Thinking Outside the Bochs: Code Grafting to Unpack
Malware in Emulation

fireeye.com/blog/threat-research/2020/04/code-grafting-to-unpack-malware-in-emulation.html

) FIREEYE

Threat Research Blog

April 07, 2020 | by Michael Bailey

This blog post continues the FLARE script series with a discussion of patching IDA Pro
database files (IDBs) to interactively emulate code. While the fastest way to analyze or
unpack malware is often to run it, malware won’t always successfully execute in a VM. | use
IDA Pro’s Bochs integration in IDB mode to sidestep tedious debugging scenarios and get

quick results. Bochs emulates the opcodes directly from your IDB in a Bochs VM with no OS.

Bochs IDB mode eliminates distractions like switching VMs, debugger setup, neutralizing
anti-analysis measures, and navigating the program counter to the logic of interest. Alas,
where there is no OS, there can be no loader or dynamic imports. Execution is constrained
to opcodes found in the IDB. This precludes emulating routines that call imported string
functions or memory allocators. Tom Bennett’s flare-emu ships with emulated versions of
these, but for off-the-cuff analysis (especially when | don’t know if there will be a payoff), |
prefer interactively examining registers and memory to adjust my tactics ad hoc.

1/12

https://www.fireeye.com/blog/threat-research/2020/04/code-grafting-to-unpack-malware-in-emulation.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/michael-bailey
https://www.hex-rays.com/wp-content/uploads/2019/12/debugging_bochs.pdf
https://www.fireeye.com/blog/threat-research/2018/12/automating-objective-c-code-analysis-with-emulation.html

What if | could bring my own imported functions to Bochs like flare-emu does? I've devised
such a technique, and | call it code grafting. In this post I'll discuss the particulars of statically
linking stand-ins for common functions into an IDB to get more mileage out of Bochs. I'll
demonstrate using this on an EVILNEST sample to unpack and dump next-stage payloads
from emulated memory. I'll also show how | copied a tricky call sequence from one IDB to
another IDB so | could keep the unpacking process all in a single Bochs debug session.

EVILNEST Scenario

My sample (MD5 hash 37F7F1F691D42DCADGAE740E6D9CABG3 which is available on
VirusTotal) was an EVILNEST variant that populates the stack with configuration data before
calling an intermediate payload. Figure 1 shows this unusual call site.

] s 55

73A4245A push ebx

73A42458 sub esp, 26Ch

73A42461 mov edi, esp

73A42463 push hModule

73A42469 maov ecx, 9Ah ; 'S°

73A4246E push [esp+3ACh+var_124]

73A42475 mov esi, offset aCm2IVPNjsEnyqw ; "Cm})2&!j[V&p*njS!EnYqWSBj|WHZFB2"
73A4247A rep movsd

73A4247C movsh

73A4247D call eax

73A4247F add esp, 278h

73A424385 push ebx

73A424386 push DLL_PROCESS_ATTACH

73A42488 push [esp+148h+pefile. imgbase]

73A4248C call [esp+l4dh+pefile.dllEntryPoint]

73442490 push [esp+138h+pefile.imgbase] ; lpBaseAddress
73A42494 call ds :UnmapViewdfFile

Figure 1: Call site for intermediate payload

The code in Figure 1 executes in a remote thread within a hollowed-out iexplore.exe
process; the malware uses anti-analysis tactics as well. | had the intermediate payload stage
and wanted to unpack next-stage payloads without managing a multi-process debugging
scenario with anti-analysis. | knew | could stub out a few function calls in the malware to run
all of the relevant logic in Bochs. Here’s how | did it.

Code Carving

| needed opcodes for a few common functions to inject into my IDBs and emulate in Bochs. |
built simple C implementations of selected functions and compiled them into one binary.
Figure 2 shows some of these stand-ins.

2/12

https://www.virustotal.com/gui/file/dda11fe201d188ea32020cda0eac130651bb0ff1f8991c2f73820d8a0b9e6242/details

void * _ cdecl my memcpy{void *dst, const veid *src, size t len)
{

unsigned char *d = {(unsigned char *)dst;

const unsigned char =s {const unsigned char *)src;

while (len—-) { *(d++) = *(s++); }

return dst;

¥

void * _ cdecl my memset{woid *dst, int fill, size t len)

{

unsigned char *d = {(unsigned char *)dst;

while (len—-) { =({d++) = (unsigned char)fill; }
return dst;

¥

char * _ cdecl my_strcpy{char =dst, const char =src)
{

char =d = dst;

while {=d++ = =5prc++);

return dst;

