
1/8

born

Zloader String Obfuscation
blag.nullteilerfrei.de/2020/05/24/zloader-string-obfuscation/

This blag post describes my though-process during identification of the string deobfuscation
method in a sample belonging to the Zloader malware family. Specifically, I wanted to identify
the function or functions responsible for string deobfuscation only using static analysis and
Ghidra, understand the algorithm, emulate it in Java and implement a Ghidra script to
deobfuscate all strings in a binary of this family. The target audience of this post are people
that have some experience with static reverse engineering and Ghidra but who always asked
themselves how the f those reversing wizards identify specific functionality within a binary
without wasting hours, days and weeks. ## Target Sample We will be looking at the sample
with SHA256 hash
4029f9fcba1c53d86f2c59f07d5657930bd5ee64cca4c5929cbd3142484e815a , probably

created on 2020-04-08 18:19:58. According to people on the internet, this sample leverages
string obfuscation, API hashing, a Domain Generation Algorithm (DGA) and, code-level
obfuscation techniques like constant unfolding, dead code insertion or arithmetic
substitutions to hinder analysis. Right now, we only care about the string obfuscation and try
to avoid looking at anything else. The malware family was first mentioned publicly by Fortinet
in mid 2016: Their blog calls it _DELoader_ based on suspected targeting of Germany which
in turn is based on geo-information of IPs in log files exposed by the operators in an open
directory ("DE" is Germany's country code). The post also draws a connection to a handle
Aleksandr and usage of the banking Trojan _Zeus_, which seems to motivate the later
name _Zloader_. ## Identify the Deobfuscation function Following the list of heuristics from a
previous blag post, we start at the entry point and while trying to avoid code that's too
complicated, find a function that is called in a lot of other places too and, which adheres to
certain requirements on data flowing into and out of it. Without even traversing into any of the
functions called after the entry point, we click every function and list its references (use X if
you have the best Ghidra Keybindings available on the free market). Here is a table of called
functions together with their number of references (that is, not only calls at the entry point but
in the whole binary): | Function | Xrefs | |--- |--- | | FUN_030a3170 | 190 | | FUN_030ba440 |
55 | | FUN_030a3340 | 33 | | FUN_030ba030 | 30 | | FUN_030b8710 | 29 | |
FUN_030b1760 | 19 | | FUN_030a3400 | 14 | | FUN_030ba300 | 10 | | FUN_030ba9d0 | 7 |

| ... | ... | The list is sorted by the number of references and we will work our way down from
the highest number of cross references (is a handy script to generate such a list of functions
together with their number of cross-references). ## First Things First The first candidate is
FUN_030a3170 . It seems to receive two arguments, both of which are used in conjunction

with arithmetic operators like % and < . This makes it plausible that Ghidra correctly
guessed their types to be numbers. So if this is indeed a string deobfuscation function, it
needs to access some sort of global variable containing the obfuscated variant of the string.
In order for this function to be able to deobfuscate more than one string, at least one of the

https://blag.nullteilerfrei.de/2020/05/24/zloader-string-obfuscation/
https://malpedia.caad.fkie.fraunhofer.de/details/win.zloader
https://www.fortinet.com/blog/threat-research/the-curious-case-of-an-unknown-trojan-targeting-german-speaking-users.html
https://blag.nullteilerfrei.de/2020/04/26/use-ghidra-to-decrypt-strings-of-kpotstealer-malware/
https://mal.re/tmp/ghIDA.kbxml
https://github.com/nullteilerfrei/reversing-class/blob/master/scripts/java/ListCallsWithXrefs.java

2/8

two arguments should determine the concrete string within that global variable. But before
we dive into that, let us double check that the data types of the arguments are correct by
listing a few calls of the function:

pcVar1 = (code *)FUN_030a3170(0,0x6aa0e84);
iVar2 = (*pcVar1)(2,0);
[...]
pcVar1 = (code *)FUN_030a3170(0,uVar3);
uVar3 = (*pcVar1)(iVar2,local_23c);
[...]
pcVar1 = (code *)FUN_030a3170(0,0xfed02a7);
iVar4 = (*pcVar1)(iVar2,local_23c);

