Shadows with a chance of BlackNix

m medium.com/insomniacs/shadows-with-a-chance-of-blacknix-badc0f2f41cb

asuna amawaka May 6, 2020
lsasu

na

asuna amawaka

May 6, 2020

13 min read

In the last post, | did an analysis of a set of BBSRAT samples that are characterized by unique
mutexes (cc5d64b344700e403e2sse, cc5d6b4700e403e2sse, cc5d6b4700032eSS) and calls
back to a known Winnti Group C2 (bot[.]googlerenewals|.]net). In this post, I'm going to
continue on analysis of samples related to the abovementioned mutexes.

When | started on this analysis journey, | was hoping to find more BBSRAT samples. However,
the results | arrived at deviated from expectations, and instead | found a set of dropper malware
that used the same mutexes as those found in the BBSRAT samples | analyzed. The final
payload dropped by these droppers is the BlackNix RAT. Pivoting from the C2 called from this
BlackNix RAT, more BlackNix RATs were found on VirusTotal. | was unable to find any technical
blogs on the BlackNix RAT, and hence, here | am.

The following diagram is a sort of a “signpost” for this writing.

1/49

https://medium.com/insomniacs/shadows-with-a-chance-of-blacknix-badc0f2f41cb
https://medium.com/@asuna.amawaka?source=post_page-----badc0f2f41cb--------------------------------
https://medium.com/@asuna.amawaka?source=post_page-----badc0f2f41cb--------------------------------

L

Let’s dip into the first dropper!

Project1.exe

| %

L

The following files are likely from the same source code:
daaa061c88b197fa92d9648306e79875e3a24f392550dacaabd22e5fdba53ebf
75dc821013fe92ef93cefad 7d3fe83ad5ce90658e8ef01fcdb0b11652397abec

2/49

Judging from the executables’ icon, it looks like the samples are written with Borland Delphi 7,
and sadly the executables’ compilation timestamps are 1992—-06—-19 22:22:17 (a well-known
bug in Delphi 4-2006). | didn’t really look into which versions are affected by the compilation
time bug, because that’s beside the point. The samples’ compilation time can still be deduced
with the timestamp within the executables’ resources. (Thanks to Adam’s old post on this[1])

| %

L

This dropper will drop 2 files system.exe and systemm.exe into %USERPROFILE%\Pictures,
execute them and write a diskshadow.exe to C:\ProgramData\Microsoft\DeviceSync\.

3/49

L

system.exe, systemm.exe
SHA256:

AEB61477C3F4F2D76AFO0DC97B19B01F73C8ADA1FCE91D66ESBOE489E2E807430
Execution of system.exe creates a service to execute itself within the context of the service.

C:\Windows\System32\sc.exe create SESSRV binpath= “cmd /c
\"C:\Users\asuna\Pictures\system.exe\™

C:\Windows\System32\net.exe start SESSRV

4/49

L

The mutexes are set within the execution of system.exe and systemm.exe.

5/49

L

systemm.exe attempts to copy diskshadow.exe to a network location
\TSCLIENT\%userprofile%\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\. The sample also attempts to locate and copy a 1.jpg.Ink within the
same directory as diskshadow.exe, but this file was not created by the previous dropper.

In gist, the sample’s job is to copy the payload diskshadow.exe to a host that is connected to
the current victim via RDP and set persistency to run at startup. This is possibly a tool meant for
lateral movement within the victim network. The same technique is also found in the execution
of the BBSRAT samples analyzed previously.

The following screen captures referenced one of the BBSRAT trinity files, lockdown.dll (MD5:
166D28FF69019D9991EECBD26DC1E266):

6/49

L

Copy file to network location. Left: system.exe; Right: lockdown.dll
The mutexes come into play with the same “usage” as what was seen in the BBSRAT samples
as well.