Figure 2: Simple implementations of common functions

| compiled this and then used IDAPython code similar to Figure 3 to extract the function
opcode bytes.

def emit_fnbytes_ascii(fuvazNone):
fua = fua or here()
fua GetFunctionAttr(fva, FUNCATTR_START)
va_end = GetFunctionAttr(fua, FUNCATTR_END)

va fua
nm Name(fva)

s =

while va '= va_end:
size = ItemSize(va)
the_bytes = GetManyBytes(va, size)
s +:= binascil.hexlify(the_bytes)
va = NextHead(va)

return s
Figure 3: Function extraction

| curated a library of function opcodes in an IDAPython script as shown in Figure 4. The
nonstandard function opcodes at the bottom of the figure were hand-assembled as tersely as
possible to generically return specific values and manipulate the stack (or not) in

3/12

conformance with calling conventions.

fnbytes_memcpy = (
'558bec8bid5108b4d1083e901894d1085¢c0741e8b55088b450c8a08880a8bh5508
'83¢2018955088b450c83cN0189450cebd28b45085de3"
)

fnbytes_memset = (
'558bec8bid5108b4d1083e901834d1085¢c074138b55088a450¢c88028b4dD883¢c1 "’
'01894d08ebhdd8h45085dc3 "’
)

fnbytes_strepy = (
'558bec8bidS0cOfbe0885¢c9741e8b55088b450c8a08880a8h550883¢201895508°
'8bh450¢c83¢c00189450cebd88b45085de3"

)

fnbytes_retn® = "31c0c3’
fnbytes_retnO_larg = '31c0cz20400°
fnbytes_retn0_3args = '31c0c20C00°
fnbytes_retnl = '31c040c3"”
fnbytes_retnl_6args = "31c040c21800°

Figure 4: Extracted function opcodes

On top of simple functions like memcpy, | implemented a memory allocator. The allocator
referenced global state data, meaning | couldn’t just inject it into an IDB and expect it to
work. | read the disassembly to find references to global operands and templatize them for
use with Python’s format method. Figure 5 shows an example for malloc.

4/12

g_fnbytes_allocators[METAPC][32][‘'malloc’] = (
957 # push ebp
"8bec’ mov ebp, esp
'51° push ecx
‘al{next_}’ mov eax, _next
‘05{arena}’ add eax, offset _arena
"8945fc¢c’ mov [ebptret], eax
'8b4d08 " mov ecx, [ebptsize]
"8b15{next_}"’ mov edx, _next
‘8d440aftf’ lea eax, [edx+tecx-1]
'OdFFOfO000° or eax, OFFFh
"83c001° add eax, 1
‘a3{next_}’ mov _hext, eax
"8bisSfc’ mov eax, [ebptret]
‘8bed’ mouv esp, ebp
'5d’ pop ebp
‘3’ retn

o & e o < < S 4 e & -« - - ¢ - - - - - -

Figure 5: HeapAlloc template code

| organized the stubs by name as shown in Figure 6 both to call out functions | would need to
patch, and to conveniently add more function stubs as | encounter use cases for them. The
mangled name | specified as an alias for free is operator delete.

= {

"IsDebuggerPresent’,): fnbytes_retno,
"CreateThread’,): fnbytes_retnl_Bargs,

“free', '_free', '?73@YAXPAXEZ"): fnbytes_retno,
"HeapFree',): fnbytes_retn0_3args,

"strepy’, ‘_strcpy’): fnbytes_strcpy,

‘memcpy’, ‘_memcpy’): Fnbytes_memcpy,

‘memset’, ‘_memset'): fnbytes_memset,

Figure 6: Function stubs and associated names

To inject these functions into the binary, | wrote code to find the next available segment of a
given size. | avoided occupying low memory because Bochs places its loader segment below
0x10000. Adjacent to the code in my code segment, | included space for the data used by

my memory allocator. Figure 7 shows the result of patching these functions and data into the
IDB and naming each location (stub functions are prefixed with stub).

