
1/21

May 13, 2020

Ramsay: A cyber‑espionage toolkit tailored for air‑gapped networks
welivesecurity.com/2020/05/13/ramsay-cyberespionage-toolkit-airgapped-networks/

ESET researchers uncover several instances of malware that uses various attack vectors to target systems isolated by an air gap

Ignacio Sanmillan
13 May 2020 - 11:30AM

ESET researchers uncover several instances of malware that uses various attack vectors to target systems isolated by an air gap

ESET researchers have discovered a previously unreported cyber-espionage framework that we named Ramsay and that is tailored
for collection and exfiltration of sensitive documents and is capable of operating within air‑gapped networks.

We initially found an instance of Ramsay in VirusTotal. That sample was uploaded from Japan and led us to the discovery of further
components and versions of the framework, along with substantial evidence to conclude that this framework is at a developmental
stage, with its delivery vectors still undergoing fine-tuning.

The current visibility of targets is low; based on ESET’s telemetry, few victims have been discovered to date. We believe this scarcity
of victims reinforces the hypothesis that this framework is under an ongoing development process, although the low visibility of victims
could also be due to the nature of targeted systems being in air‑gapped networks.

Shared artifacts were found alongside the Retro backdoor. This malware has been associated with Darkhotel, a notorious APT group
known to have conducted cyber-espionage operations since at least 2004, having targeted government entities in China and Japan in
the past.

Attack vectors

Along with the discovery of the different instances of Ramsay, we found they were leveraged using a series of attack vectors. These
are:

https://www.welivesecurity.com/2020/05/13/ramsay-cyberespionage-toolkit-airgapped-networks/
https://www.welivesecurity.com/author/isanmillan/
https://www.welivesecurity.com/author/isanmillan/
https://blog.360totalsecurity.com/en/analysis-cve-2018-8174-vbscript-0day-apt-actor-related-office-targeted-attack/
https://attack.mitre.org/groups/G0012/
https://blogs.360.cn/post/apt-c-06_0day.html
https://blogs.jpcert.or.jp/en/2020/04/ie-firefox-0day.html

2/21

Figure 1. Overview of discovered Ramsay versions

Malicious documents dropping Ramsay version 1

This attack vector consists of malicious documents exploiting CVE-2017-0199 intended to drop an older version of Ramsay.

This document delivers an initial Visual Basic Script, shown in the screenshot below as OfficeTemporary.sct, that will extract within the
document’s body the Ramsay agent, masquerading as a JPG image by having a base64-encoded PE under a JPG header.

ID Index OLE Object

0 0x80c8 Format_id: 2 (Embedded)
 Class name: ‘Package’

 Data size: 8994
 OLE Package object:

 Filename: u‘OfficeTemporary.sct’
 Source path: u‘C:\\Intel\\OfficeTemporary.sct’

 Temp path = u:‘C\\Intel\\OfficeTemporary.sct’
 MD5 = ‘cf133c06180f130c471c95b3a4ebd7a5’

 EXECUTABLE FILE

1 0xc798 Format_id: 2 (Embedded)
 Class name: ‘OLE2Link’

 Data size: 2560
 MD5 = ‘daee337d42fba92badbea2a4e085f73f’

 CLSID: 00000300-0000-0000-C000-000000000046
 StdOleLink (embedded OLE object - known related to CVE-2017-0199, CVE-2017-8570, CVE-2017-8759 or CVE-

2018-8174.
 Possibly an exploit for the OLE2Link vulnerability (VU#921560, CVE-2017-0199)

Table 1. OLE object layout contained within Ramsay version 1 RTF file as seen by oletools

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-1-2.png
https://www.cvedetails.com/cve/CVE-2017-0199/

3/21

We noticed that the specific Ramsay instance dropped by these documents showed low complexity in its implementation and lacked
many of the more advanced features seen leveraged by later Ramsay versions.

Several instances of these same malicious documents were found uploaded to public sandbox engines, labeled as testing artifacts
such as ‘access_test.docx’ or ‘Test.docx’ denoting an ongoing effort for trial of this specific attack vector.

Based on the low complexity of the Ramsay agent delivered, the threat actors may be embedding this specific instance within these
malicious documents for evaluation purposes.

