Zeus Sphinx Back in Business: Some Core Modifications
Arise

@ securityintelligence.com/posts/zeus-sphinx-back-in-business-some-core-modifications-arise/

-

Malware May 11, 2020
By Nir Shwarts co-authored by Limor Kessem 8 min read

1/15

https://securityintelligence.com/posts/zeus-sphinx-back-in-business-some-core-modifications-arise/
https://securityintelligence.com/category/x-force/malware-threat/
https://securityintelligence.com/author/nir-shwarts/
https://securityintelligence.com/author/limor-kessem/

The Zeus Sphinx banking Trojan is financial malware that was built upon the existing and
leaked codebase of the forefather of many other Trojans in this class: Zeus v2.0.8.9. Over
the years, Sphinx has been in different hands, initially offered as a commodity in
underground forums and then suspected to be operated by various closed gangs.

After a lengthy hiatus, this malware began stepping_up attack campaigns starting in late 2019
and increased its spreading power in the first quarter of 2020 via malspam featuring
coronavirus relief payment updates.

With Sphinx back in the financial cybercrime arena, IBM X-Force wrote the following
technical analysis of the Sphinx Trojan’s current version, which was first released into the
wild in late 2019. We will be covering the following components, shedding light on parts of
the malware that were modified in this version, as other parts likely remained the same:

e Persistence mechanism
Injection tactics

Bot configuration

Hidden configuration nuggets
Bot identification method
Sphinx’s naming algorithms

Let's dive in.

Establishing Persistence

Almost any malware nowadays seeks to establish persistence on infected devices, both
desktop and mobile, with the goal of surviving system reboots. Sphinx establishes
persistence using a very common method: adding a Run key to the Windows Registry. This
tactic has been used by Sphinx since its earliest versions, released in 2015.

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

abiByvchad : REG 57 C:\Users' \AppData\Reaming\Guubd\uhhod.exe

Figure 1: Run key set for Sphinx’s executable payload

Since Sphinx’s malicious payload can come in two different formats, an executable file or a
dynamic link library (DLL), it also sets the Registry Run key according to the format being
installed. For the DLL format, we would see the following string type created:

.f‘_'il Ciuhifa REG_5Z rundll32.exe CA\Usersh vAppData\RoamingtAfbetyffyafu.dll, DlIIRegisterServer

Figure 2: Run key set for a Sphinx DLL

2/15

https://securityintelligence.com/uk-banks-hit-with-new-zeus-sphinx-variant-and-renewed-kronos-banking-trojan-attacks/
https://securityintelligence.com/zeus-sphinx-pushes-empty-configuration-files-what-has-the-sphinx-got-cooking/
https://securityintelligence.com/posts/zeus-sphinx-trojan-awakens-amidst-coronavirus-spam-frenzy/

The malicious DLL'’s entry point is named DIIRegisterServer, which is usually an entry point
for a COM module. When malware elects to use generic system names for its resources, it is
done to blend in with the other benign elements in the operating system (OS).

Sphinx’s Code Injection Choice: Process Injection

Since its main function is to grab user credentials and other personal information from online
banking sessions, Zeus Sphinx is designed with the ability to hook browser functions. Before
gaining the ability to hook these types of functions, Sphinx has to ensure its stealthy ongoing
operations on the OS. It does this by injecting malicious code into other processes first.

The tactic Sphinx uses is a process injection technique:

1. Sphinx calls on the CreateProcessA function, which creates a new process and its
primary thread. The function’s parameters are msiexec.exe for the new process name
and the suspend flag applied as the process state. This is another part of the
malware’s stealth mechanism, as msiexec.exe usually stands for the name of a
legitimate Windows Installer process that is responsible for installation, storage and
removal of programs.

Disassemnbly
Offset @S=copeip

A48 cBe 8d4dh8 lea ecx,. [ebp—48h1l

AA4d8c?1 51 puszh BCX

AA4d8c?2 57 push edi

A84l8c?3 6adll puszh A

AA4d8c?5 6adld push A

A84@8c?? S5H puszh Bax

AA4d8c?8 6all@ push A

AA4l8c?a 6adl puszh A

AA4d8c?c 6al@ push A

AA488c?e 53 puszh ehx

NN408cz9f calb0 pu=h 1]

N0408zal ffde Ca 21

BA488cal baBl push

AA4d8cab 5@ push Bax

BA488cab eBchB2Ei100 call image 30400000 +@:1 878 (0041 8f 78>
AA4d8cah 83c4B8 add esp. 8

