
1/14

April 22, 2020

Nazar: A Lost Amulet
epicturla.com/blog/the-lost-nazar

Apr 22
Written By J A G-S

Acknowledgements: Special thanks to Silas Cutler for reversing guidance and to special
friends (you know who you are) for visibility and insights.

Accompanying talk presented on 04.22.2020 @ Virtual OPCDE #3 (Video)

Update #1 (04.22.2020) : Fixed some miscategorized hashes in the Appendix

Update #2 (04.23.2020): Reversing of EYService by @malwarelabpl available here.

Update #3 (04.28.2020): Additional reversing of the EYService comms protocol by
@maciekkotowicz available here. I’ve added and corrected to reflect the new insights.

Update #4 (05.05.2020): Amazing in-depth analysis of Nazar components by Itay Cohen
from Checkpoint available here.

Territorial Dispute continues to be an excellent resource for avid researchers undaunted by
the thought of taking pointers from misplaced classified materials. For those blissfully
unaware of TeDi, among the ShadowBrokers leaks we find two files far more noteworthy for
threat intelligencers than the exploits and tools. Dr. Boldizar Bencsath and his team at
CrySyS lab were the first to notice the value of ‘sigs.py’ and ‘drv_list.txt’. The former
includes filenames and registry keys associated umbrellaed under a moniker ‘SIG[1-45]’.
The CrySyS lab report is an excellent starting point to understand the contents of TeDi.

Since the release of this report in 2018, further signatures have been identified by
Kaspersky’s GReAT team and by Silas Cutler and I during our time at Chronicle’s
Uppercase. Today, I’ll focus on a specific misidentified TeDi signature, SIG37. These
signatures are low fidelity –composed of a combination of paths, filenames, and registry
keys– and thereby prone to misidentification. In this case, CrySyS lab tentatively identifies
SIG37 as ‘IronTiger_ASPXSpy’ –a presumably Chinese APT group better known as
‘Emissary Panda’ among other names. CrySyS lab points to a file in VirusTotal whose
community comments suggest the aforementioned detection.

https://www.epicturla.com/blog/the-lost-nazar
http://10.10.0.46/blog?author=5de05bd68772d028587d08bf
https://www.opcde.com/
https://www.youtube.com/watch?v=JSgkMvUSx-8
https://twitter.com/malwarelabpl
https://blog.malwarelab.pl/posts/nazar_eyservice/
https://twitter.com/maciekkotowicz
https://blog.malwarelab.pl/posts/nazar_eyservice_comm/
https://twitter.com/megabeets_
https://research.checkpoint.com/2020/nazar-spirits-of-the-past/
https://www.crysys.hu/publications/files/tedi/ukatemicrysys_territorialdispute.pdf
https://www.virustotal.com/gui/file/fb253831862d882b0d22cb2cb2a80d423cae92a6218ac3d126fafcadf75afd0b/detection

2/14

Automated community comment with the misleading detection

As many VT obsessives know, all sorts of misleading and undesirable files make their way
into the VT corpus and fire off our YARA rules. Upon closer inspection, the file above is a
15mb memory dump of a McAfee installer, perhaps by someone interested in their malware
signatures. As such, it’s a giant malformed mess of unrelated indicators. With that
understanding, we can discard the commented detection and return to the abject mystery of
identifying SIG37. The signature itself refers only to a single filename: ‘godown.dll’

The Nazar APT

SIG37 function from ‘sigs.py’

Armed with this spartan indicator, what we find is a previously unidentified cluster of activity
possibly ranging as far back as early as 2008 –though more likely centered around 2010–
2013 that I’ve nicknamed ‘Nazar’. The name is derived from debug paths left alongside
Farsi resources in some of the malware droppers described below. Those PDB paths refer
to a source root folder: ‘khzer’.

3/14

Native Farsi speakers pointed me in the direction of the term ‘nazar’ –roughly translating to
‘supervision’ or ‘monitoring’– transliterated and mangled from Persian to Roman characters.
A more recognizable alternative interpretation is the nazar amulet used for protection
against ‘evil eye’. Some level of speculation is involved so I won’t belabor the point beyond
emojying the name (🧿) for tweetable convenience.