So the first argument seems to be a small number and the second one a large one. What is
more interesting though is, that the return value of this function is not used as a string but is
called directly after. This suggests that the function we are looking at is not responsible for
string deobfuscation but merely to resolve some API functions, potentially with the help of
API hashing (see a post on API hashing if you want to learn about this technique in general).
Let's rename the function to pr_ResolveApi and not investigate it any further, we are here
for string deobfuscation! ## First Try, Second Attempt FUN_030ba440 is a very short
function that just calls FUN_03091c50 if it didn't receive the NULL pointer as an argument.
This function in turn calls two other functions, one of which is our pr_ResolveApi . The
other called function seems to be junk code but overall I'm confident that this aren't the
droids, we are looking for. ## Third Time's a Charm Let's take a look at FUN_030a3340 :
Ghidra determined that the function receives two pointer arguments. Looking at a few calls to
this function, the first argument always seems to be a global variable while the second
argument is a local array variable. So if this is a string deobfuscation function, the first
argument could be the obfuscated data while the second is a pointer where the result is
written to. Following data flow within FUN_030a3340 corroborates the second part of this
hypothesis: the content of param_2 is copied to a local variable which is later returned. If
the hypothesis is correct _and_ the malware sample uses an encryption scheme that needs
a key, FUN_030a3340 would need to access some global variable to be used as a key -
because there is no parameter left for the key: according to our hypothesis, the first
parameter is the obfuscated string while the second is an output parameter. The only global
variable (shown in purple in Ghidra) within the function is PTR_DAT_030be000 . This variable
is used in two lines within FUN_030a3340 :

uVar4 = (short)(char)*PTR_DAT_030be000 ^ *param_1;
[...]
uVar1 = FUN_030aba90((uint)*(ushort *)((int)param_1 + iVar5), (short)
(char)PTR_DAT_030be000[uVar6 % 0x11]);

Hence this variable probably contains a pointer to an array. This array is indexed with uVar6
% 0x11 suggesting a length of 17:

00000000 59 49 2c 72 54 66 79 23 46 33 4d 61 71 31 33 69 |YI,rTfy#F3Maq13i|
00000010 66 |f|

https://blag.nullteilerfrei.de/2019/11/09/api-hashing-why-and-how/

3/8

At this point, instead of reverse engineering the whole function in detail, let's take a leap: In
the first of the two code lines above, PTR_DAT_030be000 is Xor-ed with the first element of
the param_1 array. Hence it may point to an Xor-key of length 17. Let's look up one of the
passed arguments and Xor it with the above key: puVar1 = FUN_030a3340((ushort
*)ARRAY_030bc900,local_52); references ARRAY_030bc900 which contains the
following data:

00000000 0a 00 26 00 4a 00 06 00 23 00 07 00 0b 00 46 00 |..&.J...#.....F.|
00000010 1a 00 7e 00 24 00 02 00 03 00 5e 00 40 00 06 00 |..~.$.....^.@...|
00000020 00 00 2d 00 49 00 |..-.I.|

sadly, Xoring results in:

00000000 53 49 0a 72 1e 66 7f 23 65 33 4a 61 7a 31 75 69 |SI.r.f.#e3Jaz1ui|
00000010 7c 59 37 2c 56 54 64 79 20 46 6d 4d 21 71 37 33 ||Y7,VTdy FmM!q73|
00000020 69 66 74 49 65 72 |iftIer|

But you might have noticed that every second byte in the alleged obfuscated data is a zero-
byte. This suggest that the data is in fact a wide string with all upper bytes set to zero. After
removing the zero-bytes, Xoring results in the following:

00000000 53 6f 66 74 77 61 72 65 5c 4d 69 63 72 6f 73 6f |Software\Microso|
00000010 66 74 00 |ft.|

We have found a string deobfuscation function! And we could also already determine that it
uses Xor-encryption with a hard-coded key of length 17. Don't forget to rename
FUN_030a3340 to something like ev_WideStringDeobfuscate . It is also plausible, and

can be confirmed by reversing ev_WideStringDeobfuscate a bit more, that the
obfuscated data is null-terminated. So instead of passing the length of the obfuscated data
as an argument, the length is simply determined by the first occurrence of the \0 -character.
Due Diligence Now that we know that the global array pointed to by PTR_DAT_030be000
contains an Xor-Key, let's check for other references. As it turns out, the only other function
referencing it, is FUN_030a3400 . This function is also on our list above (with 14 references)
and we just do the same leap of faith, we did above: look up a reference to it and Xor the
data passed as the argument

00000000 32 2c 5e 1c 31 0a 4a 11 68 57 21 0d 71 |2,^.1.J.hW!.q|

with the hard-coded key:

00000000 6b 65 72 6e 65 6c 33 32 2e 64 6c 6c 00 |kernel32.dll.|

There are no zero bytes in the obfuscated data, so maybe this is the non-wide-string variant
of ev_WideStringDeobfuscate . So let's rename FUN_030a3400 to
ev_StringDeobfuscate . ## Automation As always, let us automate the process of finding

all function references and deobfuscate the passed buffers. Roughly, we will follow this plan:
* ask the user for name of deobfuscation function and parse its assembly to determine the

