Examining Smokeloader’s Anti Hooking technique

malwareandstuff.com/examining-smokeloaders-anti-hooking-technique/

May 24, 2020

[+]1[+] Returned from strcmpif
[+][+] Called strcmpiA
[+]1[+] ArglAddr = B@x18eedc
[+][+] Buffer
8 1 2 3 4 5 b z ; 8123456789ABCDEF
goeeoeee V7 69 be 69 be 69 74 O 3 wininit.exe.ess]
00e00e1e 60 P08 08 99 80 BB 09
00000820 0GP 0B 08 99 80 BB 08

[+]1[+] Arg2Addr = Bx368f978
[+]1[+] Buffer

a 1 2 b : ; 8123456789ABCDEF
ggegoeee o6l 76 67] 76 i : AVECSrvX.exe. . .
08008818 34 ce 3a 3 h 98 4.:6F...avgsvex.
ggeeoe2e 65 78 65 92 28 53 f! 2] O exe.. S.4.:6F...

[+]1[+] Returned from strcmpiA
[+]1[+] Called strcmpiA
[+]1[+] ArglAddr = BxlBeedc
[+]1[+] Buffer
8 1 2 3 4 5 b 5 . D 8123456789ABCDEF
ggeeeeee V7 69 6e 69 6e 69 74 : wininit.exe.ess]
0opoEe1o ©0 0D 00 0D B0 0D 00
0BOOR020 00 0O 00 00 B0 00 00

[+]1[+] Arg2Addr = Bx368+998
[+]1[+] Buffer

8 1 2 C ; @123456789ABCDEF
gggaeeee 61 76 ! 2 1 avgsvcx.exe.. 5.
oeeeeele 34 ce 5 : 6l 4.:6F...avgcsrva
00eeee2e 2e 65 2] i c .exe....d.:6F...

Published by hackingump on May 24, 2020

Hooking is a technique to intercept function calls/messages or events passed between
software, or in this case malware. The technique can be used for malicious, as well as
defensive cases.

Rootkits for example can hook API calls to make themselves invisible from analysis tools,
while we as defenders can use hooking to gain more knowledge of malware or build
detection mechanisms to protect customers.

1/6

https://malwareandstuff.com/examining-smokeloaders-anti-hooking-technique/
https://malwareandstuff.com/author/klopsch/

Cybersecurity continues to be a game of cat and mouses, and while we try to build
protections, blackhats will always try to bypass these protection mechanisms. Today | want
to show you how SmokelLoader bypasses hooks on ntdll.d11l and how Frida can be used
to hook library functions.

The bypass was also already explained in a blog article from Checkpoint[1] written by Israel
Gubi. It also covers a lot more than | do regarding Smokeloader, so it is definitely worth
reading too.

Hooking with Frida

If you've read my previous blog articles about QBot, you are familiar with the process
iteration and AV detection[3]. It iterates over processes and compares the process name with
entries in a black list containing process names of common AV products. If one process
name matches with an entry, QBot quits its execution.

Frida is a Dynamic Instrumentation Toolkit which can be used to write dynamic analysis
scripts in high level languages, in this case JavaScript. If you want to know more about this
technology, | advice you to read to visit this website[4] and read its documentation.

We can write a small Frida script to hook the 1strcmpiA function in order to investigate
which process names are in the black list.

2/6

https://research.checkpoint.com/2019/2019-resurgence-of-smokeloader/
https://malwareandstuff.com/an-old-enemy-diving-into-qbot-part-2/
https://frida.re/

def main():
"""Main, """
argv[1l] is our malware sample
pid = frida.spawn(sys.argv[1l])
sess = frida.attach(pid)
script = sess.create_script("""
console.log("[+] Starting Frida script")
var lstrcmpiA = ptr("Ox76B43E8E")
console.log("[+] Hooking lstrcmpiA at " + 1lstrcmpiA)
Interceptor.attach(lstrcmpiA, {
onEnter: function(args) {
console.log("[+][+] Called strcmpiA");
console.log("[+][+] ArglAddr = " + args[0]);
console.log("[+][+] Buffer");
pretty_print(args[0], 0x30);
console.log("[+][+] Arg2Addr = " + args[1]);
console.log("[+][+] Buffer");
pretty_print(args[1], 0x30);
}I
onLeave: function(retval) {
console.log("[+][+] Returned from strcmpiA")
}
1)

function pretty_print(addr, sz) {
var bufptr = ptr(addr);
var bytearr = Memory.readByteArray(bufptr, sz);
console.log(bytearr);