B3488cae aBBi test al. 1

B8488chB Bf 8403040000 Je image 38400006 +8x70hT? (B040780h7 >
B3488cht ff75el push dvord ptr [ebp—18hl
B8488ch? eB8c2ddffff call image 30400000 +8x6a880 (004862808
B3488che 83c4i4 add esp,.4

AR4AAR -1 RY45a0 mina Amnwd ntw Teahn—14h1l sraw
| Disassembly | Scratch Pad

Command

A:008> dd esp

BA12f8cl OO0EEEEE G01Z2f8e8 OOOAAAAR AAAAAARAA

BA12f8d8 BP0PPPEEE BEEE0E4 GO00ARAA ARRRRRRA

BA12f8el B@12fecld BO1Z2FfFf40 6569736d 2eb636578

BA12f8f8 B8657865 01270000 OOOOOOAA AAABRRRA

BA12f7800 B@029d6d0 B15558e6 O012f8e8 A0AAAAAA

Ba12f718 B@@12f9f4 M/4aellS BB@3ecSa? fffffffe

BA12£2280 7556152 Y/51adba 80290000 50000163

BA12£738 774e5d6d T7622205 00294684 A0000BH0A

A:000> da 12f8e8

BA12f8ef “mziexec.exe'

3/15

Figure 3: Sphinx’s process injection

1. It calls the WriteProcessMemory function to inject a payload into the msiexec.exe
process.

2. Next, Sphinx changes the execution point of the targeted process to start from the
injected payload, using GetThreadContext and SetThreadContext functions.
GetThreadContext is used to get the current extended instruction pointer of the remote
process. SetThreadContext is used to set the current extended instruction pointer of
the remote process.

The extended instruction pointer holds the address of the next instruction.

PR512ad7 Sé push esi
P0512ad8 ff75d0 ous h dword ptr [=bp-30hl]
AR 0 ca 15et

(Al) a

1) uls xor ebpx, ebx

puslZadf 83f801 cmp eax, 1l

1Z7aeZ Bf95c3 setne bl

1Z2ae5S 68e84dladd push D 1A4DESKH

1Z2zea 6add PuUs %]
S 1Zaec e87F 300100 call b7f 3b8c8e8+x26070 (BAS26071)
A512af 1 83c428 add esp, 8
s51Z2af 4 8Bdddec lea ecx.[ebp-14h]
Disassembly I Scratch Pad |
“ommand

D: 900> da esp+8
R14f 778 "msiexec.exe"

Figure 4: Sphinx’s process injection

Bot Configuration

The bot’s encrypted configuration is embedded within the injected executable in
msiexec.exe.

What makes it rather easy to decrypt is that both the configuration and its decryption key
reside near each other in a hardcoded address location. The following function decrypts the
configuration using the hardcoded addresses of each component:

4/15

segoeo.:
segoeo.:
segoeo.:
segoeo.:
segoeo.:
segoeo.:
segeeo:
segoeo:
segoeo:
segoeo.:
:080777D8

segeeo

segoeo.:
segoeo:
segoeo.:
segeeo:
segoeo.:
segoeo.:
segoeo.:
segeeo:
segoeo.:
segoeo:
segoeo.:
segoeo:
segoeo.:
segoeo.:
segoeo.:
segoeo:
segoeo.:

eee777Ce
eee777Ce
eee777C1l
eee777C3
eee777C4
eee777C5
eee777C7
eee777CC
eee777D2
eee777D3

eee777DB
eee777Ee
eee777ES
©eee777ES8
eee777EA
eee777EF
©ee777F2
©ee777F3
eee777F4
eee777F5
eee777FA
©ee777FF
00077802
0077803
00077804
000877805
000877805

decrypt_configuration proc near

push
mov
push
push
mov
push
push
push
call
add
push
call
add
mov
call
movzx
push
push
push
push
call
add
pop
pop
pop
retn

ebp
ebp, esp
edi
esi
esi, ecx
2EBh

; Sl1Ze

dword ptr ds:config ; Source

ecx
copy_str
esp, ©ch
key
get_len_
esp, 4
edi, eax
sub_83776
ecx, di
eax

esi

ecx

key

RC4

esp, 16h
esi

edi

ebp

; Destination

; output_size

; encrypted_data
; key_size source
; key

decrypt_configuration endp

Figure 5: Bot configuration decryption process

Let’s take a look at the main components of a January 2020 campaign configuration. It
began with noting the malware’s variant ID by using Russian language words that translate

to “2020 Upgrade” (obnovlenie2020).

