened by the end user. There are multiple disk image file formats,
but we have seen ISO and IMG files being abused the most. A disk image is essentially a
virtual copy of a physical disk that houses all of the files and requires that it be mounted in
order to access its contents. The advantages of using disk images, combined with the easy
access to purchasing RATs, make this a preferred and effective method for cybercriminals.

In this blog, | dissect a campaign that uses this method to compromise a system, providing
insight into what the CrowdStrike FalconComplete team has observed since 2019. | will also
provide step-by-step remediation along with recommendations for how to implement this
approach in your network.

Parcel-themed Phishing Email Scenario

1/18

https://www.crowdstrike.com/blog/weaponizing-disk-image-files-analysis/

The chain starts with a simple email containing a disk image file (.IMG) to socially engineer
the victim into viewing the contents. The message seems to be coming from a worldwide

package delivery company.

Subject: Your Parcel
From: [<D - 1ivexy . Xy 2>
To: Recipients <] ivery.xyz>

Content-Type: applicationfoctet-stream
nama="E-voucher.img"™
Content-Disposition: attachEent
filenamo="E-voucher.img”®

Dear Customer.

We have a parcel for you that needs collection. Attached iz your collection evoucher .
Flease take along your evoucher with you to your local _ for easy collection
All details and instructions are in the attached voucher .

Your Parcel will be held for 14 days before returning it back to the sender

Thank Y¥ou.

_ Processing Department.

_ Departmant.

2019 _ The content of this message is protected by copyright and trademark
laws under U.5. and internaticnal.

Figure 1. Phishing contents sample. The delivery company did not send this email.

The attachment in this sample is only 2MB, which raises a flag immediately as disk images

are typically larger in size.

2/18

e-Voucher.img Properties X

General Security Details Previous Versions

1 e-Vfoucher.img

Type of file: Disc Image File {.img)

Opens with: - Windows Explorer Change...

Size: 2.00 MB (2,097,152 bytes)

Size on disk: 2.00 MB (2,097,152 bytes)

Created: Taeday, February 13, 2020, 7 minutes ago
Modified: Yesterday, February 12, 2020, 8:17:07 PM

Accessed: Today, February 13, 2020, 7 minutes ago

Attributes: [|Read-only [| Hidden Advanced...

OK Cancel Apply

Figure 2. IMG file properties

Double-clicking on the file allows Windows 8 and Windows 10 to mount the IMG file natively
to the next available drive. This sample uses a PDF icon as a disguise.

3/18

Drive Tooks DVD Dvive (R

- ~ .
2 F e Shade W Bl

Program Files (xBE) o
Roaming .

¢ il OneDrive
» % This PC

> ol Natwork

- w A o * This PC » DVD Drive (F:) S v 0
O mame Cate modified Type
v ok Quick access
= Desktop " B e-voucherexe 4/30/2019 1250 PM Applicatior
4 Downloads -
Docurnents f
Program Files *

Figure 3. IMG file mounted on disk

Analysis

1,469 KB

Exeinfo PE identified the binary as a compiled AutolT script version 3. AutolT is a scripting
language used to automate Windows GUI tasks. Cybercriminals would first compile these

scripts into an executable using the Aut2Exe compiler and further convert it into a disk image
file to then distribute it widely in campaigns.

Bl Excinfo PE - ver0.0.4.9 by ASL

- 1008+64 sign 2018.01.16 -

| File: |e-Voucher exe

Entry Point : [00028008 |

File Offset : [D002740A |

iz

Linker Info : |12.00 |

File Size: [pp1sF400n |

Image is 32bit executable

EP Section :

[oo] <

FirstBytes : [E8.C8.00.00.00 | @
ﬂbsm: Windows GUI PE
</ N ﬂmlar;,,_;";-_lmu 00000000 |

Eu- -
ML‘ﬂfﬂ'% 2015

| text | =

|Autoit3 [v3.3. 13.0x] Jonathan Bennett & Autolt Tearn (n? 014 - 2n| Scan [t
Lamer Info - Help Hint - Unpadk info

|i]'y' Exe2Aut - Autolt3 decompiler w0, 10 2014 I:w ||r1k hth]s ,Ffexe?_aut | @ -

Figure 4. Exeinfo PE against blnary e-voucher.exe

Dumping the rcdata resource and reviewing the strings shows AU3!, a common string seen
in AutolT-developed scripts.