Decoy installer dropping Ramsay version 2.a

We found one instance uploaded to VirusTotal of Ramsay masquerading as a 7zip installer.

The reason we named this malware Ramsay was due to some of the strings contained in this binary, such as the following:

Figure 2. Strings containing “Ramsay”

This version of Ramsay shows a clear refinement of its evasion and persistence tactics along with the introduction of new features
such as a Spreader component and a rootkit; the Spreader component is documented more thoroughly in this part of the Capabilities
section.

Malicious documents dropping Ramsay version 2.b

This attack vector consists of the delivery of a different malicious document abusing CVE-2017-11882. This document will drop a
Ramsay Installer named lmsch.exe as shown in Table 2.

ID Index OLE Object

0 0x80c8 Format_id: 2 (Embedded)
 Class name: ‘Package’

 Data size: 644790
 OLE Package object:

 Filename: u‘lmsch.exe’
 Source path: u‘C:\\fakepath\\lmsch.exe’

 Temp path = u:‘C:\\fakepath\\lmsch.exe’
 MD5 = ‘27cd5b330a93d891bdcbd08050a5a6e1’

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-3-1.png
https://www.cvedetails.com/cve/CVE-2017-11882/

4/21

ID Index OLE Object

1 0xc798 Format_id: 2 (Embedded)
 Class name: ‘Equation.3’

 Data size: 3584
 MD5 = ‘5ae434c951b106d63d79c98b1a95e99d’

 CLSID: 0002CE02-0000-0000-C000-000000000046
 Microsoft Equation 3.0 (Known related to CVE-2017-11882 or CVE-2018-0802)

 Possibly an exploit for the Equation Editor vulnerability (VU#421280, CVE-2017-11882)

Table 2. OLE object layout contained within Ramsay version 2.b RTF file as seen by oletools

The Ramsay version leveraged by this document is a slightly modified version of Ramsay version 2.a, with the main difference of not
leveraging the spreader component. The functionality of the remaining components is the same in regard to Ramsay version 2.a.

Client Execution of Infected Files

As previously mentioned, Ramsay Version 2.a delivers a Spreader component that will behave as a file infector, changing the structure
of benign PE executable files held within removable and network shared drives in order to embed malicious Ramsay artifacts triggered
on host file execution.

The Spreader is highly aggressive in its propagation mechanism and any PE executables residing in the targeted drives would be
candidates for infection.

Based on compilation timestamps among the components of the various versions of Ramsay found, we can estimate the following
development timeline of this framework:

Figure 3. Estimation of Ramsay’s development timeline

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-5-1.png

5/21

The analysis of the different compilation timestamps found across different components implies that this framework has been under
development since late 2019, with the possibility of currently having two maintained versions tailored based on the configuration of
different targets.

Persistence mechanisms

Based on its version, Ramsay implements various persistence mechanisms of different complexity. Some of these persistence
mechanisms are the following:

AppInit DLL registry key

The Windows operating system provides the functionality to allow custom DLLs to be loaded into the address space of almost all
application processes via AppInit DLL registry key. This technique is not particularly complex; it is implemented in early Ramsay
versions and is common in other malware families.

Scheduled Task via COM API

Scheduled tasks enable administrators to run tasks or “jobs” at designated times rather than every time the system is booted or the
user logs in. This feature can be implemented via the Windows COM API, which the first versions of Ramsay have tailored. Based on
the high ratio of similarity with Carberp’s implementation, it’s highly probable that Ramsay’s implementation was adapted from
Carberp’s publicly available source code.

Phantom DLL Hijacking

More mature versions of Ramsay denote an increase in complexity of its persistence techniques, which include a technique
sometimes referred to as “Phantom DLL Hijacking”.

Phantom DLL Hijacking abuses the fact that many Windows applications use outdated dependencies not strictly necessary for the
functionality of the application itself, allowing the possibility of leveraging malicious versions of these dependencies.