4/8

Xor-Key * find all calls to the deobfuscation function and determine the first argument passed
to the function * deobfuscate the data and enrich the different Ghidra views (namely,
assembly listing, decompiled code and the bookmarks list) Let's first look at the only part that
wasn't handled in other blag posts: parsing assembly and determining the Xor-Key. Both
deobfuscation functions use special MOV instructions - namely, MOVZX (Move with Zero-
Extend) and MOVSX (Move with Sign-Extension) - to read the Xor-Key from memory. Both
instructions accept two operands, a source and a destionation, and copy the contents of the
source operand to the destination operand (while extending the value in some way that we
don't care about). Below, are the two instructions in question from the
ev_StringDeobfuscate and ev_WideStringDeobfuscate functions respectively:

030a3435 0F B6 30 ..0 movzx esi, byte ptr [eax]
[...]
030a3363 0F BE 19 ... movsx ebx, byte ptr [ecx]

The first one copies the value referenced by the register eax to esi while the second one
does the same for ecx and ebx . Since there is only one of those move instruction in both
functions, our goal is to search for it and try to determine the value that was moved. This
situation also already demonstrates that compilers may use different registers in very similar
situation. It also means, that we need to do some extra work if we want to automate
discovery of the Xor key: We cannot simply use the value from a fixed register but are merely
going to iterate over all instructions within the function while tracking register values. For
tracking register values let us use the following simple Java helper class:

5/8

private class InvalidRegisterNameException extends Exception {
 public InvalidRegisterNameException(String registerName) {
 super(String.format("Invalid register name: %s", registerName));
 }
}

private class RegisterValues {
 private int[] values;
 public boolean debug;

 public RegisterValues() {
 values = new int[8];
 debug = false;
 }

 private int nameToIndex(String registerName) throws InvalidRegisterNameException
{
 if (registerName.equals("EAX") || registerName.equals("AL") ||
registerName.equals("AH")) {
 return 0;
 } else if (registerName.equals("EBX") || registerName.equals("BL") ||
registerName.equals("BH")) {
 return 1;
 } else if (registerName.equals("ECX") || registerName.equals("CL") ||
registerName.equals("CH")) {
 return 2;
 } else if (registerName.equals("EDX") || registerName.equals("DL") ||
registerName.equals("DH")) {
 return 3;
 } else if (registerName.equals("EBP") || registerName.equals("BL") ||
registerName.equals("BH")) {
 return 4;
 } else if (registerName.equals("ESI")) {
 return 5;
 } else if (registerName.equals("EDI")) {
 return 6;
 } else if (registerName.equals("ESP")) {
 return 7;
 } else {
 throw new InvalidRegisterNameException(registerName);
 }
 }

 public void set(String registerName, int value, Address address) throws
InvalidRegisterNameException {
 if (debug) {
 println(String.format("0x%x writing 0x%x to %s", address.getOffset(),
value, registerName));
 }
 values[nameToIndex(registerName)] = value;
 }

 public int get(String registerName, Address address) throws
InvalidRegisterNameException {
 int registerValue = values[nameToIndex(registerName)];

6/8

 if (debug) {
 println(String.format("0x%x reading %s as 0x%x", address.getOffset(),
registerName, registerValue));
 }
 return registerValue;
 }
}

And now, we can use this class to implement the actual algorithm to search for the Xor-Key:

7/8

public byte[] readXorKey(Function func, int searchDepth) throws MemoryAccessException
{
 int i = 0;
 RegisterValues currentValues = new RegisterValues();
 for (Instruction instruction :
currentProgram.getListing().getInstructions(func.getEntryPoint(), true)) {
 try {
 if (instruction.getMnemonicString().equals("MOVZX")) {
 // MOVSX EBX,byte ptr [ECX]=>BYTE_ARRAY_030bc4f0 =
 // Index 0: EBX
 // Index 1: ECX
 String registerName = instruction.getOpObjects(1)[0].toString();
 int registerValue = currentValues.get(registerName,
instruction.getAddress());

 byte[] dataPtr = getOriginalBytes(toAddr(registerValue), 0x4);
 if (dataPtr != null) {
 byte[] data = getOriginalBytes(unpackAddressLE(dataPtr), 0x11);
 if (data != null && data.length == 0x11) {
 return data;
 }
 }
 } else if (instruction.getMnemonicString().equals("MOV")) {
 // MOV ECX,dword ptr [030be000 == OBFU_PTR]
 // Index 0: ECX
 // Index 1: 030be000
 String registerName = instruction.getOpObjects(0)[0].toString();
 int copiedValue = instruction.getInt(1);
 currentValues.set(registerName, copiedValue,
instruction.getAddress());
 } else if (instruction.getMnemonicString().equals("RET")) {
 break;
 }
 } catch (InvalidRegisterNameException e) {
 println(String.format("Exception: %s", e.toString()));
 }
 i++;
 if (i > searchDepth)
 break;
 }

 byte[] defaultKey = { 0x59, 0x49, 0x2c, 0x72, 0x54, 0x66, 0x79, 0x23, 0x46, 0x33,
0x4d, 0x61, 0x71, 0x31, 0x33,
 0x69, 0x66 };
 return defaultKey;
}