4/18

3348 4bbe 986c 43a9 994c 538a 86d6 487d (JEB EEER

ddaB ff73 24a7 3cf6 7Tal2 167 accl 9327 6b43 ca52

elbb a2l a529 edec «78b S82e 40bd el%a dedd 46b1

d4bl d675 3acs 3dc6 d33 1714 afchb 17a2 9481 8d13 I I T
G6leT b64d 628 2208 Gcfe 7484 Ga78 49f1 b591 @538 a. 5] %Es s s uBaWa s
d272 8b54 8483 9d74 7848 108d 21e7 dc29 3938 4fbS - -
584f 673b 4d6d 983d 9898 41ad fcd6 5057 57d9 ecdb

cd59 159d de24 E3b5 lad6 e24b 78db 19fa 69cd febb
607 db32 2985 edch Icac 398d 6def @ff4 BOcl 26d4 'e onnwalienads
blb2 b252 @f@a e417 478a 3a87 2771 4615 5b9 768 snsPaans ool e
@8bc 8700 0984 2680 MSD 3645 #lcl 3272 f25b 36dS 2r. [2r
126b 43ce 52af ad@® Bdeb Tb25 78c8 2213 197d lded
552d ac%9a d528 15d4 fe@cf I5ed4 cfll BeS6 clce 3178
faed @@de 91b4 efice 9711 c797 de4@ ae23 c2ch 1743

Figuré 5. Hexdump of e-voucher . exe

The AutolT script is obfuscated, and it is used as a dropper to eventually load the NanoCore
RAT on the intended system.

For $i = "1" To $splitl["e"]
Global $1747249050 = 2027215461
Global $te81lpwcrhn = 3379856
For $e = @ To 1560902
Ptr(3224935 - 245547 = 2742726 + 3724992)
If $1747249050 = 1232751179 Then
$xor = BitXOR($char, $len)
ExitLoop
EndIf
If $1747249050 = 2027215461 Then
$char = Asc($split[$il)
$1747249050 = 1232751179
IsBinary("McC7UeHGFxDVSgOKBjMnjOiWLaxIJsBUUU1LuTZ80j IGRoGSWE")
EndIf
Next
For $ii = "@" To $len - "1"
txor = BitXOR({$xor, $len + $ii}
Next
$result &= ChrWw($xor)
Next
Return $result
EndFunc

fbywmpinbsfprdblltgdzxowl("PnPUnattend")

Local $edsvgrzlrlfz = Dl1StructGetData({gcysgxsctorrzquq("dusmtaskl

$edsvgrzlrifz & D11StructGetData(gcysqxsctorrzquq(“bdechangepin2", "8"),

$edsvgrzlrlfz &= D11StructGetData(gcysgxsctorrzquq("aadWamExtension3", "8"), 1)

tedsvgrzlrifz = swydxtrwncfvpukruyyjvmtphe($edsvgrzlrlfz, "hwnglongpcoiftynieblwrqseblfkkwvfvbhnizgvvfanygbrn™)
ocxigeqgkiqejflnuwokj (True)

startup("DataExchangeHost.exe", "AppVEntSubsystems64", "+", ")

Figure 6. Snippet of obfuscated Autolt script

Beginning on line 9746 in Figure 6, we can see the following three resources:

dusmtaskil
bdechangepin2
aadwWwamExtension3

The script merges these three resources and passes the key
“hwnglongpcoiftynieblwrgseblfkkwvfvbhnizgvvfanygbrn” as the second parameter to the
function swydxtrwncfvpukruyyjvmtphe(). To decrypt, it creates a hash using CryptCreateHash
with this key. Consequently, it then uses the function CryptDeriveKey and creates a separate
key from the results of CryptCreateHash. Finally, CryptDecrypt is used to decrypt the
resource.