};

nmn Il)
script.load()

frida.resume(pid)
sys.stdin.read()
sess.detach()

We attach to the malicious process and hook the 1strcmpiA function at static address.
When analysing malware, we have (most of the time) the privilege to control and adjust our
environment as much as we want. If you turn off ASLR and use snapshots, using Frida with
static pointers is pretty convenient, because most functions will always have the same
address. However, it's also possible to calculate the addresses dynamically. 1strcmpiA

has 2 arguments, which are both pointers of type LPSTR . So we just resolve the pointers, fill
0x30 bytes starting at pointer address into a ByteArray and print it.

3/6

[+]1[+] Returned from strcmpiA
[+]1[+] Called strcmpiA

[+]1[+] ArglAddr
[+]1[+] Buffer

= BxlB8eedc

g 1 2 3 4 5 b

coeeeeee 77 69
gggeeele ee o
oggeve2e ee o8

[+]1[+] Arg2Addr
[+]1[+] Buffer

8 1
ggeeaeee 61 76
00008818 34 ce
oopoee20 65 78

[+]1[+] Returned

[+]1[+] ArglAddr
[+][+] Buffer

Be B9 be 69
88 20 ea o8
88 29 ee o8

= Bx368+978

2 3 4 5
67 B3 73 72
3a 36 46 96
bh 88 952 28

74
aa
aa

5]
76
aa
53

from strcmpid
[+][+] Called strcmpiA

= PBxl8eedc

g 1 2 3 4 5 b

gpeeeead 77 69
gogeeele ee o8
gogeveze ee o

[+]1[+] Arg2Addr
[+][+] Buffer

e 1
fooooeee 61 76
00eeeel1e 34 ce
0eeee828 2e 65

be 69 be 69
88 ae e o8
88 a8 2 o8
= Bx368+998

Pl

Result of Frida Script

Smokeloader’s Anti Hooking technique

74
aa
aa

8123456789ABCDEF
wininit.exe.ess]

8123456789ABCDEF
avgcsrvx.exe.. .

4.:6F...avgsvecx.
exe.. 5.4.:6F...

8123456789ABCDEF
wininit.exe.ess]

8123456789ABCDEF
avgsvcx.exe.. S.
d.:6F...avgcsrva
exe....d.:6F...

So how does Smokeloader bypass hooks? Well it can do it atleast for the ntdl1l.d11
library. During execution Smokeloader retrieves the Temp folder path and generates a

random name. If a file with the generated name already exists in the temp folder, it is deleted

with DeleteFileWw .

4/6

~ ntdll

aba

~~22@4~~ KERNEL3Z.dl1!DeleteFileW

arg @: C:\Users\BLACKB~1\AppData:Local\Temp\9A26.tmp (type=wchar_t*, size=0x0)
~2 204~~~ KERNELBASE.d1l1l!DeleteFileW

arg @: C:\Users\BLACKB~1\AppData’Local\Temp® 6.tmp (type=wchar_t*, size=0x0)
2 2B08~~ ntdll.dl1!Rt1DosPathNameToRelativeNtPathName_U_WithStatus

drltrace output DeleteFileW call, deleting 9A26.tmp in Temp Folder

Next the original ntd11.d11 file is copied from system32 to the temp folder with the exact
name it just generated. This leads to a copy of this mentioned library being placed in the
temp directory.