Next, we see the attacker’s command-and-control (C&C) server domain list. Sphinx does not
use a domain generation algorithm (DGA).

These elements can help defenders better protect networks against Sphinx infections by
monitoring or blocking any communications to the listed C&C servers. The RC4 key itself is
an important element to those looking to analyze the malware since it is the same key that
Sphinx uses to encrypt and decrypt most of its data.

Please note that the key inside the configuration is different from the key used to decrypt the

configuration itself.

In the following image, we can see an example of two different Sphinx configurations.

A0Ref13c
00def 155
00def The
000ef787
000ef7ab
000ef7h9
000ef7d2
Q0defleb
e ins
A0efdld
000ef836
O0RefBiT

000ef868) .
f0nefE81
00efd%
000efib3
B00eflcc
D0fefies
0fefife
000ef91?
A0Ref930
000efI49
A00ef962
0defI7b
d00ef99s
000ef9ad
000ef9ct
000efodf
(561515 S e d 1
fdRefall

Figure 6: Sphinx configuration excerpts from January 2020 Campaign

Taking into consideration the date they first appeared in the wild, similar C&C domains and

the same RC4 key they contain, we can conclude that both configurations are related to the
same campaign. On the left, a configuration fetched by an executable-type payload and on

the right, one fetched by a DLL-type payload — both are from a January 2020 campaign.

Sphinx configurations are modified as campaigns are launched, changing the C&C
addresses and the RC4 keys. In the following image, we can see a newer configuration

obnovlenie?f20....... obno

as1tosaf jasthast . com/gat
e.php..

....... https ffkasfajfsaf
hasfhaf.com/gate, bhp..ﬁ..

ps:/ffdsifidsfidsifdisfh.
com/gate. php.

............ hiiDs ffde]f
ﬂdeJdeSJEJJS .com/gate.p

_https://idisaudhasdhasd
j.comfgate.php., ...
................. https://
dsidisidsadhasdas. comfgat

.php. .
....... https ffdsd]fhdsuf
udhjas.com/gate.php......

................. Saedl|

Similar |
Domain |

List

| Same
RCA Key

fetched from an April 2020 campaign.

PO22F434 Dllobnova.
POZ2FAGE dl lebnovano
POZ2FASE yi .
DO22F464 #7/Fds 31 jdsf ids)
DOZ2FA T djsfh. comigate.p
azeriasd ho.
DOZ2FA]

https
A idsifidsf 1df.'r:|
sja)is. culfﬂate
............ http
s/ fidisoudhasdh
asdj . ::on'aair ph

ps: Hds:d::jd'snd
hazdas . confgate.
php

tps:/d=sd) '[hu:lsuf
wdhjos . confgate,
i

Hips: /fded) Fhdsu
fudhjas. info/gat
e.php

hittps: f/Tdsif jds
fidsdzjaiis. |nfo

it tps:/fidisaud
hazdhasd) . infolg

6/15

.......... https://lgepubbf.icu/w
p-config.php........
........... https://ajvwdjtebb.pw
fwp-config.php..................

Figure 7: A different Sphinx configuration excerpt from an April 2020 campaign

Please note the main differences from the January 2020 configurations: a different RC4 key,
a smaller and different set of C&C domains, a changed variant ID and the precise date of
publish were added.

Bot Identification

Once infected by Sphinx, every device sends information home and is defined in the botnet
by a bot ID to ensure control and updates through the attacker’s server. To do that, Sphinx
uses an algorithm that includes the following elements from the infected device:

e Volume C GUID

o Computer Name

e Windows Version

¢ Windows Install Date
 Digital Product ID

We can see the generated string when we run Sphinx dynamically as well:

7/15

il =

segbo:008079BA5 lea eax, [ebp+var_4DC]
segbBo:0080879BAB push eax

segbev:080879BAC call get_C_volume_GUID
segbe0:00079BB1 add esp, 4
segbeo:000879BB4 lea ecx, [ebp+MachineID]
segbee:00879BBA call create_victim_ID

Figure 8: Sphinx creating Bot ID string

After creating the bot ID, it's encrypted with an RC4 stream cipher using the key derived from
the bot’s configuration and then stored in the Registry with other binary data.

For example, a key created for storing this information:
HKCU\Software\Microsoft\bmqhcn\gwehhxf

The name of the key depends on the variant of the malware and is produced by encoding
some constants.