5/18

edi=a-voucher.004c6310

GSE?ZUEG
0SE72070
0OSE72080
0SE72090
0SE720A0
0SE7208B0
0SE720C0
0SE72000
0SE720E0
0SE720F0
0SE72100
05e72110
0SE72120
05e72130
0SE72140
05E72150
0SE72160
05E72170
05E72180
0S5E72190
0SE721A0
05e721B0
05e721c0
0SE721D0
0SE721E0
0SE721F0
0Se72200
05e72210

EF
0E
F8
8c
ES
AC
05
35
DC
00
E9
99
4B
59
CC
78
82
EE
EG
A3
21
AA
1c
08
46
56
7E
E4
Fg

§'% Dump 3

W% Dump 4

AB
66
EC
EF
C5
DE
Cc7
1C
E3
c2
01
24
79
69
FA
El
2B
E6
93
F8
41
58
Fl
73
93
00
27
63

Y% Dump 5

.text:76763eED0 advapi32.dl1:523ep0 #23200 <CryptDecrypt:>
Y% Dump 2

1cC
c3
B4
14
FE
7A
17
98
76
AC
58
DB
7F

@ watch 1

Y-
5.6.1%v% (.0{ym
a} o,E. nAfA ér
e i Yoi q&uc%

X.@e.Y0. 1tu7':ﬂ
SH -be06.Aj..
duyS

£.A..b. 50 8
ZnuciﬂLs‘“
o Hhﬁj . A, Hrn
.1f.Mh.ct. i}UQ
.'"eI ?hclnlagﬂ
Z.X.

. +K, REP $00..LY
e ivy" Aa. ¥ 7u3
+0?1A. .4> Hdﬁqﬂl
I{quoI I0N...jr
1ZR.wWa".»a#%..4.0
= = Eh+ﬂﬁLfAu
N. 2OHDBAZHW. '

.¢nfhaE.s.OY.N. P

wQ_.G. D&
q*aF. Ar Ds([..0vi
n. V. ﬂ-ué &A qa
-0.~-p.ce.J)
w.Nasa.ou' ¢T yﬂ
U.=u..0.=2cé ER.0

Y ez 18

lx=] 1

Figure 7. Encrypted stream prior to CryptDecrypt

6/18

rte ptr [eax]=[1]=?777
|ml

'E421A2

% Dump 1

g% Dump 2

¥y Dump 3

% Dump 5

@ Watch 1

[x=] L

idress

¥

1D93068
093078
iD93088
iD93098
iD930A8
iD93088
iD930C8
1D930D8
yD930E8
iD930F8
1093108
1093118
1093128
iD93138
iD93148
1D93158
iD93168
1093178
iD93188
1093198
iD931A8
093188
iD931C8
1D931D8
1D931E8
iD931F8
iD93208
iD93218

4D S5A 90 00 03 00

BB
00
00
0E
69
74

00
00
00
1F
73
20
6F
45
00
7E

00
00
00
BA
20
62
64
00
00
01

00
00

00 A0 03 00

38 E7 01 00
00 00 00 00

85353638

00
00
00
00
98
00
2E
00

| 00

00
00
00
00
c7
00
72
02
00

00
00
00

00
00
00
00
00
00
6C
00
00

0o
00
00
00
09
67
72 75 6E
0D 0D 0Oa

L Y

E
00 00 00 00

00
00
00
00
CD
72

04
40
00
00
21
61
20
24
Al
08
92
00
04
00

00
00
00
B4
6F

00
00
00
00
08
2E
00
00
0c
00
2E

FF
00
00
00
21
6E
4F
00
00
Cc8
20
02
00
00
10
00
7A
00
00
00
00
00
00
00
02
00

00
00
00

00

63 00 00 00

................

................

..............

................

......

Figure 8.

Contents decrypted after CryptDecrypt returns

Once the contents are decrypted, it will then use the CreateProcessW function to spawn the
legitimate process RegAsm.exe in a suspended state using the process creation flag
0x00000004 (CREATE_SUSPENDED)

03380ZEL
033802E4
E7

dssssssssEBEES

oU 4> Lo

8D B5 DC FE FF

FF

| eall

lga eax,aworda pLr S55:Ipepp-:ia)
gush eax

ea eax,dword ptr ss:[ebp-124]
push eax

push edx

push edx

push 4

push edx

push edx

push edx

push dword ptr ss:|ffebp+C

push dword ptr ss:febp+8

dword prr ss:lebp-5C)

test eax.eax

Figure 9. x32dbg debugger CreateProcessW function starts RegAsm.exe in suspended state

