
1/9

Positive Technologies

Operation TA505: how we analyzed new tools from the
creators of the Dridex trojan, Locky ransomware, and
Neutrino botnet

ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/operation-ta505/

Published on 20 May 2020

 Distribution of TA505

attacks in 2019

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/operation-ta505/

2/9

The Threat Intelligence team at the Positive Technologies Expert Security Center has been
keeping a close eye on the TA505 cybercrime group for the last six months. The malefactors
are drawn towards finance, with targets scattered in dozens of countries on multiple
continents.

What is TA505 famous for?

The cybergang has been quite prolific since 2014: their arsenal includes the Dridex banking
trojan, Neutrino botnet, as well as Locky, Jaff, GlobeImposter, and other ransomware.

The group's attacks have been detected all around the world, from North America to Central
Asia.

Despite being mainly motivated by profit, in the past six months they have also attacked
research institutes, energy companies, healthcare institutions, airlines, and even government
agencies.

TA505 attacks by sector, 2019
Below is an example of a phishing message containing malware developed by the group.
Judging by the email address, the attack targeted the British Foreign Office.

https://www.proofpoint.com/us/threat-insight/post/threat-actor-profile-ta505-dridex-globeimposter

3/9

The group has been using the FlawedAmmyy remote access tool since spring 2018 and the
new ServHelper backdoor since the end of 2018. TA505 is among the few groups that can
boast of continuous activity over a long timeframe. Moreover, each new wave of attacks
shows interesting changes in the group's tools.

TA505 detections by month, 2019
Such a high clip of attacks cannot stay invisible: our colleagues at companies including
Proofpoint, Trend Micro, and Yoroi have already reported on the techniques and malicious
software used by TA505. However, many intriguing issues still remain unaddressed:

The PE packer unique to the group
A version of the ServHelper backdoor that, instead of custom-developed functionality,
relies on NetsupportManager remote control software

https://www.proofpoint.com/us/threat-insight/post/ta505-shifts-times
https://blog.trendmicro.com/trendlabs-security-intelligence/shifting-tactics-breaking-down-ta505-groups-use-of-html-rats-and-other-techniques-in-latest-campaigns/
https://blog.yoroi.company/research/ta505-is-expanding-its-operations/

4/9

Network infrastructure: registrars and hosting providers, including overlap with
infrastructure of the Buhtrap group
Other malware used by the group not covered previously

This is the first article of a series about the TA505 group.

Part 1. In the beginning was the packer

In mid-June 2019, we saw new variants of FlawedAmmy malware loaders with significant
changes from previous versions. For example, the visual representation of code in
hexadecimal was different. This pattern became a common theme in several samples that
we analyzed.

 ASCII code representation

Quick analysis showed that we were looking at an unknown packer of executable files. Later
we found that this packer was used not only for the loaders in question, but for other TA505
malware, including payload. We decided to explore the unpacking logic in order to be able to
automatically extract the contents.

Layer 1. Tricky XOR

The key portion of the unpacker is preceded by a large number of junk instructions. Malware
developers often use this technique to evade antivirus emulators. The interesting part starts
when 0xD20 of buffer memory is allocated using the WinAPI function VirtualAllocEx. Memory
is allocated with PAGE_EXECUTE_READWRITE rights, which allow writing and executing
code.

5/9

 Start of the non-junk part of the

unpacker
The data section of the file contains an array. The contents of the array are decoded and the
result is written to the allocated memory. Here is the decoding process:

Interpret 4 bytes as integer.
Subtract the order number of the byte in the sequence.
Perform XOR with a set constant.
Perform a circular shift to the left by 7 positions.
Perform XOR with set constant again.

 First-layer decoding

We'll call the algorithm SUB-XOR-ROL7-XOR when referring to it later.

Decoding is followed by sequential initialization of variables. This can be represented as
declaring a C struct in the following format:

 struct ZOZ {
 HMODULE hkernel32;
 void *aEncodedBlob;
 unsigned int nEncodedBlobSize;
 unsigned int nBlobMagic;
 unsigned int nBlobSize;
 };

in which:

hkernel32 describes the library kernel32.dll.
aEncodedBlob is a pointer to the encoded block of data we were talking about when
noting the visual similarity of the samples.

6/9

 Encoded data block

nEncodedBlobSize is the 4-byte size of the encoded data block.
nBlobMagic is a 4-byte constant ahead of the data block, to which we will return later
on.
nBlobSize is the 4-byte size of the decoded data block.

We called the struct ZOZ (or "505" in l33t speak).

 Populating ZOZ

Code execution jumps to the decoded buffer (removing any doubt that the now-decoded data
consists of executable code) and a pointer to the populated struct is passed in a function
argument:

 Calling the decoded code, with the ZOZ

struct passed as an argument

7/9

 Decoded and

disassembled code portion

Layer 2. Less is more

Once the portion of code is decoded and run, it starts gathering addresses of the WinAPI
functions GetProcAddress, VirtualQuery, VirtualAlloc, VirtualProtect, VirtualFree, and
LoadLibraryA. These functions are often used with shellcodes, in order to groom memory to
run the payload.

When everything is ready, the encoded data block is passed and then "slimmed down." The
first two of each five bytes are discarded and the remaining three are kept:

 Reduction of the encoded data block

Then starts the decoding, which we have called SUB-XOR-ROL7-XOR. To perform XOR, the
nBlobMagic value passed in ZOZ is used as a constant.

 Reuse of the SUB-XOR-
ROL7-XOR algorithm
After that, the resulting array is passed to a function in which more complicated
transformations take place. Judging by the characteristic constant values, we can easily
identify a popular FSG (Fast Small Good) PE packer. Curiously enough, the original FSG

https://opensource.apple.com/source/SpamAssassin/SpamAssassin-124.3/clamav/libclamav/fsg.c

8/9

packer version compresses PE by sections, whereas in our case the algorithm works with
the PE as-is.

 FSG packer implementation

At this stage, the memory contains the unpacked PE file ready for further analysis. The
remaining part of the shellcode will overwrite the original PE in the address space with the
unpacked version and will then run it correctly. Interestingly, during modification of the
module entry point, there are manipulations involving PEB structures. We do not know why
the attackers decided to forward the kernel32 descriptor from the first-layer logic instead of
getting it with the help of the same PEB structures.

 Entry point for the loaded module is

overwritten in PEB

Conclusion

The payload is unpacked as follows:

Decode shellcode with SUB-XOR-ROL7-XOR.
Populate the ZOZ struct and call the shellcode.
Slim payload (five to three).
Decode payload with SUB-XOR-ROL7-XOR.
Decompress with FSG packer.

9/9

As the malware evolved, so did its logic: the SUB-XOR-ROL7-XOR circular shift (in our
case, by seven positions) has been changed to five and nine positions and an x64 packer
version was released, among other changes. The cybergang's "calling card" packer is an
excellent start to a series of upcoming tales about TA505 tools and techniques.

In future articles, we will discuss how the group's tools have changed during recent attacks
and how its participants have interacted with other cybergroups. We will also explore
malware samples not covered before.

Authors: Alexey Vishnyakov and Stanislav Rakovsky, Positive Technologies

IOCs

b635c11efdf4dc2119fa002f73a9df7b (packed FlawedAmmyy loader)

71b183a44f755ca170fc2e29b05b64d5 (unpacked FlawedAmmyy loader)