Looking at the function’s output before the result is encrypted reveals Sphinx’s bot ID layout:

e [VOLUME_C_GUID][COMPUTER_NAME][2EBFF1F4][0ADE2A62]
[VOLUME_C_GUID] - Bot’s volume C GUID

[COMPUTER _NAME] - Bot’s computer name

[2ZEBFF1F4] — A hash of the operating system version.

[0ADE2A62] — A hash of InstallDate and DigitalProductID registry values.

Both hashes mentioned above are computed using a Sphinx internal hash function.

Sphinx’s Naming Algorithms

Malware codes often use a naming algorithm to create different names for files and
resources on each infected device. They do this to evade static detection that might search
for a certain file name as an indicator of compromise (I10C).

In Sphinx’s case, one naming algorithm is used to create files and resource names and a
different one is used to create a unique mutex object name.

File/Resource Name Generator

Beginning with the algorithm used to create file and resource names, to create what would
appear to be random names, Sphinx uses a pseudo-random number generator (PRNG)
named MT19937 (also known as the Mersenne Twister). Let’s look at how Zeus Sphinx
implements this PRNG to create names for its resources.

8/15

https://isc.sans.edu/diary/How+Malware+Generates+Mutex+Names+to+Evade+Detection/19429/
https://www.sciencedirect.com/topics/computer-science/mersenne-twister

The Sphinx naming algorithm function takes four parameters to create its names: maximum
length, minimum length, output buffer pointer and a binary option to upper or not the first
character. As shown in the next example, these parameters are hardcoded, which can help
write more regular expressions (RegEx) for detecting such names.

@0O79BBF lea eax, [ebp+buffer_name]

©8e79BC5 push 8 ; max_len
©8879BC7 push 4 ; min_len
©8e79BC9 push eax ; output_buffer
©8879BCA push 2 ; option
©8e79BCC call naming_algo

Figure 9: Sphinx’s naming algorithm

Let’s look at the naming_algo function:

Sphinx starts the process by decoding two hardcoded strings, which amount to 25 of
the 26 English language characters:

= Aeiouy

» bedfghklmnpgrstvwxz
« It uses randomization for choosing the output (name) size and loops through additional

steps to build it.

e It randomly selects one of the two initial strings.
« It randomly chooses one character from the selected string.
|t appends the character to what’s going to eventually compose the generated name.
« If the name has not yet met the selected length requirement, it loops back and repeats
the process.

s5egeee:eeev49sD jnz short 101:_749DBI

A | s L |
[l i [l it
segBee:eee7499%F call sub_7DE1@ seglee:eee74sDe
segfed:eea749A4 push eax ; size segPee:eeev490e loc_749D0:
5eg@@8:ePaT49A5 lea eax, [ebp+string_1] 5eg000:008074908 call sub_ges2e
$egbee:eea749A8 mov esi, eax seghee:eee749D5 push eax ; size
5egBee;:eea749AA push eax ; output Segoee:eee749D6 lea eax, [ebptstring_2]
segBee:eea749AB push 8CF1FBh ; input segeee:eeev4s09 mov esi, eax
segboe:eee74988 call create_string ; Eenerate aeiouy||segl88:8e8749DE push eax ; output
segPee:eee749B5 add esp, @cCh seg@es:eee74sDC push BCF218h ; inmput
segBea: 88874988 mov [ebp+Key], esi segbee:eeev49E1 call create_string 3 Eenerate bcdfghklmnpgrstvwxyz

Figure 10: Choosing between the “aeiouy” or “bcdfghkimnpqrstvwxz” strings

Mutex Name Generator

Like other malware, Sphinx generates mutex names upon execution. Mutex names are often
searched by security tools and researchers as a way to gather loCs. Therefore, it can be a
better way for malware to hide on infected devices if its mutex name is harder to find. The
use of a unique mutex name also helps prevent the malware from infecting the same
machine twice.

9/15

In Sphinx’s case, the mutex name is always a unique string created per machine, and the
algorithm used to create it is relatively complicated.

To start, Sphinx uses two system data components for building its mutex names:

o The device’s volume C globally unique identifier (GUID)
e The current user’s security identifier (SID)

To fetch the first value, it uses the Windows function
GetVolumeNameForVolumeMountPointW.

Segboen:0e074DDB push
segboe:0e074DE@ push
segbv0:08874DE1 push
segbv0:080874DE2 call

184h
edi
ebx
eax ; GetVolumeNameForVolumeMountPointW

Figure 11: Sphinx composing its unique mutex name

To fetch the second value, it uses two functions: OpenProcessToken and

GetTokenInformation.