Shortly after, it proceeds to allocate memory space for the malicious payload that was
decrypted earlier. This memory region is created with memory protection of ©x40
(PAGE_EXECUTE_READWRITE)

Eebp;a]:L"c:\zwinuows\xnicroseft.NET\aFramework\\vz.G.SURJS\ERegAsm.exe“
ebp-5C] :CreateProcessw

7/18

& [03380335 FF 76 50 push dword ptr ds:[esi+50]

» | 03380348 6a 00 push O)

& | 03380344 FF 55 98 call dword ptr =s:[ebp-68] [ebp-68] :virtualAllac
@ | 03380340 88 D8 mov ebx ,eax

& | 0338034F 85 D8 test ebx,ebx

@ | 03380351 OF B4 45 02 00 0O je 338053C

- 6A 40 push 40

& 68 00 30 00 OO push 3000

L] FF 76 50 push dword ptr ds:[esi+50

L] FF 76 34 push dword ptr ds:[esi+34

L] FF 75 D8 push dword ptr ss:[lebp-28

L FF 55 €O |call dword ptr ss:[ebp-40 | [ebp-40] :virtualAl locEx
™ 89 45 F8 mov dword prtr ss:[ebp-5].eax

- 85 cO Test eax,eax

Figure 10. x32dbg debugger VirtualAllocEx allocating memory space

Last, the WriteProcessMemory call is seen to finally write the contents into this newly created

memory region.

o FF 76 50 push dword ptr ds:[es1+30]

o 6a 00 push 0

a FF 55 98 call dword ptr ss:[ebp-68] [ebp-68]:virtualalloc
. 8B D8 mov ebx,eax

™ 85 DB test ebx,ebx

-® OF 84 45 02 00 00 je 33B059C

™ 6Aa 40 push 40

. 68 00 30 00 00 push 3000

o FF 76 50 push dword ptr ds:[esi+50

o FF 76 34 push dword ptr ds:|esi+34

o FF 75 D8 push dword ptr ss:|[lebp-28

] FF 55 c0 | call dword ptr ss:[ebp-40 | [ebp-40] :virtualAllocEx
e 0338036A 89 45 F8 mov dword ptr ss:[ebp-8],eax

e || 0338036D 85 cO test eax,eax

Figure 11. x32dbg debugger WriteProcessMemory function writing into memory region

Inspecting RegAsm.exe using ProcessHacker shows the memory region 0x400000 that
was created earlier filled with the payload. The sample is using a well-known technique to
hollow out RegAsm.exe and inject its payload.

8/18

'-."‘-'-r--:;-l-'.!r exe (432) Properties

General Statistics Performance Threads Token Modules Memory Ervironment Handles Job GPU

[]Hide free regions

Base address Type Size Protection Use

Ox7ffd84700000 Image: Commit 12 kB wC C:\Windows\System32\ntdll.dll
Ox7ffd84799000 Image: Commit 32 kB WC C:\Windows\System32\ntdil.dlil
Ox770fa000 Image: Commit B kB WC C:\Windows\SysWOWe4\nedll.dll
0x770FS000 Image: Commit 16 kB WC C:\Windows\SysWOWE4\ntdll.dll
Ox7ffd84641000 Image: Commit 1,096 kB RX C:\Windows\System32\ntdil.dil
Ox76fe1000 Image: Commit 1,104 kB RX C:\Windows\SysWOWEA\nedil.dil
0x400000 Private: Commit 232 kB RWX