Two services will be targeted in order to enforce this technique. These are:

WSearch (Windows Search) hijacking msfte.dll:

https://raw.githubusercontent.com/hzeroo/Carberp/master/source%20-%20absource/pro/all%20source/schtasks/schtasks.cpp

6/21

Figure 4. Hijacking of Microsoft Search Service msfte.dll

MSDTC (Microsoft Distributed Transaction Coordinator) service hijacking an oracle dependency seen below as oci.dll:

Figure 5. Hijacking of MSDTC service dependency oci.dll

This persistence technique is highly versatile, enabling Ramsay agents delivered as DLLs to fragment their logic into separated
sections, implementing different functionality tailored for the subject processes where the agent will be loaded. In addition, the use of
this technique makes detection more difficult since the loading of these DLLs into their respective processes/services won’t
necessarily trigger an alert.

Capabilities

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-6.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-7.png

7/21

Ramsay’s architecture provides a series of capabilities monitored via a logging mechanism intended to assist operators by supplying a
feed of actionable intelligence to conduct exfiltration, control, and lateral movement actions, as well as providing overall behavioral and
system statistics of each compromised system. The realization of these actions is possible due to the following capabilities:

File collection and covert storage

The primary goal of this framework is to collect all existing Microsoft Word documents within the target’s filesystem. The overall
collection stages are shown in Figure 6:

Figure 6. Mechanism of document collection

Word documents will first be collected and stored in a preliminary collection directory. The location of this directory may vary
depending on the Ramsay version. Two of the directories we observed being used for this purpose were
%APPDATA%\Microsoft\UserSetting and %APPDATA%\Microsoft\UserSetting\MediaCache.

Depending on the Ramsay version, file collection won’t be restricted to the local system drive, but also will search additional drives
such as network or removable drives:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-8.png

8/21

Figure 7. Hex-Rays output of procedure to scan removable drives for collection

Figure 8. Hex-Rays output of procedure to scan network drives for collection

Collected documents are encrypted using the RC4 Stream Cipher Algorithm.

The RC4 key used to encrypt each file will be a computed MD5 hash of a randomly generated sequence of 16 bytes, salted with 16
bytes hardcoded in the malware sample. The first 16 bytes of the buffer where the encrypted file will be held will correspond to the
actual RC4 key used:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-9.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-10.png

9/21

Figure 9. Hex-Rays output of RC4 key generation and storage

Collected files under the preliminary collection directory will be compressed using a WinRAR instance that the Ramsay Installer drops.
This compressed archive will be saved within the preliminary collection directory and then generate a Ramsay container artifact:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-11.png
http://wintertechsolutions.weebly.com/blog/winrar

10/21

Figure 10. Hex-Rays output of Ramsay container generation

As shown in the previous screenshot, these Ramsay containers contain a magic value at the beginning of the file, along with a
Hardware Profile GUID denoting an identifier of the victim’s machine; an additional XOR-based encryption layer will be applied to the
generated compressed archive. The following diagram shows the structure of these artifacts:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-12.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-13.png

11/21

Figure 11. Ramsay Container Structure<{i>

Ramsay implements a decentralized way of storing these artifacts among the victim’s file system by using inline hooks applied on two
Windows API functions, WriteFile and CloseHandle.

The hooked WriteFile procedure’s main purpose is to save the file handle of the subject file to write and install another hook in the
CloseHandle API function. The CloseHandle hooked procedure will then check whether the subject file name has a .doc extension; if
that’s the case, it will then append at the end of the subject document the Ramsay container artifact followed by a stream of 1024
bytes denoting a Microsoft Word document footer.

This is done as an evasion measure in order to provide a means to hide the embedded artifact within the subject document from the
naked eye:

Figure 12. Hex-Rays output of code for appending Word document footer at the end of the target document

Ramsay containers appended to Word documents will be marked in order to avoid redundant artifacts being appended to already
affected documents and the preliminary storage directory will be cleared in order to generate a brand-new Ramsay artifact in intervals.

Even though affected documents will be modified, it won’t impact their integrity; each affected Word document remains fully
operational after artifact appending has taken place.

Exfiltration of these artifacts is done via an external component that we haven’t been able to retrieve. However, based on the
decentralized methodology Ramsay implements for storage of collected artifacts, we believe this component would scan the victim’s
file system in search for the Ramsay container’s magic values, in order to identify the location of artifacts to exfiltrate.