The function just returns a default key if identifying the value is not successful. Asking the
user for a function, finding all references as well as tracking argument values of those calls
has been covered thoroughly in previous blag posts. So the only thing left is the obfuscation
itself, which is a simple Xor with a multi-byte key:

https://github.com/nullteilerfrei/reversing-class/blob/master/scripts/java/DownRageStrings.java#L115
https://blag.nullteilerfrei.de/2020/02/02/defeating-sodinokibi-revil-string-obfuscation-in-ghidra/
https://github.com/nullteilerfrei/reversing-class/blob/master/scripts/java/DownRageStrings.java#L46

8/8

private byte[] cryptXor(byte[] data, byte[] key) {
 final byte[] ret = new byte[data.length];
 for (int k = 0; k < data.length; k++)
 ret[k] = (byte) (data[k] ^ key[k % key.length]);
 return ret;
}

As always, you can find the fully working script to deobfuscate all strings in Zloader on
github. ## Summary The string obfuscation used in Zloader is quite generic: the analysed
sample contains two different functions that use the same global hard-coded Xor-key to
decrypt zero-terminated obfuscated data. It was possible to identify these functions without
actual reverse engineering a lot of code in detail by starting at the entry point and looking at
all calls sorted by number of other references of the called function. ## Deobfuscated
Strings: For google-ability: | Address | Deobfuscated String |--- |--- | 0x0309111C |
kernel32.dll | 0x0309133F | Software\Microsoft (wide) | 0x03091AFF |
Software\Microsoft (wide) | 0x03091CE0 | BOT-INFO | 0x03091CF3 | It's a debug
version. | 0x03091D0F | Proxifier.exe (wide) | 0x03091D4A | BOT-INFO |
0x03091D60 | Proxifier is a conflict program, form-grabber and web-injects
will not works. Terminate proxifier for solve this problem. | 0x0309218F |
SeSecurityPrivilege (wide) | 0x030923E5 | Mozilla/5.0 (Windows NT 6.3;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88

Safari/537.36 | 0x030928F9 | Software\Microsoft (wide) | 0x0309559F |
/post.php | 0x030955F4 | https:// | 0x03095D99 | C:\Windows\SystemApps*

(wide) | 0x03095E1D | Microsoft.MicrosoftEdge (wide) | 0x03095E57 | 6.3 |
0x030962E4 | HideClass (wide) | 0x03096332 | HideWindow (wide) | 0x03096348 |
HideClass (wide) | 0x03096E37 | .exe (wide) | 0x03096E5B | .dll (wide) |
0x03096E7A | .dll (wide) | 0x03096EAB | .exe (wide) | 0x03096F5F | .exe |
0x03096FC8 | >> (wide) | 0x03097022 | .dll | 0x030972E1 |
Software\Microsoft\ (wide) | 0x0309741D | UNKNOWN (wide) | 0x03097492 |
Software\Microsoft\Windows NT\CurrentVersion (wide) | 0x030974A5 |
InstallDate (wide) | 0x030974CB | DigitalProductId (wide) | 0x030974F1 |
%s_%08X%08X (wide) | 0x0309754F | INVALID_BOT_ID (wide) | 0x03097790 |
rundll32.exe %s,DllRegisterServer (wide) | 0x030977C5 |
Software\Microsoft\Windows\CurrentVersion\Run (wide) | 0x030977F9 |
Software\Microsoft\Windows\CurrentVersion\Run (wide) | 0x03097CF2 |
Software\Microsoft\ (wide) | 0x03098065 |
Software\Microsoft\Windows\CurrentVersion\Run (wide) | 0x0309809E | .dll

(wide) | 0x03098174 | S:(ML;;NRNWNX;;;LW) (wide) | 0x030986F1 |
Software\Microsoft\ (wide) | 0x0309BD3F | .com

Tags: ghidra - malware - string-deobfuscation - zloader

https://github.com/nullteilerfrei/reversing-class/blob/master/scripts/java/ZLoaderStrings.java
https://blag.nullteilerfrei.de/tag/ghidra/
https://blag.nullteilerfrei.de/tag/malware/
https://blag.nullteilerfrei.de/tag/string-deobfuscation/
https://blag.nullteilerfrei.de/tag/zloader/