B ' RegAsm.exe (432) (0x400000 - 0x43a000) — D

00000000 4d Sa 90 00 O3 00 00 00 04 00 00 00 ff £ff 00 00 MZ.....cocuuuaus
00000010 b8 00 00 00 00 00 Q0 OO0 40 00 00 OO0 00 00 00 00cuus Qecocnes
00000020 00 00 00 00 OO0 00 00 00 00 OO0 OO0 OO0 OO0 00 00 00vveucunanas
00000030 00 00 00 00 00 00 Q0 QO 00 OO0 00 00 80 00 00 00icvveannonnns
00000040 Oe 1f ba Oa 00 b4 09 cd 21 b8 01 4c cd 21 54 68 !'..L.!Th
00000050 69 73 20 70 72 6f 67 72 €1 6d 20 63 61 6e 6e 6f is program canno
00000060 74 20 62 €5 20 72 75 6e 20 €9 6@ 20 44 4f 53 20 t be run in DOS
00000070 &d 6f 64 65 2e 0d Od Oa 24 00 00 00 00 00 00 00 MoOd®....5.......
00000080 50 45 00 00 4c 01 03 00 al 27 &5 54 00 0O 00 00 PE..L....".T....
00000090 00 00 00 00 ®0 00 O 01 Ob 01 06 00 00 €8 0L 00coveunncunnns
000000a0 00 7e 01 00 00 00 00 00 92 @7 01 00 00 20 00 00 .~.vesusaoans .
000000b0 00 00 02 00 00 00 40 QO 00 20 00 00 00 02 00 00 @..
000000cO 04 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 ..veeevvannsnnns

Figure 12. ProcessHacker showing memory region injected with malicious code

After dumping the malicious code out of memory, we can confirm that it is a .NET built binary
packed with Eazfuscator.

9/18

B Exeinfo PE - ver.0.0.4.9 by AS.L- 1008+64 sign 2018.01.16 — X
File : | |e-voucher_06290000.bin [pu)
Entry Point : [pp01E792] < EPSection: | text } = Jl
3 File Offset : [oD01CT92 | FirstBytes : |FF.25.00.20.40| | @ Plug

Q" Linker Info : |5.00 | SubSystem : |windows GUI | PE
FieSize: [po1138A0h | (< 8 Owerday: |pooDF3a0 | O S
Image is 32bit executable RES/OVL:8/80% 2015 =
|Eazfuscator.NET v3.3 - 5.0 [v3.x] - (C) 2008-2015 Gapotchenko -ht| | 5can /t Rip

Lamer Info - Help Hint - Unpack info

[.NEI' obfflicense protector - for ver. < 5.0 - Unpack with : deddot v3.1] 'L‘ ?—r 27

Figure 13. Exeinfo displaying packer information on dumped process

Running de4dot against this copy is able to deobfuscate to see readable strings.

. ClientloaderForm

Figure 14. DnsSpy after deobfuscation

The malware then proceeds to drop a copy of itself to the path

C:\Users\username\PasswordOnwWakeSettingFlyout\DataExchangeHost.exe

10/18

In addition, it creates persistence by using a URL shortcut in the StartUp folder that points to

the copy of NanoCore RAT to survive reboot. A malicious VBS script named
AppVEntSubsystems64.vbs is also dropped in the same directory where
DataExchangeHost.exe resides.

J| AppVEntSubsystems64d.vbs - Notepad - O X

_File Edit Format View Help
Set WshShell = WScript.CreateObject("WScript.Shell™)
WshShell.Run """C: \Users\-\PasswordOnwakeSettingFlyout\DataExchangeHost .exe"""

Figure 15. VBS script contents

The Falcon Complete Team has seen variations of the script above being obfuscated with
the same ultimate goal such as in Figure 16.

]
File Edit View Debug Snippets VBScrpt Samples HTML Application Samples Tools Window Help
JE W& Boo B[RO PHp QP IZQEE

b Continue ~ @ W 3 [EC n P -

Untitled * x

1 Set objShell = WScript.CreateObject("wScript.Shell™)
2 objshell.Popup Chril(560008.476966994/8358.33547711931)EChri(455632.825912939/7855. 73837780929)BChri(B840012.093966586,/9130.56623876723) &Chri(*

Windows Script Host X
C\User \ppData\Roaming\dllhost\raserver.bat
oK |

Figure 16. VbsEdit debugging obfuscated script

A copy of RegAsm.exe is dropped onto disk and is added to the Run key to boot on user
logon, as seen in Falcon’s Process Tree viewer. Falcon also logs the network connection
used as the C2 in this sample, as seen in Figure 17.

11/18

OME Reguest 1

Domain

kingdevilddns.net 1
WINLOGONEXE Suspicious DMS Hoquest (1
2o Demsin
@ USERMTEXE
.] " 1
EerEE kingdevilddnz.nat (.
=e o Pegistry Oparation

_CHANGEMCSTENE

@_.