Command execution

Unlike most conventional malware, Ramsay does not have a network-based C&C communication protocol nor does it make any
attempt to connect to a remote host for communication purposes. Ramsay’s control protocol follows the same decentralized
philosophy implemented for collected artifact storage.

Ramsay will scan all the network shares and removable drives (excluding A: and B: drives usually reserved for floppy disks) for
potential control files. First, Ramsay looks for Word documents and also, in more recent versions, for PDFs and ZIP archives:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-14.png

12/21

Figure 13. Hex-Rays output of Ramsay Scan procedure for Control File retrieval

These files are parsed for the presence of a magic marker specific to the control file format. More specifically, Ramsay looks for any of
two given encoded Hardware Profile GUIDs. One of these GUIDs is hardcoded as shown in Figure 14, while the other is dynamically
generated based on the compromised victim’s machine. If any of the subject identifiers are found, parsing for a command signature
will be attempted.

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-15.png

13/21

Figure 14. Hex-Rays output of Ramsay Control File Parsing

The search for these two GUID instances implies that Ramsay’s control documents can be deliberately crafted to be “victim agnostic”,
capable of deploying the same control document instance across a number of victims by leveraging a “global” GUID within control
documents. On the other hand, control documents can be crafted by embedding a specific GUID intended to be delivered exclusively
on a single victim’s machine. This indicator of Ramsay’s control protocol implementation implies that its backend counterpart may be
somewhat automated.

Ramsay control protocol supports three different commands:

Signature Command

Rr*e#R79m3QNU3Sy File Execution

CNDkS_&pgaU#7Yg9 DLL Load

2DWcdSqcv3?(XYqT Batch Execution

Table 3. Ramsay’s control commands

After a given command signature is retrieved, the contained artifact to execute will be extracted within the control document’s body to
then be restored, modifying the subject control document to its original form after command execution.

Spreading

Among the different files dropped by the latest versions of Ramsay we find a Spreader component. This executable will attempt to
scan for network shares and removable drives excluding A: and B: drives:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-16.png

14/21

Figure 15. Hex-Rays output of spreader scanning routines

It is important to notice that there is a correlation between the target drives Ramsay scans for propagation and control document
retrieval. This assesses the relationship between Ramsay’s spreading and control capabilities showing how Ramsay’s operators
leverage the framework for lateral movement, denoting the likelihood that this framework has been designed to operate within air-
gapped networks.

The propagation technique mainly consists of file infection much like a prepender file infector in order to generate executables similar
in structure to Ramsay’s decoy installers for every accessible PE file within the aforementioned targeted drives. The following diagram
illustrates the changes applied to targeted executables after infection has taken place and how these components interact on
execution:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-18.png

15/21

Figure 16. File structure changes during an infection and execution

All of the different artifacts involved in the infection stage are either within the context of the spreader or dropped previously by another
Ramsay component. Some of the artifacts are parsed for the following tokens:

Figure 17. Hex-Rays output of tokens to search for different artifacts within the spreader context

After a given file has been infected, it will be marked by writing a specific token at the end of it in order to provide the spreader an
identifier to prevent redundant infection.

In addition, some components of Ramsay have implemented a network scanner intended for the discovery of machines within the
compromised host’s subnet that are susceptible to the EternalBlue SMBv1 vulnerability. This information will be contained within all
logged information Ramsay collects and may be leveraged by operators in order to do further lateral movement over the network in a
later stage via a different channel.

Further remarks

Ramsay’s version 2.a Spreader component was found to have reused a series of tokens seen before in Darkhotel’s Retro Backdoor.
These tokens are the following:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-19.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-20.png
https://www.cvedetails.com/cve/CVE-2017-0143/
https://s.tencent.com/research/report/741.html

16/21

Figure 18. Hex-Rays output of Token Reuse with Retro

Figure 19. Token Reuse on Retro URL Crafting

Ramsay serializes victims using the GetCurrentHwProfile API to then retrieve a GUID for the specific victim’s machine. This is also
seen implemented in Retro. They both use the same default GUID in case the API call fails:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-21.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-22.png

17/21

Figure 20. Ramsay and Retro GUID generation

Both Ramsay and Retro share the same encoding algorithm to encode the retrieved GUID.

