How Analysing an AgentTesla Could Lead To Attackers
Inbox - Part |

Ls

Suraj Malhotra April 13, 2020

® AGENT TESLA
Basic Analysis, 248
Unpacking
&
Decrypting Strings

HASHES: : DOMAINS:

If you’d read my previous articles | assured that I'll be releasing some article every week but
now that seems nearly impossible due to some time constraints. | would have shared some
things from my real life and new interesting security related things | come across but | don’t
think that will happen too coz | think it will decrease the quality of the blog somehow If i begin
to post my random findings which may seem boring to some other readers.

What is the thing | love most about Security in general is the research part.. How we can get
to real low level to find vulns. And this can happen only if we spend weeks.. maybe months
reading and testing it out to give a detailed explanation.

Anyways if you have any suggestion/advice regarding this you can always comment and let
me know.

Introduction

So as | promised previously this one is going to be .NET.
PS This is my first post on analysing a live malware sample and I'm not experienced in this
field.

1/20

https://mrt4ntr4.github.io/How-Analysing-an-AgentTesla-Could-Lead-To-Attackers-Inbox-1/
https://mrt4ntr4.github.io/img/MA/sample1/thumb1.png
https://mrt4ntr4.github.io/EXTORY-Crackme/

| know there are other blogposts on AgentTesla online but | didn’t find them as detailed as
this one’s going to be.

And Yeah | also know the title seems to be a clickbait but its true XD

| have divided it into 2 parts and they have around 70+ screenshots as | believe in the fact
that Pictures are louder than words :)

This is a live malware and | don’t want anyone to maliciously use the attacker’s
credentials, so obviously | would not give out this sample’s hash and will be redacting a
few things as well.

To start with, | found this sample on Malware Bazaar and it is tagged as a COVID19 malware
spead through spearphishing.

Luckily this sample doesn’t have any anti-debug/vm techniques implemented. Also I've not
setup my Sniffer VM with inetsim etc. | found it to be fileless. It has a Virustotal Score of
22/71 at time of writing this.

Static Properties Analysis

| started off with DIE and observed that its .NET based.

EntryPoint: 00072d4a = ImageBase: 00400000

MumberQfSections: 0003 = SizeOfImage: 00073000

library MNET(w2.0.50727) [
linker Microsoft Linker(48.0)[EXE3Z]

Entropy(bits/byte): 7.598271

PR Butac

Next we can check for some strings in the binary, ANSI doesn’t show anything usually and its
same in this case too. Observing the UNICODE strings it looks like this was basically based
on a photo manager or something.

2/20

https://bazaar.abuse.ch/
https://mrt4ntr4.github.io/img/MA/sample1/die_basic.PNG
https://mrt4ntr4.github.io/img/MA/sample1/die_entropy.PNG

Unrecognized album file format 0000b578
Yalbum
MyPhotos {0: £} {1: &}

-[I:I]:- - M'{.«'F"’ll:ltl:ls {1: #][: #}'

COpen Album

Album files (*.abm]|*.abm|all files (*.%)|*.*

Add Fho

Image Files (JPEG, GIF, BMFP, etc.)|*.jpa;*.jpeg; *.aif; *. bmp; =, 4if; *.1...

D:\CurrentWorkTmp 0000bab3

But wait if we scroll down we find something interesting...
Yeah It looks similar to base32 encoded string and below it we can see some Game related
strings such as frmGameOver, You win!, etc.

AMSI Siz Slze &
UMICODE
I:r'!,a' p to

Links Tammera 0000ches

Bettye Soderberg 0000chc3

_2048 0001ac3c 0000

piTitle 0001acs2 000K

IblInfa 0001acF2 0000

Tize 0001acf2

btnExit 0001ad04 0000

btnAgain 0001adia

frmGameCver 0001ad3s6

You win! 000 1ad4ge

echo JVNJAA |
base32 -d

_ base32: invalid
input

Cool It starts with the MZ Header and this confirms that its base32 encoded.
Unfortunately we can’t copy the whole string here but we can just view it in hexdump by right
clicking it in DIE.