=) REGASM EXE

ASEP Valua Updata 1) =

MESTAMF
Feb. 15, 202D 15:53:00

OPERATION VALUE NAME

A key valua was added o WAN Wanager

medifisd

WALLE
C:'.Jaera\-»l ppData\Roaming\5CD1BBBA-TA41-4ESE-BCE-
BLDELEOILFIEWAN Manageriwanmarase

AREGIETRY\JSERYE-1-5-21-17B02C8864-22000024 22- 0147 TE54 5

1000 SoftwaralMicroseftUdind pws\Current Varsion', Run

Figure 17. Falcon Process Tree displaying Registry Operations and DNS request

The functionality of NanoCore RAT has been covered heavily, so this blog will not focus on it.
Figure 18 shows the same detection in Falcon’s Ul but this time being prevented after
running the same sample with the detection and prevention settings set to “Aggressive.”

. WIMLOGOM.EXE
=1

@ vseruTEx:E

EXPLOREREXE

@

F EVDUCHEREXE

Figure 18. Prevention policy enabled
Remediation:
EAGY

MEDILM HARD

USER MAME

ACTION TAKEN W Process blocked

SEVERITY & High

Falcon Detection Mathod
TACTIC & Maching Lezrning via Sensor-bazad ML
TECHMN OUE

SPECIFIC TO THIS
DETESTIGN

Tris file meets the machine learning-based on-sensor
AW pretastion's high confidence thrasheld for

malicieus files,

NOICATORS OF

INTEREST

Assoclated 100 (SHAZ56 on |Ibrery/DLL loaded)
47e5€1bFIFE308e4 92480906550 3deG57a2 0970,
Ageoriated File

WIIE :\e-Voucher . exe

LOGAL PROCESS 1D GE7R

CHALLENGING

Remediation Difficulty

12/18

The remediation can be summarized in the following steps:

1. Identify and confirm detection originates from a virtual mounted drive:
o Find the location of the disk image where it resides
o Unmount the virtual drive
o Remove the IMG from disk

2. Terminate the injected process

3. Remove the registry entry

4. Remove related directories and files

STEP 1: Identify and Remove the Mounted Disk Image

In order to identify, confirm and remove the IMG file that was mounted, we first use the class
Win32_CDROMDrive from WMI in Figure 19 to provide us with information on what is
currently mounted, along with the drive letter and the volume name.

Caption VolumeName

Microsoft Virtual DVD-ROM E: (Standard CD-ROM drives) usps
NECVMWar VMware SATA CDOl1l D: (Standard CD-ROM drives)

Figure 19. Output of WMI command

Now that we’ve identified what’'s mounted, we are using the PowerShell Get-DiskImage
cmdlet to get the objects associated with the IMG file which will indicate where this file
resides on disk.

Attached : True
BlockSize : 0
DevicePath : \\.\CDROM1
FileSize : 2097152

ImagePath : C:\Users__\Downloads\e-Voucher.img

LogicalSectorSize : 2048

Number : 1
Size : 2097152
StorageType : 1

PSComputerName
Figure 20. Output of Powershell Get-DiskImage command

13/18

Use the image path obtained from the output received on the previous command to unmount
this virtual disk. If the process is actively running, terminate it first. Also, you first need to
unmount this disk or else you will not be able to remove it.

Figure 21. Unmounting IMG file using Dismount-Disklmage

STEP 2: Terminate the Injected Process

From Falcon’s Process Tree, we discovered the injected RegAsm.exe process was running
under the process ID 4952. Proceed to terminate this process using the built-in “kill”
command using the process ID discovered.

Id Hame Start Time (UTC-5) PagedMemorySize CPFU HandleCount Path

4952 Reghsm 2/15/2020 10:56:38 AM 28987392 1.640625 456 C:\Windows'\Microsoft.NET\Framework\v4.0.30319\ReghAsm.axe

Killed PID 4952
Figure 22. Terminated process output

STEP 3: Remove the Registry Entry

Next, we remove the registry entry that was created at infection by using the PowerShell
command in Figure 23.

Deleted (EKEY_USERS\S=1-5=21=1T80365954=-2260652422-614774545=-1000 \scfewvare \nicrosoft \windows\currentversion\run.WAN Manager)

Figure 23. Deleting registry entry successfully

STEP 4: Remove Related Directories and Files

Last, we remove all remaining directories and files that were discovered during timeline
analysis of the system.