£ Functions window o & x [E oA view-» B [S] Hex view-1 [A] structures] Enums ¥E Imports = Exports

Function name "
|T | Kuvnwina

‘5 GetAdaptersinfo

|71 _EH_prolog3

E __EH_prolog3_GS

200 segBed segment at @ public '' use32
} assume c¢5:segled

e assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
t stub_malloc_next dg @

\f-| __EH_epilog3 segBe4: BLE3008 align 1eh
2l - seglid: ealeEzele
| f| _EH_epilog3_G5 5eg0e4:001E3010 ;
H stub_VirtualAlloc seg@ed: ealB301e
o <epBB4:00163018 ; Attributes: bp-based frame
[£] stub_malloc segPed: 0a1B3010
r3| s H: 238 stub_VirtualAlloc proc near
7| stub_HeapAlloc egB84: 00163018 stub_Virtua p
‘—_I -riear segPed: 0a1B83010
‘ﬂ stub_free segBed:@e1E3810 var_4 = dword ptr -4
vl segled: eelB381e arg 4 = dword ptr @ch
‘f_| stub_free SegB04: PA1EIALE
i‘ stub_?73@YAXPAX@Z segled:palB3ale push ebp ; VirtualAllec implementation generated by FLARE Code Grafter
E segBi4: #1381l mov ebp, esp
[#] stub_memcpy SeghR4: 0B183013 push ecx
= 3 183808k
stub__memc segBdd: 8p1B3814 mo eax, ds:183688
%‘ - Py seg@id: 0e1E3819 add eax,
| f| stub_CreateThread ceg@B4: BO1BIOLE mow
- Segaed: eelB3621 mov
‘-ﬂ stub_HeapFree seg004; POLEIO24 mov
|f| stub_lsDebuggerPresent 5eg004: 00183024 lea
= Seg@Bd: BB1E302E or
(7] stub_strcpy SegoR4:0O1B3033 add eax, 1
\fl STUb_SUCDy’ Segeed: ealB3ess mow ds:1B3eeeh, eax
— segB4: 0B1E3838 moy eax, [ebptvar_4]
| f| stub_memset seg8ed: PBLEIB3E mov esp, ebp
> segB04: 0BLE3048 pep ebp
(7] stub_memset M segBRd: Ba1E3B41 retn 18h
< > segB84: 00163841 stub_Virtualalloc endp
Line 114 of 128 UNKMOWN 001B3024: stub_ VirtualAlloc+l4 (Synchronized with Hex View-1) v

Figure 7: Data and code injected into IDB

The script then iterates all the relevant calls in the binary and patches them with calls to their
stub implementations in the newly added segment. As shown in Figure 8, IDAPython’s
Assemble function saved the effort of calculating the offset for the call operand manually.
Note that the Assemble function worked well here, but for bigger tasks, Hex-Rays
recommends a dedicated assembler such as Keystone Engine and its Keypatch plugin for
IDA Pro.

def patch_call{va, new_nm):
ok, code = idautils.Assemble{va, new_asm)

if not ok:
logger .warn(‘'Failed assembling %s: %s' % (phex(va), new_asm))
return False

orig_opcode_len = idc.get_item_size(va)
new code_len = len{code)

idaapi.patch_bytes(va, code)

return True
Figure 8: Abbreviated routine for assembling a call instruction and patching a call site to an
import

6/12

https://twitter.com/mykill/status/1166797442311962626
http://www.keystone-engine.org/
http://www.keystone-engine.org/keypatch/

The Code Grafting script updated all the relevant call sites to resemble Figure 9, with the
target functions being replaced by calls to the stub_ implementations injected earlier. This
prevented Bochs in IDB mode from getting derailed when hitting these call sites, because the
call operands now pointed to valid code inside the IDB.

20h ;
call stub_malloc

unsigned int
Patched for emulation, was:
call ?22@YAPAXI@Z; coperator new(uint)

fses fme 'wes

pop ecx
mov ebx, eax
push 8
pop ecx
mov esi, offset aSsdWksrrivjrqq ; "Ss)4:WKsRr(3/VIrQq&2.UIqPp¥1-THp"
mov edi, ebx

movsd

xor eax,
inc eax

Figure 9: Patched operator new() call site

Dealing with EVILNEST

The debug scenario for the dropper was slightly inconvenient, and simultaneously, it was
setting up a very unusual call site for the payload entry point. | used Bochs to execute the
dropper until it placed the configuration data on the stack, and then | used IDAPython’s
idc.get_bytes function to extract the resulting stack data. | wrote IDAPython script code to
iterate the stack data and assemble push instructions into the payload IDB leading up to a
call instruction pointing to the DLL’s export. This allowed me to debug the unpacking process
from Bochs within a single session.

| clicked on the beginning of my synthesized call site and hit F4 to run it in Bochs. | was
greeted with the warning in Figure 10 indicating that the patched IDB would not match the
depictions made by the debugger (which is untrue in the case of Bochs IDB mode). Bochs
faithfully executed my injected opcodes producing exactly the desired result.