3/20

https://mrt4ntr4.github.io/img/MA/sample1/die_strings1.PNG
https://mrt4ntr4.github.io/img/MA/sample1/die_strings2.PNG

Mode Syntax
Reload

Cursor:

=

B b B oo o

7
AL

A
A_A.
Y _ A

F.
A
A.A.
C_A

-fa.
A
fi.fa.
A
fi.fa.
A
A_A_
A n
A_A

T T N

e
Y
hsl
"

HH B oo e e
OGS H OO

[7L]

0y oW

(3]
=M mmm e e

P

wn

oo - om e

wn
o0oH e

2 2
CRELR
ELB
-7.7
3 3
CRELR
e
BB
3 n
BB
3 n
BB
3 n
BLR
3z
BEB
2 2
BB

A A AR B R

LA RAEREERE
oz
CELR
3 3
CRELR
4R
Do
o
R4
E.¥
-
BLY

o
IS IR S [T

L)

wn
%]
0

Behavioral Analysis

iy

Now we have the coolest part of running it in a sandbox environment.

| used any.run and selected a Win7 32 bit VM (Basic plan) and noticed its execution.
Hmmm.. So Its silent and doesn’t do any activity on the screen.

So, Any.run has this feature of mapping MITRE Techniques it notices through the malware
activity.

4/20

https://mrt4ntr4.github.io/img/MA/sample1/die_hex.PNG
https://media.giphy.com/media/tova1OG4DBgD6/giphy.gif
https://any.run/
https://attack.mitre.org/techniques/enterprise/

Credential Access Discovery Lateral Movement Collection Exfiltration

server.

TEM
dmin\AppData‘\Roaming\Mozilla\Firefox\Profile

Woah!! It accesses over 72 files and is basically looking for browsers, ftp clients etc. So
Any.run has 2 additional browsers | know of ie. Firefox & Opera. And Firefox for instance
requires logins.json and key4.db for the passwords which it accesses obviously. [

We can also view the connection requests and looks like its sending data over smtp with
smitp.yandex.com and sends some data which includes User-PC.

5/20

https://mrt4ntr4.github.io/img/MA/sample1/anyrun_mitre.PNG
https://mrt4ntr4.github.io/img/MA/sample1/anyrun_creds.PNG
https://support.mozilla.org/en-US/questions/1236145

VM : 49316

EHLO User-PC..

| also downloaded and analysed the pcap file from any.run but it doesn’t look suspicious as |
don’t think the browsers in any.run had some saved passwords.

Dynamic Analysis

So to check what it does under the hood we can use dnspy and get on with debugging stuff.
| moved over to my setup of Victim VM for which | use Win7 x64.

Unpacking Methods

PS | also tried unpac.me for the first time and | am very much impressed with it. For this
sample it resulted in 3 children.

Lets see how far can we make it manually.
Hmm.. It doesn’t look quite obfuscated right now.

6/20

https://mrt4ntr4.github.io/img/MA/sample1/anyrun_smtp.PNG
https://unpac.me/

Type References

References

Resources

TUTORIALS. Library

Winforms5and

WinformsSandbox. ComponentModel
Winforms5andbox. Models. Classes
WinformsSand MaodelsInterfaces
WinformsSand Aodels. Classes
WinformsSand vbAodels.Interfaces

WinformsSand

its Entrypoint and run

8; j < 4; j++)

pictureBox =
pictureBox. =

Nice, We end up in frmMain and then we can just step in InitializeComponent. | noticed
that class2 looked suspicious and setup a breakpoint there.

Ahh actually the base32 encoded payload was used here.

7/20

https://mrt4ntr4.github.io/img/MA/sample1/e1.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e2.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e3.PNG

AAARAABT DNBPW
ATLPAATITAQIQILOZAY

So this is the first level of unpacking where it simply invokes a function named 720 with
arguments as Class1.Myproperty & 2048. €]

Eer:coded)).ie—_'_. pes(}[@];

object obj = x.InvokeMember("f28", BindingFlags.InvokeMethod, null, null, new object[]

Classl.MyProperty,
" 248"
s

result = ((MethadInfo)methodBase).Invoke(target, bindingFlags, binder, providedArgs, culture);
(ob] !=)

binder.RecrderArgumentArray providedArgs, obj);

Now stepping in we find some interesting locals and the payload file is a dll named
DefenderProtect.dll.