Deleted 'C:\users\ \PasswordOnWakeSettingFlyout'

Figure 24. Removing artifacts from disk output

Deleted 'C:\users\ \appdata\roaming\5CD188BA-7841-4E56-BCE1-84D548024016"

Figure 25. Removing artifacts from disk output

14/18

Deleted 'C:\users\ \appdata‘\Roaming\Microsoft\Windows\5tart Menu\Programs\startup\AppVEntSubsystemsé64.url'

Figure 26. Removing artifacts from disk output

This completes the remediation steps we execute to tackle such variants when discovered.
Note that in this scenario, we’ve purposely turned off the prevention policy while leaving the
detection policy turned on for illustrative purposes.

Within the scope of our service, we've been able to observe Warzone, NanoCore and Agent
Tesla RATs to be the most preferred by cybercriminals among others as seen in Figure 27.

DarkComet

Babar FormBook
LokiBot
Razy AgentTesla
Extenbro
AZORult
Warzone
RAT
Remcos

NanoCore RAT

Figure 27. Malware family breakdown

The entry vector for these have primarily been phishing emails, where users download
Torrent/Crack software onto their machines disguised as movies, games or music but that
actually contains infected USB media.

15/18

Torrent/Crack Download External Media Device

Phishing

Figure 28. Entry vector breakdown

In regard to verticals, we've noticed these campaigns are widely spread across multiple
verticals, with the hospitality sector being the most affected.

16/18

Banking

Technology/Software Energy/Utilities

Financial Services

Services

Hospitality

Other

Qil/Gas
Petrochemicals

Manufacturing Insurance

Figure 29. Affected verticals observed

Recommendations

1.

Gain advanced visibility across your endpoints with an endpoint detection and
response (EDR) solution such as the CrowdStrike Falcon® platform. Turn on next-gen
antivirus (NGAV) preventative measures to stop malware.

. Leverage a Layer 7 firewall that can perform deep packet inspection to examine the

traffic and block P2P protocol types.

. Observe inbound emails received during a short span of time to see the volume of disk

image files being delivered as attachments. If applicable, block known disk images file
types such as IMG, ISO, DAA, VHD, CDI, VMDK, etc., to reduce the attack surface.

. Leverage a proxy to proactively block sites that are uncategorized/unknown, as we’ve

seen new sites registered shortly before phishing campaigns are executed.

. Incorporate a phishing awareness program internally, and routinely test employees with

phishing test emails.

17/18

https://www.crowdstrike.com/epp-101/what-is-endpoint-detection-and-response-edr/
https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/epp-101/next-generation-antivirus-ngav/
https://www.crowdstrike.com/epp-101/malware/
https://www.crowdstrike.com/epp-101/what-is-phishing/

We've seen a shift toward cybercriminals using Autolt and disk images to further achieve
their objectives through various mass phishing campaigns. We believe this shift is primarily
to evade detection from legacy AV software and bypass the email gateway, as most are not
inspecting or blocking these file types, and no software is required to mount these disk
images as Windows is able to natively mount them. We predict that in 2020, we will continue
to see this trend as RATs become increasingly accessible to cybercriminals.

Additional Resources

Learn more about the CrowdStrike Falcon platform by visiting the webpage.

Learn how you can raise your organization’s cybersecurity maturity to the highest level
immediately with CrowdStrike Falcon Complete™.

Learn how you can take advantage of automated malware analysis and sandbox by
visiting the CrowdStrike Falcon SandboxTM webpage.

Learn how CrowdStrike combines automated analysis with human intelligence to
enable security teams to get ahead of the attacker’s next move by visiting the Falcon
XTM webpage.

Get a full-featured free trial of CrowdStrike Falcon Prevent™ and learn how true next-
gen AV performs against today’s most sophisticated threats.

18/18

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/endpoint-security-products/falcon-complete/
https://www.crowdstrike.com/endpoint-security-products/falcon-sandbox-malware-analysis/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://go.crowdstrike.com/try-falcon-prevent.html?_ga=2.250563012.39441205.1587407352-160409294.1587139430