10/15

https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating-systems

:BRATSAbe lea ecx, [ebp+var_1ia]
:@geays4n3 push ecx
eRavs4Dd push aax
:88a754D5 push adi

:eeays4be call esi ; ADVAPI32|OpenProcessToken
:BPAT7S4ADE test eax, eax
10Ba754D4A jz loc_75571
e |
L |

;@0A7S4ER push [ebp+var_1a]
:BBET54E3 call sub_75048
tBEBT754EE add esp, 4
:@PO7S4ER mav esi, eax
1BBET54ED xor eax, =sax
:BBBTS4EF test esi, esi
(BBET54F]1 setz al

BRATE4F4 xor ecx, 8Cx
:BRB754FE cmp [ebp+arg 4], &
:BBETS4FA setz cl

1B@@754FD push eax

:BBATS4FE push ecx

(BBATSAFF call sub_BEF5@
p@a755ed add esp, B
1BBaT5587 test al, 1
1B0av5589 jnz short loc 75554

|EBJE

seglef:eeevs5eE call sub_7E&42
segdo8:aea75518 mov edi, eax
segaee:8ea7s512 call sub_glea8e
segBaa:eeavs517 push aax
Segaoe:epa75518 push edi
segBod: 88875519 call sub_71438

Segaee:@ee7551E add asp, B
seg@8d:BRa75521 mov edi, [ebp#var_1ia]
cegloe:eee7s524 mov [ebp+var_14], eax
SHgRea: 20875527 call sub_7CCog
segaoe:epa7552C mov ebx, e=ax
Segdee:epa7552E call sub_7CE18
s@gaea:8ea7s533 lea acy, [ebp+var_18]

segdoe:eea75536 push ecx

segd@e: 8875537 push 2ax

segoee: 2875538 push [ebp+arg_4]

segBad:eav553E push abx

Segaoe:aea7s53C push edi

segBod: 88875530 call [ebp+var_14] ; ADVAPI32!|GetTokenInformation

Figure 12: Sphinx composing its unique mutex name
Next, to generate a unique name, Sphinx takes the following steps:

1. It creates a hash of the infected device’s SID value that it obtained earlier on.

segPee:0007C012 mov ecx, ds:0D2C9Ch

segPee:eee7Ce18 push dword ptr [ecx]

seglee:0007CO1A call eax ; ADVAPI32!GetLengthSid
segPee:8007Ce1C mov ds:8D2C98h, eax

segbeo:8807C821 mov ecx, ds:8D2CSCh

segbeo:0007Ce27 push eax ; SID_Length
segfee:eee7Ce28 push dword ptr [ecx] ; SID

segPee:0007CO2A call hash
Figure 13: Sphinx composing its unique mutex name

1. It uses the GUID to encode the SID’s hash.

11/15

This function is called seven times, with varying constants being used. Then, some of the
names are randomly selected to become mutex names.

seglen :0087BAFC push
segbee :0087BBO2 push
segb00:00087BBO3 push
segbo0:0007BBB8 call

dword ptr ds:eD2CS@h ; SID_hash
edi ; constant
eD2C7Ch ; C_volume_GID
generate_mutex

Figure 14: Sphinx generates seven different mutex names on each device

Technically, there could be seven different mutex names created on each device, which
Sphinx checks for to ensure that the device is not already running the malware.

1. Next, using the key derived from the bot’s configuration, the mutex is encrypted with an

RC4 cipher.
il s =
segoee:0ee75e34 call sub_7EEA®@
segbee:00075039 lea edi, [ebp+a3]
segbee :8e87583F push eax Size
segoee:eee75e4e0 push ebx Source
segbee:00075041 push edi Destination
segbee:000756842 call copy_str
segbee:eee75e47 add esp, ©Ch
segbee0:0007504A call sub_7DA8®
segoee:0e87504F push edi initialized_key
segbee:eee75856 push eax output_size
segbee:8e0875851 push esi source_destination
segbee:eee75852 call RC4_encrypt
segPee:e8e756857 add esp, ©Ch

Figure 15: Sphinx encrypts mutex name

1. To make its mutex names blend in with other system elements, it calls on the function
ole32!StringFromGUID2, making the names look like GUIDs.