Locals
MName Value Type
@ 552 _2048.Class2
4@ x {Mame = ss1” FullName = "Defender_Protect.Class1"} System.Type |System.RuntimeType
{Defender Protect, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null} System.Reflection.Assembly
"Defender_Protect.Classl, Defender Protect, Version=1.0.0.0, Culture=neutral,...
System.Reflection. TypeAttributes
{Name = "Object” FullName = "System.Object"} System.Type (System.RuntimeType
(System.Reflection.MemberInfo) System.Reflection.CacheIntern System.Reflection.CacheInternalC
System.RuntimeType.RuntimeTyy c System.RuntimeType.RuntimeTyp

https://mrt4ntr4.github.io/img/MA/sample1/e4.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e5.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e6.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e7.PNG
https://docs.microsoft.com/en-us/dotnet/api/system.type.invokemember?view=netframework-4.8#System_Type_InvokeMember_System_String_System_Reflection_BindingFlags_System_Reflection_Binder_System_Object_System_Object___

Locals

Mame Value

(=] 3 1" FullMame = der_Prot "t yp n.RuntimeType
@ name
@ invokeAtir System.Reflection.BindingFlags

[n-m Ff.-ETEFEr'n:!':E
I Bl Resources
b{} -

4 {} Defender Protect

@06000005

oitl(detroit2, cc)));
", BindingFlags.InvokeMethod, null, null, new object[]

The array has the final decrypted 2nd payload file so we can dump it using Memory Window
too.

9/20

https://mrt4ntr4.github.io/img/MA/sample1/e8.PNG
https://mrt4ntr4.github.io/img/MA/sample1/defprotectdll.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e9.PNG

Classl Edit Value F2
Class:
Value Ctrl+5Shift+C

Co Py
Add Watch

Make Object ID

Save...
Refresh
Show in Memory Window Memory Ctrl+1
» Language Memory 2 Ctrl+2
Select All Ctrl+4 Memony 3 Ctrl+3
100 % ¥ Hexadecimal Display Ctrl+4
Locals Digit Separators
Mame
@ detroit2
@ cC
b @ array
P @ assembly Public Members

Expand Children

But whats the fun in doing that, instead we can try to understand the unpacking algo. Hmm..
the resource from 2048 named ABHqQTRJFnsWBEzLtXeCZ is used in this process.

The main algo resides in fcn detroit1 and detroit
detroit1 adds a pixel’s rgb value to a list when it is non-black.

10/20

https://mrt4ntr4.github.io/img/MA/sample1/e10.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e11.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e12.PNG

Then detroit does a repeating key xor on the list returned by detroit0
where the key is first 16 bytes of the list.

[] ii)

[ii. - 16 - 1+ 1];
(ii, 16, array, @, array. M5
-1
<= num; Ii++)

array[i];

So | just saved the bitmap image and wrote a python script to test the algo as well.

11/20

https://mrt4ntr4.github.io/img/MA/sample1/e13.PNG
https://mrt4ntr4.github.io/img/MA/sample1/det.PNG

from PIL import Image
from hexdump import *

img = Image.open("ABHQTRJFnsSWBEzLtXeCZ")

pixels = img.load()
pixList = []
width, height = img.size

for x in range(width):
for y in range(height):
cpixel = pixels[x, Y]
if(cpixel '= (0,0,0,0)):
for value in cpixel[:3]:
pixList.append(value)

xorkey = pixList[:16]
encPayload = pixList[16:]

i=0

while(i < len(encPayload)):
encPayload[i] A= xorkey[i%16]
i+=1

dec = '"'.join([chr(d) for d in
encPayload[:9200]])
print hexdump(dec)

payload = open('dontopen.gg', 'wb')
for lol in dec:
payload.write(chr(lol))