7/49

L

One of the places where mutex is set. Left: system.exe; Right: lockdown.dll

Given that even the sleep counter is identical, | would suspect that the two executables might
share the same “base code” (or perhaps copied from the same “reference code”). The proximity
of their compilation time also suggests that perhaps the same author is behind both
executables.

System.exe: 13 May 2018 19:34:27
Lockdown.dll: 6 May 2018 17:59:24

8/49

L

Same sleep counter. Left: system.exe; Right: lockdown.dll
Enough of the dropper, let’s look at the actual evil payload now.

Diskshadow.exe

9/49

L

UPX section names
With just one look at it, we’d know it's UPX-packed. So let’s unpack it quickly.

10/49

L

After unpack:

MD5: 40835ED7C92F33F7F377D4472228CB65

SHA1: 033E97D4AC3AE3CEC00A206F2AD5CCC922DBD326

SHA256:
C5BAB78FCA3DBOCESFFFF5838A5A4A93D930E715DED1CBD8ASB3CAFOCDCES03C

With the assistance of Procmon, we can see that the binary will drop 2 files, intel.exe and
inte.exe into the C:\intel directory. | located the code responsible for creating the files (refer to
screen capture below). The binary also sets 2 persistency mechanisms. Note the presence of
Simplified Chinese words within the name of the registry key — EHTXIFEF (translates to
Update Schedule Program”). This is not the only place where Simplified Chinese words are
observed.

regsetval sz HKEY_ CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
“intel BRI TRIFERF" “c:\intel\inte.exe™,0

shortcut “c:\intelinte.exe” “~$folder.startup$” “Windows Calculator”

11/49

L

Set persistency
The two files dropped are:

12/49

L

intel.exe

SHA256:
12459A5E9AFDB2DBFF685C8C4E916BB15B34745D56EF5F778DF99416D2749261

This is the NirCmd executable from Nirsoft. NirCmd is a small command-line utility that allows
you to do some useful tasks without displaying any user interface.

inte.exeSHA256:
F46520C2284E20C42AFAGE9BI90E380735BFDF29817828369D5F1270A887E6979
This is the actual BlackNix RAT, which is the meat that we want to analyze.

Both diskshadow.exe and inte.exe are written in Borland Delphi and their compilation datetime
stamps are as follow:

File: C:\ProgramData\Microsoft\DeviceSync\diskshadow.exe
PE Comp.: 1992-06-19 22:22:17 2A425E19, 708992537
.rsrc comp.: 2018-10-22 22:50:06 4D56B643, 1297528387

File: C:\Intel\inte.exe
PE Comp.: 1992—-06-19 22:22:17 2A425E19, 708992537
.rsrc comp.: 2018-10-22 22:49:20 4D56B62A, 1297528362

Judging from the compilation datetimes, they might be the output of a generator. Here, | could
also make a guess at the chronological logic of when the files are prepared.

13/49

L

inte.exe

As with my usual style, | will start with a quick look at strings to try to guess the behaviour of the
sample, before diving into dynamic and static analysis. Fortunately, the sample contains many
helpful and descriptive strings that can help us deduce the features that this RAT provides,
including Keylogger, FileManager, ProcessManager etc. Pretty typical RAT stuff.

14/49

15/49

L

A YARA rule hit

The sample happened to match James_inthe box’s YARA rule[2] on BlackNix RAT:

16/49

rule BlacknixRAT _bin{

meta:

description = “BlacknixRAT”

author = “James_inthe_box”

reference = “https://app.any.run/tasks/e3d845db-09b5-462d-8290-cbb4bb4a505f/"
date = “2019/02”

maltype = “RAT”

strings:

$string1 = “[Random-Number-Here]”
$string2 = “ScreenCapture”

$string3 = “TScreenSpy”

$string4 = “KeyLogger”

$string5 = “RemoteShell”

condition:
uint16(0) == 0x5A4D and all of ($string*) and filesize < 2000KB

}

Based on the strings seen above, the strings that matched the YARA rule did not look unique
enough to confirm that this is indeed a BlackNix RAT. James_inthe box also provided a snort
rule:

alert tcp any any -> any 80 (msg:"Blacknix RAT Detected”; flow:established,to_server;
content:”|32|”; depth:1; content:”|7c 78 01 6d 8e|”; within:10;
reference:url,https://app.any.run/tasks/e3d845db-09b5-462d-8290-cbb4bb4a505f/;
classtype:trojan-activity; sid:20166298; rev:1; metadata:created_at 2019_07_18;

Let’s see what we have in the network data.