Property Value

File Marne Ch\Users\blackbeard\AppDatat\Local\ Temp\3A26.tmp I
File Type Portable Executable 32

File Info Microsoft Visual C++ wvxax DLL

File Size 1.23 MB (1292096 bytes)

PE Size 1.22 MB (1277440 bytes)

Created Saturday 23 May 2020, 11.45.58

Medified Sunday 21 Movember 2010, 05.24.01

Accessed Saturday 23 May 2020, 11,4558

MD5 D124F55B9393C976963407DFFS1FFATS Meta data of disguised
SHA-1 2C7BBEDD79791 BFBE66898 CE5B504186DBE10BSD
Property Value

CompanyMame Microsoft Corporation

FileDescription MT Layer DLL

FileVersion 6.1.7601.17514 {winTspl_rtm.101119-1850)
InternalMame

LegalCopyright 2 Microsoft Corporation. All rights reserved,
CriginalFilename ntdll.dll

ProductMame Microsoft® Windows® Operating System
ntdll.dll

5/6

Ordral Function BVA Mame Ordinal | Hasne BYA Hame

WA CO000EM T LT HIA

{nFunctions) II}'uurd .Wnrd Dweord REAAE

firc i lDED-ImA 0037 AILSCM Ld paddlternstefescurcebdoculefx

feociie:o] DoOZC43A oEs 000 5091 L ga:Dll

O0000EA Do0=#Ba% -] [cookle s Ll ochl oaderlock

Liviiie:l:] DO0OGIZAR 0085 I SCAE Ldrdperdmsgerielptionstey

DODMNEC DOOAEDCF OEE Q00L50C LdrPmcessRelocationBlock

W0NED DOMC]32 20GL QOOLSCES LdrQuendmageFilefrecition Dptams

ODDO0BE DOO4C158 00E0 Q0015005 LdrQuerdmacgeFilef e utionOpteanEs

(000008F DOOSIFD2 002 0005009 LidnQuerpimage Filet e Optan

GO000390 DOOAGEFE O0F Q0015044 LdrQueryhoduleberviceTags

00091 Do0ak 0050 0LSDEE LdrQueryProcessModuleinformation

W00z DO0ECBAS 0091 QILSDTF LdrRegisterll Mot stion

0000Ng3 DOOSFAAD o0z 00015098 LdRamovel oadtsDataTable

0000094 DOO4ETGC (1] 0001 50E3 LdR#sFedR i

000095 Da0hA1S i) LS LdFesFrvdResourceDirectory
DI4ICSF 0055 LSDE2 LdResGetRC onig

0meNaT DINAEF42 0056 QOOLSDR LdrResRelease

000NgE D00CO5C o0gT 0001 5E02 LdResSearchReource

000D DO043500 oo OO0 SE1T LdRscls TypeEent

foiniety Do0AGEFS 1] OAES LdrSertppCompatDiiRedrectionC allback

0008 DIOSLEFE 0058 OOLSELF LdrsetDifanifastProber

Export functions of the disguised ntdll file
Instead of loading the real ntd11l.d11 file, the copy is loaded into memory by calling
LdrLoadDl1l .

Mame Base address Size Description

axio.exe 0x400000 0.98 MB Arching Jil Pronunciation Pour Xp Yrks
SA25.tmp 0x73ee0000 1.5MB NT Layer DLL

advapi32.dl 0x74d00000 640kE Advanced Windows 32 Base AP]
apisstschema.dll Oe40000 4kB ApiSet Schema DLL

avicap32.dl OxGbb 70000 768 AVI Capture window dass

avicap32. dil.mui 0250000 8kB AVI Capture window class

dbcatg.dl 075050000 524k8 COM+ Configuration Catalog

comcti32.dll Ox62890000 528k8 User Experience Controls Library
comct32.dll Ox6e2a0000 1.62MB User Experience Controls Library

9A26.tmp as ntdll.dll
Most AV vendors, as well as analysts probably implemented their hooks on ntdll.d11 , so
the references to the copied ntdll.d11l file will be missed.

Smokeloader continues to call functions from this copied DLL, using for example function
calls like NtQueryInformationProcess to detect wether a debugger is attached to it.

Final Words

While analysing SmokeLoader at work, | stumbled across this AntiHook mechanism, which |
haven’t seen before, so | wanted to share it here :-).

I’'ve also only scratched on the surface of what Frida is capable of. | might work on
something more complex next time.

6/6