4/14

‘Evil eye’ protection amulets– the better known ‘hamsa’ (left) or ‘nazar’ (right)

It’s hard to understand the scope of this operation without access to victimology (e.g.:
endpoint visibility or command-and-control sinkholing). Additionally, some possible
timestomping muddies the water between this operation possible originating in 2008-2009
or actually coming into full force in 2010-2013 (the latter dates being corroborated by VT
firstseen submission times and second-stage drop timestamps). There’s a level of variable
developmental capability visible throughout the stages. Multiple components are abused
commonly-available resources, while the orchestrator and two of the DLL drops actually

5/14

display some developmental ingenuity (in the form of seemingly novel COM techniques).
Far from the most advanced coding practices but definitely better than the sort of .NET
garbage other ‘Farsi-speaking’ APTs have gotten away with in the past.

Somehow, this operation found its way onto the NSA’s radar pre-2013. As far as I can tell,
it’s eluded specific coverage from the security industry. A possible scenario to account for
the disparate visibility between the NSA and Western researchers when it comes to this
cluster of activity is that these samples were exclusively encountered on Iranian boxes
overlapping with EQGRP implants. Submissions of Nazar subcomponents from Iran (as
well as privately shared visibility into historical and ongoing victimology clustered entirely on
Iranian machines) could support that theory. Perhaps this is an internal monitoring
framework (a la Attor) but given the sparse availability of historical data, I wouldn’t push that
beyond a low-confidence assessment, at this time.

I hope interested researchers take this as an initial introduction and open challenge to
contribute to what may prove a previously unknown threat actor, and encourage them to
leverage their greater abilities and visibility to contribute to the ongoing research. I’ll gladly
update this post with the contributions and publications of others.

Technical Breakdown

Nazar employs a modular toolkit where a main dropper silently registers multiple DLLs as
OLE controls in the Windows registry via ‘regsvr32.exe’. An orchestrator (‘Data.bin’),
disguised as the generic Windows service host process (‘svchost.exe’), is registered as a
service (‘EYService’) for persistence. The DLLs are a combination of custom type libraries
and resourceful repurposing of more widely available libraries for nefarious purposes.

Nazar component structure

https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Attor.pdf

6/14

The Dropper: ‘GpUpdates.exe’

SHA256 4d0ab3951df93589a874192569cac88f7107f595600e274f52e2b75f68593bca

SHA1 48f99144bb9fdf379926e85fbe3caa462089f397

MD5 6b3116580d29020b9c259877ac18a7fd

Filename GpUpdates.exe

Timestamp 2009-10-31 12:28:29

First
Submission

2013-02-04 04:23:00

The droppers are misidentified as packed by Armadillo but in reality they’re built using now
defunct Chilkat software, ‘Zip2Secure’ to create self-extracting executables. The packing
alone has led the droppers to be detected under generic AV detections but the
subcomponents have low-to-no detections at this time.

The Setup Agent: ‘Distribute.exe’

SHA256 839c3e6ba65e5d07a2e0c4dd4a2c0d7ae95a266431dd3f8971b8a37d17b1ddf6

SHA1 05122010cde4dcd1b4cd55de7b7d442efda19976

MD5 c1ab32afb0e2d7b7b1cad3fb831e9373

Filename Distribute.exe

Timestamp 2012-03-17 11:07:53

First
Submission

2013-02-04 04:26:29

The Zip2Secure configuration entrusts the distribution of the files contained therein to
‘Distribute.exe’, which places the files and silently registers the subcomponents with
regsvr32.exe.

The Orchestrator: ‘EYService’

SHA256 2fe9b76496a9480273357b6d35c012809bfa3ae8976813a7f5f4959402e3fbb6

SHA1 79f2b98821c1e2717a0495e6c5c76a0147b21aae

MD5 a9ff31c8db6d4e70829bf5db062d1b9c

Filename Data.bin, svchost.exe, EYService

https://www.chilkatsoft.com/ChilkatSfx.asp

7/14

Timestamp 2012-04-30 05:12:18

First
Submission

2013-02-04 08:43:33

The main functionality orchestrating the different subcomponents is contained within
Data.bin, later renamed to ‘svchost.exe’. The orchestrator takes 17 different three digit
codes to divert functionality within a giant switch statement. Some of the codes have not
been fully implemented up to the latest samples I’ve found so far, which further suggests a
continued developmental effort.

8/14

9/14

10/14

11/14

12/14

[Updated 04.28.2020]: Thanks to @maciekkotowicz’s great work, we now know that
EYservice is in fact a passive backdoor with no hardcoded infrastructure. The backdoor is
listening for UDP packets on port ‘1234’ and allows for a ping response, victim info request,
or file download. For further details, please refer to the MalwareLab.pl blog.