712

segeel:
segeéel:
seglel:
Segeel:
segeel:
seglel:
segeel:
segeel:
segeel:
segléel:
seglel:
segeel:
segleel:
segl@el:
Segeal:
segeel:
seglel:
seglel:
segeel:
segeel:
segleel:
seglel:
seglel:
segleel:
segléel:
seghel:
segeel:
segeel:
seglel:
segeel:
segeel:
segleel:
segléel:
seglel:
segleel:
segléel:
seglel:
Segeal:

08011600 ; Segment type: Regular

00011000 segl@l

00011000
28011000
eeallenn
20011000
eeelleez
eaallee4
eeallees
0801168t
eee1l1els
eeallels
eeallelD
20011022
eea11e27
eaal11e2C
egallesl
000811636
28011838
egalle4e
eealle4s
08611644
eealle4r
eealles54
08611659
80801165E
28811863
eealleecs
@e01106D
088116872
20011877
eealle7C
eeellesl
28011886
eeall1ess
20011890
208011095
22811894

segment byte public '' use32
assume cs:seglel

;org l1leeeh

assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing

push 2]

push 5]

push @F2h ; "0’
push @ABE1E4B1lh
push P
push
push
push

ﬁ!'hwhrning

_ !\ The database has been patched.

There might be some inconsistency between the disassembly
in the database and the actual debugger process.

[] pon't display this message again (for this database only)

push BE7EGBBE3h
push S@36@0E8h
push BFS5F67EDFh
push 14E2 Eh
push
push
push
push 567AB1Alh
push BFAG8149Dh
push 59281478h
push 414C1BE6h

Figure 10: Patch warning

| watched carefully as the instruction pointer approached and passed the IsDebuggerPresent
check. Because of the stub | injected (stub_IsDebuggerPresent), it passed the check

returning zero as shown in Figure 11.

8/12

var_23B= byte ptr -23Bh
var_238= byte ptr -238h EAX 00000000 '
var_237= byte ptr -237h EBX 00000000 ‘-
i 2R I ECX 00000000
arg_e= :mrj ptr 8) EDX 00000000 '
arg_4= dword ptr @C)
arg_8= byte ptr 10h ESI041C2FB1 % STACK:041C2FB1
SRR e Dytr ol 278 EDI 041C2D29 % STACK:041C2D29

274= E 27C
SrESTE drerd PR EBP041C2D38 % STACK:041C2D38
e ESP041C2A80 % STACK:041C2A80
mov ebp, es
and csb, OFFFFFFFSh EIP001A1437 % DePatchEntry+42
sub esp, 2Ch EFL 00000046
mov eax, securiti cookie
mov [esp+2ACh+var_4], eax
mov eax, [ebp+arg_2]
push ebx
mov ebx, [ebp+arg_4]
push esi
push edi
mov ecx, 9Ah ; 'E°
lea esi, [ebp+arg_8]
lea edi, [esp+2B8h+var_278]
rep movsd Threads
mov [esp+2B8h+var 2AB8], eax
mov [esp+2B8h+var_29C], ebx Decimal Hex State
movsb
call stub_IsDebuggerPresent 1084 43C Ready
nop
test eax, eax
jnz loc_1A15D9

1
=
xor edi, edi

Figure 11: Passing up IsDebuggerPresent

| allowed the program counter to advance to address 0x1A1538, just beyond the unpacking
routine. Figure 12 shows the register state at this point which reflects a value in EAX that
was handed out by my fake heap allocator and which | was about to visit.

9/12

push ebx ; void * -
call <tub_223@YAXPAXG? EAX Q91BDOG0® % segb06:001BDOGA
pop ecx EBX©01B3000 % seg006:001B3000
lea eax, [esp+2B8h+var_2A3] ECX F32EF280 %
push eax
call unpack2 EDX 991CD800 W segbb6:001CD800
e ESI041C2BO1 % STACK:041C2BO1
mov esi, eax
mov eax, [esp+2B8h+var 2A8] EDI 901B3020 W segbi6:001B3020
push esi .
lea ecx, [esp+28Ch+var 298] EBP941C2D38 & STACK:041C2D38
call map_into pagefile mem ESPO41C2A7C W STACK:841C2A7C
h i : void *
Pall stub_ 223gvAXPA@E EIP@01A1538 % DePatchEntry+143
pop ecx EFL 00800046
lea ecx, [esp+2B8h+var 298]
call resolve_primary_export
test eax, @aw
)z shor® € jump to address X
Jump address | ea v
sub esp, 26CH - '
mov edi, esp “ ‘ e J | Help
push [esp+524hrvar—=oe o -
mov ecx, 9Ah ; 'E° ’ |;::h esi Threads
push [esp+528h+var_24A8] i
lea esi, [esp+52Ch+var_278] Decimal Hex State Name
d
ozl 1096 448 Ready 9dd70f:
call eax
add esp, 274h
push 2]
jmp short loc_1A15C5
|
Yy
i 55