17/49

L

Yup, | see a 7C 78 01 but that’s not an exact match with the pattern in the snort rule. Hang on a
second.. 78 01 looks like the ZLIB magic header. There we go!

18/49

L

| noticed some weird characters, which could be indicative of Unicode (maybe Chinese...?).
Let’s try.

19/49

L

Indeed! ¥JJ44 is translated to mean Initial Start, and “24%2808” might mean 2 Cores (probably
referring to the CPU cores). I'll step through the code that forms up this data in abit. Now, let us
try to confirm if this callback belongs to BlackNix family.

The YARA and snort rules mentioned above referenced a sample (SHA256:
A4DAG94DED5S31EC60CAS5A242C554B6A7062E12FF633D34656C4CA9DF86E42DD5). Let's

sidetrack and see what this sample does.

This sample is packed with VMProtect, so to save time, I'm just going to execute it and see
what happens. Upon execution, a new file phpalpha.exe is created in
C:\Intel\ExtremeGraphics\CUI\Resource. Turns out the file has the same hash as the parent

binary.

20/49

L

The network callback looks like this:

21/49

L

We already know that’s a ZLIB header, so let’s use CyberChef to view the inflated data:

22/49

L

Interesting. The data structure and keywords are identical. Now | can say that the sample

(SHA256:
A4DAB94DED531ECB60CA5A242C554B6A7062E 12FF633D34656C4CAIDF86E42DD5) and

our sample (inte.exe, SHA256:
F46520C2284E20C42AFAGE9BI0E380735BFDF29817828369D5F1270A887E6979) belong to
the same family. Is it really BlackNix though?

With the C2, everything is easier

With some help from Google search, | found a copy of a BlackNix C2 component :D

23/49

The C2 executable comes with the ability to generate the “server” component. This naming
convention is common in RATs, where the malware client is typically referred to as the “server”,
and the C2 is the “client”.

The following is one of the default profiles loaded with the C2:

| %

L

For the ease of testing, | changed some of the values when generating our test binary. The
generator even comes with the option of UPX-packing the generated binary if the user wishes.

24/49

L

Inspecting the strings within the generated binary, we can quickly identify some familiar
keywords.

25/49

L

I've written a quick script to read the strings from the default settings. This will come useful later,
when comparing these strings across different samples.

26/49

L

Here’s the output of running the script:

27/49

L

It appears that these SETTINGS strings have nothing to do with the configuration set when
generating the binary. The default connection password within the C2 is “admin” and notice that
even if | changed the password when generating the binary, the new password does not get
inserted into this SETTINGS data. These may be part of a “stub” that comes with the C2
executable and inserted into every generated binary. | think this may be a helpful piece of
information when trying to identify if a set of BlackNix RATs is communicating with the same C2
executable (or at least the same version).

Take a look at the network communications.

28/49

L

First thing that | noticed was the difference in the way the “Processor” information is being
formatted. Remember there were some Chinese words (24%2808) that | thought refers to
Processor Cores? In the data sent from this test binary, the processor information was simply a
“2808” (referring to 2808 Mhz, which is indeed the setup of my VM).

29/49

L

Connected victim on C2 dashboard
Let’s get back to the sample we have at hand.

| did an in-depth analysis of how the first beacon’s data structure is formed within inte.exe.

