
1/10

Unloading the GuLoader
labs.vipre.com/unloading-the-guloader/

Posted by VIPRE Labs

We recently came across a spike of spam email samples containing GuLoader. This malware
was discovered last year in 2019 and became more popular among cyber criminals during
the coronavirus outbreak. GuLoader is usually attached to a spam email related to bill
payments, wire transfers or COVID malspam (you can see a detailed analysis of the COVID
malspam here). GuLoader is written in VB5/6 and compressed in a .rar/.iso file. We can see
on the graph below the increase of GuLoader which our customers have received:

Figure 1.0 Data collected from January to April 2020 showing the increase in
GuLoader related samples

https://labs.vipre.com/unloading-the-guloader/
https://labs.vipre.com/using-covid-19-pandemic-to-distribute-backdoor-infection/

2/10

3/10

Figure 2.0 Spam emails containing GuLoader

Guloader is popular for distributing Remote Access Trojan (RAT) tools. These allow the
attackers to control, monitor, or steal information from the infected machine. This malware
downloader utilizes cloud hosting services (Microsoft OneDrive or Google Drive) to keep its
payload encrypted.

Dig Deeper Inside of GuLoader

Analyzing the GuLoader sample, the malware is indeed a VB5/6 executable. Also, a
compiled Visual Basic sample can be recognized by an imported DLL
called MSVBVM60.DLL.

4/10

Figure 3.0 GuLoader sample written in VB5/6 and the msvbvm60.dll

Analyzing further, we’ve found the malware’s encrypted malicious code. This malware
allocates virtual memory and decrypts the encrypted malicious code using XOR.

The decrypted code will be in virtual memory 0x350000. Checking this memory in memory
map, it has read, write, and execute (RWE) access. We’ve now dumped the decrypted code
to conduct analysis.

5/10

Figure 6.0 The dumped memory and the familiar strings that were found in the
decrypted code

Checking the strings on the decrypted code, we can see clearly the cloud hosting service
URL that stores the encrypted payload (hxxps://drive[.]google[.]com/uc?
export=download&id=19sVk-ZTWHVl3_ITBst1x51qX2L28yNlw). We can also see familiar
DLLs like wininet.dll and APIs like InternetOpenA, InternetOpenUrlA, InternetSetOptionA etc.
The wininet.dll contains internet related functions like InternetOpenA and these functions will
probably be used to connect to the URL that contains the encrypted payload.

Analyzing what’s inside of the decrypted code, we can see that the malware will find the
GetProcAddress function in kernel32.dll because GetProcAddress is important in finding and
calling other API functions. In order to do this, the malware will first access the Process
Environment Block (PEB) -> LDR data -> InMemoryOrderModuleList and then get the
address of the module kernel32.dll.

Figure 7.0 Accessing the PEB and getting the address of kernel32.dll

After obtaining the address of kernel32.dll and finding GetProcAddress in kernel32.dll, the
malware will resolve the following series of APIs:

LoadLibraryA
TerminateProcess
EnumWindows
NtProtectVirtualMemory

https://www.aldeid.com/wiki/PEB-Process-Environment-Block

6/10

NtSetInformationThread
NtAllocateVirtualMemory
DbgBreakPoint
DbgUiRemoteBreakin

After this, we ran into some anti-analysis techniques. The anti-analysis was used by malware
authors to make it more difficult to analyze the malware.

Here are some of the techniques we encountered:

An anti-debugger that hides the thread from the debugger. In order to perform this, the
API NtSetInformationThread is needed. They set the second parameter
(ThreadInformationClass) to 0x11 which is equivalent to ThreadHideFromDebugger. It
will hide the thread from the debugger so it can’t be easily debugged. For example, the
thread will continue to run, but the debugger will not be able to receive any events
related to the thread.

Figure 8.0 Calling of NtSetInformationThread to hide the thread from the debugger

Thread attach in a debugger can be seen in the thread window. On figure 9.0, we can
see the before and after the thread is hidden from the debugger. The before part is
where we can see the main thread and its thread ID which is 11DC. The after part is
where the main thread is hidden from the debugger.

Figure 9.0 Before and after the hiding of thread

7/10

There’s another technique that will first call the NtProtectVirtualMemory function to set
the permission of ntdll’s .text section as PAGE_EXECUTE_READWRITE. The ntdll.dll
contains the following APIs, DbgBreakPoint and DbgUiRemoteBreakin, that will be
used to perform anti-attach. The malware prevents the debugger from attaching to a
process by hooking the DbgBreakPoint and DbgUiRemoteBreakin functions. For
example, it will patch DbgBreakPoint and DbgUIRemoteBreakin functions that will
trigger the process to exit or to designate an unknown location. Like in figure
12.0, DbgUIRemoteBreakin will call 0x00000000 address and exit.

GuLoader will create a folder in the C:\Users directory and the created folder contains a copy
of the malware itself. It will also achieve persistence by modifying the registry key
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

Figure 13.0 The created folder containing the created malware copy

8/10

Figure 14.0 Achieving malware persistence

Now GuLoader implements process hollowing:

https://labs.vipre.com/?s=process+hollowing

9/10

The child process (for this sample it’s RegAsm.exe) downloads and decrypts the encrypted
payload from a cloud hosting service, and maps the decrypted payload into memory to
execute.

10/10

Figure 10.0 The cloud hosting service storing the encrypted payload

The common GuLoader payloads are Formbook, NetWire, Remcos, Lokibot etc.

IOCs:

URLs

 hxxps://onedrive[.]live[.]com/download?
cid=1491235303209D1A&resid=1491235303209D1A!109&authkey=ACw2GiM8jfgliBs

 hxxps://drive[.]google[.]com/uc?
export=download&id=1EQ7DIlAk9lk2E52DQLELmB02ADqw-62s
hxxps://drive[.]google[.]com/uc?export=download&id=19sVk-
ZTWHVl3_ITBst1x51qX2L28yNlw

Samples

IMG and ISO Files
466a8de97917fdbc706ccad735ef08a4b049f802d01a03e4f611f75a132e4839
7aadacc7c5bb0c0319f8943d3c65ef2d41d49b1c470210e70e250dd665f167fe

EXE Files
503f94f00304bc18900c3494f2da5bcb1d8a103a0b15ce00bbdaeb5dfd8d9b7b
cbffd8f471de9728610b1edd4519f65399a8e64e46177e1178685ef6b081065b

VIPRE detects and prevents this kind of malware and associated infections.

Analysis by #Farrallel

https://labs.vipre.com/business-email-compromise-img-file-attachment-contains-remcos/