12/20

00000000: 4D 5A 90 00 03 00 0O GO 04 00 00 00 FF FF 00 00
00000010: B8 00 GO OO OO0 OO OGO GO 40 OO0 00 0O GO GO 60 00

00000020: GO 0O OO OO0 6O GO 0O GO 06O 0O OO 00 60 GO 00 06
00000030: 00 00 OO 00 60 GO 0O GO 060 00 0O 00 80 GO 00 06

00000040: OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68

00000050: 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F 1is program
canno

00000060: 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in
DOS

00000070: 6D 6F 64 65 2E OGD OD GA 24 00 0O OO0 60 GO 0O 0O

mode....$.......
00000080: 50 45 00 0O 4C 01 03 OO0 OD C8 84 5E OO0 OO 0O 00
PE..L...... N,

But it just starts a thread and | was unable to debug it.
Also that isn’t a big deal as this was mainly invoking a method from another file it just
unpacked.. _(*Y)_/

13/20

https://mrt4ntr4.github.io/img/MA/sample1/e14.PNG

(num2

return this.m_handle.InvokeMethodFast(obj, null, this.Signature, this.m methodAttributes, typeOwner);

s, binder, invokeAttr, culture,
t(obj, array, - - .m_methodAttributes, typeOwner);

(num2

Now when | stepped in the above line to get value for text | observed that a function is called
repeatedly. Hmm.. Maybe It is used for some deobfuscation or decryption of suspicious.

14/20

https://mrt4ntr4.github.io/img/MA/sample1/e15.PNG
https://mrt4ntr4.github.io/img/MA/sample1/3rd.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e16.PNG

num = (num2 *

(num2 * 8245727790 ~ 1708@77776U);

i)

Decrypting Strings

We step into that suspicious function obfuscated as \u206E and at first It looks like assigning
a list of objects from \uFEFF

(A_B)

object[] uFEFF = <ModuleX.\uFEFF;
T - o

*

nuwﬁﬂ
nums ;

(55

The object array looks like the following in the locals window and contains integer arrays.

15/20

https://mrt4ntr4.github.io/img/MA/sample1/e17.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e26.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e18.PNG

(000304E0
[0x00000362]
[0x00000010]

0xCEBIDIEF

(0 C3BBIES
0x0ADE5631
0xD340E817
0xADAT2279
(T8B0CC14
(x3CE3DDCF
07403 B9F4
(,93DFCDEI
(h2AG23833
055027 A082
0x09AFABFC
(x9A3D3387
0xFFD4DBA4
(+BEAFE42D
0xFFB8D934

[0x00000010]

0xBBGD39B5
0x0D3ADB3F
0xC2778268
OxETFE4105
(B2A4E9D9
0+082F196E

-]
-]
-]
-]
-]
-]
-]
-]
@
@
@
o
@
@
@
o
1
@
@
o
@
@
@

So we setup a normal breakpoint at the function return. It passes the beginning 32 bytes of
the string as key and the next 16 bytes as the IV to the Decryption function.

[] array3 = { []J)JuFEFF[num3];
[] array4 IELGCVER F4];
: (array3, @, array4, @, array3.
[] arrays = array4;
numl@ = arrays. - (num8 + num9);
[] arraye = [numl@];
(array5s, @, array, @, numg);
(array5, num8, array2, @, num3);
. (array5, num8 + num3, array6, @, numl@);
return Encoding.UTF8.GetString(<Module>.\u28@d(array6, array, array2));

https://mrt4ntr4.github.io/img/MA/sample1/e19.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e20.PNG

And Now execution is passed over to Rijndael(AES) decryption function and we can clearly
see that it isn’t obfuscated and has variable names as key & 1V, and looks like CBC mode
ezpz :)

(1 ([14A8, [141, [1A.2)

Rijndael rijndael = Rijndael.Create();

We can just place a Breakpoint at return text in CreateStringFromEncoding and we will get
the decoded string in the locals window and we’d get to know whenever this decryption func
is invoked as well.

(* bytes, byteLength, Enc ng encoding)

arCount(bytes, byteLength, e

(charCount);

encoding.GetChars(bytes, byteLength, ptr, charCount,
» text;

100 %o

Locals
MName Value ype
b@ $ ion emn.MullReferen m.MullReferenceExceptic
b @ bytes i
@ bytelength
I @ encoding
@ charCount
text
@ ptr

So this time it returns “None” due to exception but sometimes the same gives “WinMgmt:”.
Also we can now rename it to decStr() for our ease.