Figure 21. Ramsay and Retro GUID encoding scheme

The GUID retrieved by GetCurrentHwProfile is specific for the system’s hardware but not for the user or PC instance. Therefore, it is
likely that by just leveraging this GUID operators may encounter duplicates intended to serialize different victims.

The purpose of this scheme is to generate a GUID that is less likely to be duplicate-prone by ‘salting’ it with the machine’s ethernet
adapter address. This implies that Retro and Ramsay share the same scheme to generate unique identifiers.

We also found similarities in the way Ramsay and Retro saved some of their log files, sharing a similar filename convention:

https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-23.png
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-24.png

18/21

Figure 22. Some of Ramsay and Retro filename convention

Is important to highlight that among Retro’s documented techniques, it leverages malicious instances of msfte.dll, oci.dll and
lame_enc.dll, and via Phantom DLL Hijacking. As previously documented, Ramsay also uses this technique in some of its versions
also using msfte.dll and oci.dll.

In addition, we also observed similarities among Ramsay and Retro in regard to the open-source tools used among their toolsets, such
as leveraging UACMe for privilege escalation and ImprovedReflectiveDLLInjection for deploying some of their components.

Finally, we noticed Korean language metadata within the malicious documents leveraged by Ramsay, denoting the use of Korean-
based templates.

Figure 23. Malicious document metadata showing the Korean word “title”

Conclusion

Based on the different instances of the framework found, Ramsay has gone through various development stages, denoting an
increasing progression in the number and complexity of its capabilities.

https://www.welivesecurity.com/wp-content/uploads/2020/05/figure-25.png
https://blog.360totalsecurity.com/en/analysis-cve-2018-8174-vbscript-0day-apt-actor-related-office-targeted-attack/
https://s.tencent.com/research/report/741.html
https://github.com/hfiref0x/UACME
https://github.com/dismantl/ImprovedReflectiveDLLInjection/
https://www.welivesecurity.com/wp-content/uploads/2020/05/Figure-26.png

19/21

Developers in charge of attack vectors seem to be trying various approaches such as old exploits for Word vulnerabilities from 2017
as well as deploying trojanized applications.

We interpret this as that developers have a prior understanding of the victims’ environment and are tailoring attack vectors that would
successfully intrude into targeted systems without the need to waste unnecessary resources.

Some stages of Ramsay’s framework are still under evaluation, which could explain the current low visibility of victims, having in mind
that Ramsay’s intended targets may be under air-gapped networks, which would also impact victim visibility.

We will continue monitoring new Ramsay activities and will publish relevant information on our blog. For any inquiries, contact us as
threatintel@eset.com. Indicators of Compromise can also be found in our GitHub repository.

Indicators of Compromise (IoCs)

SHA-1 ESET detection name Comments

f79da0d8bb1267f9906fad1111bd929a41b18c03 Win32/TrojanDropper.Agent.SHN Initial Installer

62d2cc1f6eedba2f35a55beb96cd59a0a6c66880 Win32/Ramsay.A Installer Launcher

baa20ce99089fc35179802a0cc1149f929bdf0fa Win32/HackTool.UACMe.T UAC Bypass Module

5c482bb8623329d4764492ff78b4fbc673b2ef23 Win32/HackTool.UACMe.T UAC Bypass Module

e7987627200d542bb30d6f2386997f668b8a928c Win32/TrojanDropper.Agent.SHM Spreader

3bb205698e89955b4bd07a8a7de3fc75f1cb5cde Win32/TrojanDropper.Agent.SHN Malware Installer

bd8d0143ec75ef4c369f341c2786facbd9f73256 Win32/HideProc.M HideDriver Rootkit

7d85b163d19942bb8d047793ff78ea728da19870 Win32/HideProc.M HideDriver Rootkit

3849e01bff610d155a3153c897bb662f5527c04c Win64/HackTool.Inject.A Darkhotel Retro Backdoor Loader

50eb291fc37fe05f9e55140b98b68d77bd61149e Win32/Ramsay.B Ramsay Initial Installer (version 2.b)