The Subcomponent DLLs

Subcomponent DLLs include multiple abused resources as well as a couple of seemingly
custom libraries. The former include the common LAME MP3 encoding library (UPX
packed) as well as a more obscure bitmap library. These are abused to implement hot mic
and screengrab features, respectively. Another subcomponent is the ‘hodl.dll’ (internally
named ‘keydll3.dll’) library used for keylogging. This appears to be a more common
keylogger but that claim could use further scrutiny.

Finally, the custom libraries are ‘godown.dll’ (our original indicator) as well as ‘filesystem.dll’.
Both are treated as type libraries and registered as OLE controls. The Filesystem library
includes functionality to enumerate attached drives and traverse folder structures. The
GoDown library is used for system shutdown. [Updated 04.28.2020]

For a more comprehensive breakdown of these components, refer to the Checkpoint
Research blogpost [Updated 05.05.2020].

A Further Oddity – The MicroOlap Packet Sniffer

A core function of EYService includes a further drop, a packet sniffer. The orchestrator will
unpack and drop a kernel driver (pssdk41.vxd, pssdk41.sys) used to sniff packets from the
victim machine’s interfaces. The packets are then parsed looking for something in particular.
Perhaps this allows for a sneaky means of command-and-control or more sophisticated
uses. At this time, I’ve not determined what it’s parsing in particular.

Interestingly, the packet sniffer is also referenced in the EQGRP drv_list.txt. Other versions
are also referenced, as shown in the image below:

https://blog.malwarelab.pl/posts/nazar_eyservice_comm/
https://research.checkpoint.com/2020/nazar-spirits-of-the-past/

13/14

Interestingly, focusing on the alternate filenames brought up an earlier version of this Nazar
orchestrator (sha256:
1c02043ca00d087f1aac0337f89bf205985e1f20641bf043c9b7b99e0c9dc002). This earlier
version drops ‘pssdk31.drv’ instead of the 4.1 version mentioned above.

Avenues for Further Research

SIG37 has proven a rewarding mystery, unearthing a previously undiscovered subset of
activity worthy of our attention. Apart from several places where more skilled reverse
engineers can contribute to better understanding the samples already discovered, there’s
an opportunity for threat hunters with access to diverse data sets and systems to figure out
just how big this iceberg really is. Are we looking at an internal surveillance framework? Is
this part of an already known cluster of activity? Or can we add another predatory animal to
our overpopulated zoo?

Happy Hunting!

Appendix – Technical Indicators

Nazar Hashes

gpUpdates.exe

4d0ab3951df93589a874192569cac88f7107f595600e274f52e2b75f68593bca

d34a996826ea5a028f5b4713c797247913f036ca0063cc4c18d8b04736fa0b65

eb705459c2b37fba5747c73ce4870497aa1d4de22c97aaea4af38cdc899b51d3

d9801b4da1dbc5264e83029abb93e800d3c9971c650ecc2df5f85bcc10c7bd61

Unnamed Droppers

75e4d73252c753cd8e177820eb261cd72fecd7360cc8ec3feeab7bd129c01ff6

14/14

1110c3e34b6bbaadc5082fabbdd69f492f3b1480724b879a3df0035ff487fd6f

Distribute.exe

6b8ea9a156d495ec089710710ce3f4b1e19251c1d0e5b2c21bbeeab05e7b331f

svchost.exe

2fe9b76496a9480273357b6d35c012809bfa3ae8976813a7f5f4959402e3fbb6

Filesystem.dll

1110c3e34b6bbaadc5082fabbdd69f492f3b1480724b879a3df0035ff487fd6f

Godown.dll

967ac245e8429e3b725463a5c4c42fbdf98385ee6f25254e48b9492df21f2d0b

8fb9a22b20a338d90c7ceb9424d079a61ca7ccb7f78ffb7d74d2f403ae9fbeec

hodll.dll

0c09fedc5c74f90883cd3256a181d03e4376d13676c1fe266dbd04778a929198

Abused Common Resources

pssdk41.sys

048208864c793a670159723b38c3ea1474ccc62e06b90833bdf1683b8026e12f

ViewScreen.dll

5a924dec60c623cf73f5b8505e11512ad85e62ac571a840ab0ff48d4a04b60de

lame_enc.dll

c84100d52c09703e32951444bd7ba4e22c5d41193e7420aacbbc1f736f4c4e1f

0091e2101f00751c4020ef8e115cfe12a284c9abacc886f549b40a62574a7510

YARA rules available here

J A G-S

https://raw.githubusercontent.com/juanandresgs/YARA/master/apt_ZZ_Sig37_NAZAR.yara
http://10.10.0.46/blog?author=5de05bd68772d028587d08bf