Earlier | mentioned some SETTINGS strings. These are the strings that are populated into a
data structure and some of these values are later copied into the first beacon data.

30/49

L

Reading strings from SETTINGS
Let’s compare the default SETTINGS strings found in the generated BlackNix binary and
inte.exe.

31/49

L

The following code is responsible for building the structure to be sent in the first beacon:

32/49

33/49

L

The following is the deduced first beacon’s data structure sent from the inte.exe to its C2.

OnConnect|Default #]#4|Username|Username|Computer Name|IP Address|Hardcoded
Space|Locale|ls Machine ldle?|Locale|Language|Account
Privilege|Processor|Memory|Foreground Window Text|OS|Default False|Default
False|%Ro0ot%]|%Desktop%|%MyDocuments%|%AppData%|Locale|Server authentication
password|ProdID, InstallDate|

Now we can play spot-the-differences. We can guess what each of these fields mean by
looking at what can be seen on the dashboard, without reverse engineering the binary.

The following is the deduced first beacon’s data structure sent from the test BlackNix binary.

34/49

OnConnect|Assigned Group|Assigned Name|Username|Computer Name|IP
Address|Webcam Installed?|C2 Version|?|Locale|Language|Account
Privilege|Processor|Memory|OS|True/False?|True/False?
|%R0o0t%|%Desktop%]|%MyDocuments%|%AppData%|Locale|Server authentication
password|?|

L

Comparison of fields within data structure sent to C2
Yes! inte.exe is a BlackNix RAT, but has a different/modified C2 component?

What | did above proved that the inte.exe sample is indeed a BlackNix RAT, judging from the
highly similar data structure within the initial beacon and the similarities found within the
executables. However, since some fields in the communicated data are interpreted differently,

35/49

I’m guessing there is a customised C2 that the adversary is using. | am not even able to tell the
version number of the C2 from the sample, perhaps it is not important for the adversary.
However, the SETTINGS strings found within the samples could be a way for us to differentiate
variants.

So far, I've walked through the analysis of this set of files:

- 1st level droppers (Project1.exe)
daaa061c88b197fa92d9648306e79875e3a24f392550dacaabd22e5fdba53ebf
75dc821013fe92ef93cefad7d3fe83ad5ce90658e8ef01fcdb0b11652397abec

- 2nd level droppers (diskshadow.exe)
f0311ede2dd5e752411bf181626e3cdb36737affe67ddeb8af028d0c44355886
cSbab78fca3db0ce5ffff5838a5a4a93d930e715ded1cbd8asb3caf0cdce803c

- (inte.exe)
f46520c2284e20c42afa6e9b90e380735bfdf29817828369d5f1270a887e6979

I've verified that the sample inte.exe is indeed a BlackNix RAT and communicates with a
custom BlackNix C2 at IP address 112.213.107[.]134.

Related to this IP address, other possible BlackNix RAT samples were found on VirusTotal:

36/49

L

In addition, one other BlackNix RAT samples were mentioned by james_inthe box[2]. Based on
SSDEEP similarity, another sample was found.

37/49

L

Next, we shall see if all these samples send data in the same structure as what we have
analyzed previously. If they do, then perhaps these are all related in some way and are not
“wild” BlackNix RATSs.

Set 1 binaries

38/49

L

L

Execution of these binaries will result in errors. Upon closer look, the errors happen because
some part of the binary seems to be corrupted. Whether this is a deliberate “disarm” attempt or
due to a bug, | can’t tell.

39/49

L

Cause of error at address 0x4CDE53

40/49

L

Cause of error at address 0x4CE084
Just patch the areas with the corresponding bytes from inte.exe to fix the problems. The
following screenshots show highlighted areas after patching.

41/49

L

Patch to solve error at 0x4CDE53

42/49

L

Patch to solve error at 0x4CE084
From the network packet, it looks like the data structures are identical to what we saw in

inte.exe. This is verified with a comparison of the function that is responsible for building the
structure. This is not surprising, as they all call back to the same IP address.