87ef7bf00fe6aa928c111c472e2472d2cb047eae Win32/Exploit.CVE-2017-
11882.H

RTF file that drops
50eb291fc37fe05f9e55140b98b68d77bd61149e

5a5738e2ec8af9f5400952be923e55a5780a8c55 Win32/Ramsay.C Ramsay Agent DLL (32bits)

19bf019fc0bf44828378f008332430a080871274 Win32/Ramsay.C Ramsay Agent EXE (32bits)

bd97b31998e9d673661ea5697fe436efe026cba1 Win32/Ramsay.C Ramsay Agent DLL (32bits)

eb69b45faf3be0135f44293bc95f06dad73bc562 Win32/Ramsay.C Ramsay Agent DLL (32bits)

f74d86b6e9bd105ab65f2af10d60c4074b8044c9 Win64/Ramsay.C Ramsay Agent DLL (64bits)

ae722a90098d1c95829480e056ef8fd4a98eedd7 Win64/Ramsay.C Ramsay Agent DLL (64bits)

MITRE ATT&CK techniques

Tactic ID Name Description

Initial
Access

T1091 Replication Through Removable Media Ramsay’s spreading mechanism is done via
removable drives.

Execution T1106 Execution through API Ramsay’s embedded components are
executed via CreateProcessA and
ShellExecute .

T1129 Execution
through Module
Load

Ramsay agent can be delivered as a DLL.

T1203 Exploitation for
Client Execution

Ramsay attack vectors exploit CVE-2017-1188 or
CVE-2017-0199.

T1035 Service
Execution

Ramsay components can be executed as service
dependencies.

https://github.com/eset/malware-ioc
https://attack.mitre.org/techniques/T1091/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org/techniques/T1035/

20/21

Tactic ID Name Description

T1204 User Execution Ramsay Spreader component infects files within
the file system.

Persistence T1103 AppInit DLLs Ramsay can use this registry key for
persistence.

T1050 New Service Ramsay components can be executed as service
dependencies.

T1053 Scheduled Task Ramsay sets a scheduled task to persist after
reboot.

Privilege
Escalation

T1088 Bypass User Account Control Ramsay drops UACMe instances for privilege
escalation.

Defense
Evasion

T1038 DLL Order Hijacking Ramsay agents will masquerade as service
dependencies leveraging Phantom DLL
Hijacking.

T1107 File Deletion Ramsay installer is deleted after execution.

T1055 Process Injection Ramsay’s agent is injected into various
processes.

T1045 Software Packing Ramsay installer may be packed with UPX.

Discovery T1083 File and Directory Discovery Ramsay agent scans for files and directories
on the system drive.

T1057 Process
Discovery

Ramsay will attempt to find if host is already
compromised by checking the existence of
specific processes.

Lateral
Movement

T1210 Exploitation of Remote Services Ramsay network scanner may scan the
host’s subnet to find targets vulnerable to
EternalBlue.

T1105 Remote File
Copy

Ramsay attempts to infect files on network
shares.

T1091 Replication
Through
Removable
Media

Ramsay attempts to infect files on removable
drives.

Collection T1119 Automated Collection Ramsay agent collects files in intervals.

T1005 Data from Local
System

Ramsay agent scans files on system drive.

T1039 Data from
Network Shared
Drive

Ramsay agent scans files on network shares.

T1025 Data from
Removable
Media

Ramsay agent scans files on removable drives.

T1113 Screen Capture Ramsay agent may generate and collect
screenshots.

Command
and Control

T1092 Communication Through Removable Media Ramsay agent scans for control files for its
file-based communication protocol on
removable drives.

T1094 Custom
Command and
Control Protocol

Ramsay implements a custom, file-based C&C
protocol.

Exfiltration T1002 Data Compressed Ramsay agent compresses its collection
directory.

13 May 2020 - 11:30AM

https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1103/
https://attack.mitre.org/techniques/T1050/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1088/
https://attack.mitre.org/techniques/T1038/
https://attack.mitre.org/techniques/T1107/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1045/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1210/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1091/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1039/
https://attack.mitre.org/techniques/T1025/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1092/
https://attack.mitre.org/techniques/T1094/
https://attack.mitre.org/techniques/T1002/

21/21

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis – Digital Security
Resource Center

Newsletter

Discussion

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