Start Debugging

Add Breakpoint

Show Mext Statermnent Alt+MNum *

Set Mext Statement Ctrl+Shift+F10

Go To Disassembly

object[] uFEFF = <Module
LT (A Ly. Add Method Breakpoint
Ly
L

num3 3

Edit Method... Alt+Enter

3
@
>

L=
L
X

04
c#

nums ; Edit Method (C#)... Ctrl+5Shift+E

Moving on.. It access/creates some environment variables.

17/20

https://mrt4ntr4.github.io/img/MA/sample1/e21.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e22.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e23.PNG

I @ encoding
@ charCount
o text

Locals

WET T
bytes
bytelLength
encoding
charCount

@ text @"\Zeinsfolder?s) Jeinsname?:"

ptr

Now | thought of decrypting all of the strings with python.

Unfortunately | was not able to copy the content of the encrypted int array from the locals
and copying it from the declaration was not efficient.

The problem with dumping a array local from the memory window (in this case) in dnspy is it
just shows it in reverse (maybe coz of little endian).

But the array starts below what it refers to there and | was somehow able to select it
manually and dumped it finally.

Then | tried to implement the algo in python and coz of my weird workaround for dumping it,
the script resulted in some errors. But | noticed that the error arised due to the values in list
strEnds(below) and they were pretty common at the string end and | used them to split the
dump and get a single string. | think this was because of the uint[] initialization in the object
array.

Anyways It finally worked and there were around 865 enc strings.

PS The Key and IV for every cipher is different and is taken from the encoded string as well.

import string
from Crypto.Cipher import AES

def decipher(dd):

key = dd[0:0x20]

iv = dd[0x20:0x30]

cipher = dd[0x30:]

rijn = AES.new(key, AES.MODE_CBC, 1iv)

decipher = rijn.decrypt(cipher).strip()

plain = filter(lambda x: x in string.printable,
decipher)

18/20

https://mrt4ntr4.github.io/img/MA/sample1/e24.PNG
https://mrt4ntr4.github.io/img/MA/sample1/e25.PNG
https://media.giphy.com/media/FA77mwaxV74SA/giphy-downsized.gif

print plain
dmp = open('dump.txt').read()

strEnds = ["0000000048191F0110000000",
"0000000048191F0114000000",
"0000000048191F0118000000",
"0000000048191F011COO0000",
"0000000048191F0124000000",
"0000000048191F0120000000",
"0000000048191F012CO00000",
"0000000048191F0128000000",
"000000004819C4001CO00000"]

for end in strEnds:
dmp = dmp.replace(end, " ")
lol = dmp.split()
c =0
for x in lol:
print c,
try:
decipher(x.decode('hex"))
except:
print "[!] ERROR :", x , "Length :",
len(x.decode('hex"))
c+=1

Full Results : dec.txt

Some of the decrypted strings are as follows :

19/20

https://mrt4ntr4.github.io/files/MA/sample1/dec.txt

WScript.Shell

Software\Microsoft\Windows\CurrentVersion\Run
SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\StartupApprove
d\Run

SELECT * FROM Win32_Processor

Opera Software\Opera Stable

Yandex\YandexBrowser\User Data

Chrome\Chrome\User Data

\FTP Navigator\Ftplist.txt
HKEY_CURRENT_USER\Software\FTPWare\COREFTP\Sites

Hmm so it also uses WScript.Shell, maybe for executing some system commands.
Also it uses some registry keys for persistence and adding itself to the startup.

And Gets some info about our system using Win32_Processor

Access locations associated with browsers mainly “User Data” and looks for some FTP
credentails too.

So Now | guess Its enough for Part-1, Head over here for the 2nd Part.

20/20

https://ss64.com/vb/shell.html
https://devblogs.microsoft.com/scripting/use-powershell-and-wmi-to-get-processor-information/
https://mrt4ntr4.github.io/How-Analysing-an-AgentTesla-Could-Lead-To-Attackers-Inbox-2/