Figure 12: Running to the end of the unpacker and preparing to view the result

Figure 13 shows that there was indeed an IMAGE_DOS_SIGNATURE (“MZ”) at this location.
| used idc.get_bytes() to dump the unpacked binary from the fake heap location and saved it

for analysis.

10/12

“ IDA - 9dd7i0fdcScceadb14T6e5aTe02f2884.idb (9ddTi0f4c5cceadb14T6e5aTe0272064) - O s |

File Edit Jump Search View Debugger Options Windows Help _
: D8y 3

» [0 0O iocal Bochs debugger W B ohho EHE T & ek

5 .]
| [5
| Library function [l Regular function Il Wetruction Data Unexplored Extemal symbol | 0
Debug View (x| (& Structures E| Enums :_‘:.‘ nest_dropper 2
O & x g General registers O& = |
~ ||EAX 881BDOBO W segBdn:B881BDB8E ~|lID 8 ~
EBX0@1B3000 % sepfdh: 00163008 VIP @
ECXF32EF280 w \.I'I.F a
LMMMJLW v|AC @
] Threads 0o & x
Decimal Hex State MName
~ El 1096 448 Ready Sdd7f0f4cicceadb1476e5aTeh. .
URENOWN 001BDO0O: 8¢ (Synchronize v
£ >

5] Hex View-1 O & x | O Stackview O & x
OOLICDCFED 98 00 90 00 00 20 60 A8 69 62 90 00 B2 8@ ~ 841 | STACK:241CZA5Q ~
@IBCFFO @O 60 06 @0 00 90 60 B0 6D 60 06 00 60 06 ...
(ELe] 2 4D 5A S50 @8 63 20 @8 82 84 B2 FF FF 8@ 8@ MZ......
po1eDe1e [o0 00 0o 00 00 00 00 40 60 06 00 00 08 |

UNKNOWH| 001BDOL0: ==g006:001BDOLO

ASO
4 B2eae008
o 4 Degoenen

o |[PA41C2ABC BRB8E2GH

28 o
00 @
20 o
00 e

T O

< > UNENOWN 041C2A7C: STACK:041C2ATC (Synchronized with ESF) W
IEI Cutput window O & x
IPython>open('dumped.bin', "wh').write(GetManyBytes(here(), 90112)) Cl
! Python || |
lau: idle Down Disk: 7268

0 dumped.bin 4/26/2019 5:06 AM BIN File 88 KB
T8items 1item selected 139 KB ===

Figure 13: Dumping the unpacked binary

Through Bochs IDB mode, | was also able to use the interactive debugger interface of IDA
Pro to experiment with manipulating execution and traversing a different branch to unpack
another payload for this malware as well.

Conclusion

Although dynamic analysis is sometimes the fastest road, setting it up and navigating minutia
detract from my focus, so I've developed an eye for routines that | can likely emulate in
Bochs to dodge those distractions while still getting answers. Injecting code into an IDB
broadens the set of functions that | can do this with, letting me get more out of Bochs. This in
turn lets me do more on-the-fly experimentation, one-off string decodes, or validation of
hypotheses before attacking something at scale. It also allows me to experiment dynamically
with samples that won’t load correctly anyway, such as unpacked code with damaged or
incorrect PE headers.

I've shared the Code Grafting tools as part of the flare-ida GitHub repository. To use this for
your own analyses:

1. In IDA Pro’s IDAPython prompt, run code_grafter.py or import it as a module.
2. Instantiate a CodeGrafter object and invoke its graftCodeToldb() method:
CodeGrafter().graftCodeToldb()
3. Use Bochs in IDB mode to conveniently execute your modified sample and experiment
away!

11/12

https://github.com/fireeye/flare-ida/

This post makes it clear just how far I'll go to avoid breaking eye contact with IDA. If you're a
fan of using Bochs with IDA too, then this is my gift to you. Enjoy!

Previous Post
Next Post

12/12

