
1/4

May 4, 2020

Ragnarok Stopper: development of a vaccine
tarlogic.com/blog/ragnarok-malware-stopper-vaccine/

The field of reverse engineering and specifically malware analysis within the Compromise
Assessment process is of vital importance. Beyond the analysis of logs, events, network
connections, alerts generated by IDS and firewalls, etc., experience tells us that a
preliminary and quick analysis of a suspicious binary (whenever possible) can offer high-
value intelligence, not just to get more context about an incident (TTP, C2, persistence,
timeline, etc.) but to develop tools or techniques to mitigate a campaign still underway. The
following case is an example of this.

In a recent incident we obtained a binary packaged with Ragnarok, a malware widely used
in the last months in various campaigns. The aim of this post is to describe a possible
vaccine that can stop the threat posed by some of the samples that we have analyzed so
far.

Developing the vaccine

Just before harmful actions start (basically encrypting files with RSA 2048 + AES) the
malware computes a fingerprint based on 5 values:

MachineGUID
Product Name
Username

https://www.tarlogic.com/blog/ragnarok-malware-stopper-vaccine/
https://www.tarlogic.com/compromise-assessment/
https://www.bleepingcomputer.com/news/security/ragnarok-ransomware-targets-citrix-adc-disables-windows-defender/

2/4

Hostname
A string concatenating the previous four elements

For each of these values, an 8-byte ID is generated, which are joined by a “-“. The fingerprint
obtained (a string with the following form: XXXXXXXX-XXXXXXXX-XXXXXXXX-XXXXXXXX-
XXXXXXXX) is used to create an event object via CreateEventW with which to check if an
instance is already running.

This sort of actions is very common in malware to guarantee the execution of a single
process, generally with Mutex and Event objects. What is interesting is that these checks are
very useful for creating vaccines that prevent malware from running. The following
screenshot shows the logic previously described.

Ragnarok running instance check
In this case, note that once the identifier is generated, it is used to create an event object
with that name. If the returned handle belongs to an existing object (GetLastError() ==
ERROR_ALREADY_EXISTS) it retries it for a total of 0x8000 times. If this counter reaches this
value, TerminateProcess() is invoked, thus avoiding the destructive actions of the
ransomware.

With this information creating a vaccine that forces the ransomware to finish its execution is
trivial. It would be enough to create an event object whose name follows the format used by
Ragnarok. The following function shows the logic used to generate the ID from each string.

https://www.ccn-cert.cni.es/en/updated-security/ccn-cert-statements/4485-nomorecry-tool-ccn-cert-s-tool-to-prevent-the-execution-of-the-ransomware-wannacry.html
https://www.tarlogic.com/cybersecurity-glossary/ransomware/

3/4

Fingerprint generation

Fingerprint generation
A cleaner version of the GenerateID function is shown below:

#define __ROL__(x, y) _rotl(x, y)

inline unsigned int __ROL4__(unsigned int value, int count) { return
__ROL__((unsigned int)value, count); }

inline unsigned int __ROR4__(unsigned int value, int count) { return
__ROL__((unsigned int)value, -count); }

LPWSTR GenerateID(LPCWSTR lpString)

{

 unsigned int inc;

 int len, i, acu;

 LPWSTR codeID;

 inc = 0;

 codeID = (LPWSTR)VirtualAlloc(0, 0x7Fu, MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);

 len = lstrlenW(lpString);

 for (i = 0; i < len; inc = (acu ^ 0xAB01FF3C) + inc - __ROL4__((acu ^ 0xAB01FF3C)
+ inc, 13))

 acu = lpString[i++];

 wsprintfW(codeID, L"%08X", inc);

 return codeID;

}

4/4

The code of the PoC Ragnarok Stopper can be found in our repository. It should be noted
that this is just a vaccine that applies to some of the samples that we have analyzed so far.
New variants of Ragnarok may use other criteria to identify a running instance.

https://youtu.be/xUC07prttZs

https://github.com/blackarrowsec/malware-research/blob/master/Ragnarok/rangnar_stopper.c