Below is an example of two mutex names created within msiexec.exe:

12/15

5 [undiz2exs 3630 1,040 K 3,880 K Windows host process (Run... Microsoft Comoration
ﬁma’mc.m 2400 2,008 K 7316 K Windows® installer Microsoft Corporation

Type MName

Key HELMYWSOFTWARE \Microsoft Tracing 'msiexec_RASAPIIZ

Key HELMYSOFTWARE \Microsoft' Tracing 'msiexec_ RASMAMNCS

Key HEC UM Software Microsoft \Windows\Cument Version\Intemet Settings \ZoneMap

Key HEC LU Software Microsoft \Windows NTCumentVersionNetwork \Location Awareness
Key HELM\SOF TWARE \Microsoft \Windows \CumentVersion \Intemet Settings"ZoneMap

Key HKLM\SOFTWARE Microsoft\Intemet ExplorerMAIN\FeatureControl"\FEATURE_LOCAL...

Key HELM\SOF TWARE Microsoft\Windows“CumentVersion\Intemet Settings

Mutart “Sessions™ 1\BaseNamedObjects'_IMSFTHISTORY!_

Mutart “Sessions' 1\ BaseNamedObjects'c: luserslsecuserlappdatallocal microsoft windows tempar...
Mutant “Sessions™ 1\Base NamedObjects'c: lusers secuserlappdata lroaming microsoft windows!coo ..
Mutart “Sessions™ 1\ BaseNamedObjects'c: lusers lsecuserlappdatallocal microsoft windowshistany ...
Mutart “Sessions' 1\BaseNamedObjects " Wininet Startup Mutex

Mutart “Sessions™ 1\ Base NamedObjects WininetConnection Mutex

L d =4 kY . P] == b S [a FITT, N I P PR e T W

"Sessions" 1" BaseNamedObjects" {4D20AD55-0C11-E2FB-BC56-E4453F4ACEER}
"Sessions" 1" BaseNamedObjects"{D DB 19FC5-3E8D-7264-8C56-E4493F4ACEER)

vILITal Y 0 alriedi D Pipts w]gl[=

Mutart "Sessions’ 1" BaseNamedOhbjects " FonesCacheCourterMutex

Mutart "Sessions’ 1" Base NamedOhbjects' Fonesl ockedCacheCounterMutesc

Section “Sesgions’ 1" Base NamedObjects windows_shell_global_courters

Section “Sesgions’ 1" BaseNamedObjects"C:_Users_secuser_AppData_Local_Microsoft_Windows_...

Figure 16: Examples of Sphinx mutex names generated through its process

Sphinx Is Back in Business

The Sphinx Trojan emerged in 2015, at which point its main focus was banks in North
America. Over the years, different operators of this malware launched it into campaigns in
other parts of the world, such as the U.K., then Brazil, then Canada and Australia. Most
recently, Sphinx was implemented in infection campaigns targeting users in Japan.

While Sphinx has been an on-and-off type of operation over the years, it appears it is now
on-again, with version updates and new infection campaigns that are back to targeting North
American banks.

While less common in the wild than Trojans like TrickBot, for example, Sphinx’s underlying
Zeus DNA has been an undying enabler of online banking fraud. Financial institutions must
reckon with its return and spread to new victims amid the current pandemic.

Sphinx is just one more threat we regularly cover. To learn more about emerging threats and
campaigns, please join us on X-Force Exchange. Our research team also regularly releases
blogs on Security Intelligence to keep you up to date on what we see in the wild.

Nir Shwarts
Malware Research-Reverse Engineering, IBM Security

Nir Shwarts is a contributor for Securitylntelligence.

13/15

https://securityintelligence.com/uk-banks-hit-with-new-zeus-sphinx-variant-and-renewed-kronos-banking-trojan-attacks/
https://securityintelligence.com/brazil-cant-catch-a-break-after-panda-comes-the-sphinx/
https://securityintelligence.com/around-the-world-with-zeus-sphinx-from-canada-to-australia-and-back/
https://exchange.xforce.ibmcloud.com/#/
https://securityintelligence.com/category/x-force/
https://securityintelligence.com/author/nir-shwarts/
https://www.ibm.com/security/data-breach?utm_medium=OSocial&utm_source=Blog&utm_content=SSSWW&utm_id=Security-Intelligence-Blog-Banners%20

Cost of a Data Breach
Report 2022

Prevent, detect and respond to
cybersecurity threats faster

Get the report —

‘]r‘. t \

https://www.ibm.com/security/data-breach?utm_medium=OSocial&utm_source=Blog&utm_content=SSSWW&utm_id=Security-Intelligence-Blog-Banners%20

e

https://www.ibm.com/security/data-breach?utm_medium=OSocial&utm_source=Blog&utm_content=SSSWW&utm_id=Security-Intelligence-Blog-Banners%20