43/49

L

Set 2 binaries

These binaries are different, because they are VMProtect-packed, which means that | cannot
simply throw them into IDA Pro and hope to do function comparisons.

44/49

L

Execution of these binaries require them to be executed with administrator privileges, as they
will spawn a svchost.exe process for injection. Knowing this behaviour, we can dump the
unpacked executable from memory at the moment where the injection happens. A breakpoint at
ntdll.dII's NtWriteVirtualMemory will do the trick.

45/49

NtWriteVirtualMemory(

IN HANDLE ProcessHandle,

IN PVOID BaseAddress,

IN PVOID Buffer,

IN ULONG NumberOfBytesToWrite,

OUT PULONG NumberOfBytesWritten OPTIONAL);

The idea is to watch for a call to NtWriteVirtualMemory with a handle to svchost.exe, and let it
run till all the sections have been copied. We would know it's done when NtResumeThread is
called.

46/49

After dumping the executable from memory, we would have to fix the section headers’ raw

addresses before we can use IDA Pro to look at it. I've mentioned how to do this with CFF
explorer in one of my earlier posts.

A quick look at strings within this dumped file reveals the tell-tale BlackNix strings:

| %

L

The SETTINGS strings looks identical to what was seen in inte.exe, including the Chinese
words #]#4 and the server password ‘root’. The function that is responsible for reading the

SETTINGS strings and building the callback data structure is identical to inte.exe’s as well (and
hence the callback data structure is also the same).

| am certain that we are looking at the same variant of BlackNix RAT here.

47/49

So, they are all the same BlackNix variant. Now what?

This journey started from some unique mutexes found in a malware (one BBSRAT) that calls
back to one of known Winnti Group’s infrastructure. The same set of mutexes, some overlaps
in code logic (in the naming of files and lateral movement using RDP shared drives), as well as
close time proximity in compilation timestamps, suggested relationship between that one
BBSRAT and the set of BlackNix RATs (Project1.exe).

In addition to the mutexes, | noticed other similarities in Project1.exe’s execution and the
Trochilus RAT dropper csres.exe described in Trend Micro’s Uncovering DRBControl report[3],
specifically in the names of the files and service created and path to malicious binary:

48/49

- system.exe
- SESSRV
- c:\ProgramData\Microsoft\DeviceSync

| get reminded of my earlier speculation that system.exe is a generic tool used to deliver/spread
the payload (be it BlackNix or Trochilus RAT). I'll never know for sure till | get my hands on
some more samples ;)

Last Words

Is Winnti Group also behind the set of BlackNix RATs that were under scrutiny in this post?
There might be a good chance this is true. However, one other interesting finding that | came
across was that the C2 domain msdnsoft[.]lang32[.]Jcom as well as the corresponding binary
(SHA256: 873dfa94f924d59ceff4efb277fef5a251d7b648605c5239fc2ac0885ba32bd5) were
linked to an adversary group named “Lang32” by QiAnXin Technology[4]. This adversary group
is said to target victims in Southeast Asia. Perhaps | should look into the tools used by this
group as well...

But that’s a different long story for another time, that’s it for now!
References:

[1]: http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-
part-1/

[2]: https://twitter.com/james_inthe box/status/1151972438692921344

[3]: “Operation DRBControl: Uncovering a Cyberespionage Campaign Targeting Gambling
Companies in Southeast Asia”, Trend Micro, 18 Feb 2020

[4]: hitps://www.secrss.com/articles/12463

~—~

Asuna

The latest Tweets from Asuna (@AsunaAmawaka). [Malware Analyst]. Binary
World

twitter.com

Drop me a DM if you would like to share findings or samples ;)

49/49

http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
https://twitter.com/james_inthe_box/status/1151972438692921344
https://www.secrss.com/articles/12463
https://twitter.com/AsunaAmawaka

