Nanocore & CypheriT
a

April 4, 2020

2 years ago

Hello everyone! Its been a while since I've posted. There's been some changes in my life that
have distracted me from my malware temporarily. One of those updates is a career change. I
will officially be working as a security researcher and in preparation of that I felt that I
needed to keep my reverse engineering skills sharp. So I went to any.runs malware trends
page, and randomly picked a sample. I ended up picking a Nanocore sample to analyze.
Nanocore has been around for many years and is one of the simpler and cheaper malware
familieis out there but I never had the availability during work to look at it. Since I generally
focus on targeted malware, I knew this was going to be a good change of pace. The sample
can be found here if you wish to follow along.

Technical Analysis

First step as usual, is opening the sample in PE studio for a quick triage.

1/28

https://malwareindepth.com/defeating-nanocore-and-cypherit/
https://any.run/malware-trends/
https://app.any.run/tasks/ba38899e-779b-4f6e-b38b-53f6bfec801b/

property value
e mds CD92C9455DFS07FDDEDABDAE2DE6C20
’}] d‘:;“::;:?;;mg shal SDE23D32A4BDACEDAGAIEBBOCIBIA0S ABDSETSCS
= sha2sé T0E2269730608E20A20EA6FRTAEC 538CO78BDDF 1BDIESBECATDCII6AS37682D
+ file-header (Feb.2020) md3-without-overlay
- optionl-header (6U1) sha'-without-overlay
% directories (8 sha2s6-without-overlay
-+ cections (99.95% first-bytes-hex 4D 5A 90 00 03 00 0O 0D 04 00 00 00 FF FF 0O 00 B8 00 00 00 00 00 00 0D 40 00 0D 00 00 0D 00 00 00
b, first-bytes-text MZ s @
o) file-size 1915904 (bytes)
= size-without-overlay
s entropy 7540
imphash
weabe signature Wlicroseft Visual C++ 8
-k debug Uul.2015) entry-point E2B5 D000 00 EQ 7F FE FF FF CC CC CC CC CC CC CC CC CC 5756 88 74 24 10 38 4C 24 14 88 7C 24 0C
5] manifest (aslnvoker) file-version
wersion (4) descriptien
- file-type executable
-l cpu 32-bit
subsystem Gul
compiler-stamp OxBE4CCFC2 (Tue Feb 18 22.03:46 2020)
debugger-stamp 0x559F936F (Fri Jul 10 02:42:07 2015)
resources-stamp
exports-stamp
version-stamp
certificate-stamp
< >
sha256: TOE2260739608E20A20E46FBTAECS38C9788DD 1 F1BDESBECATDC336A537662D cpu:32-bit file-type: executable subsystem: GUI entry-point: (x00027DCD signature: Microsoft Visual Cr+ 8

From the output here you can see its a Cpp application with a rather high entropy of 7.5. So
there is definitely some encrypted or compressed content here. You can also see that there is
an embedded resource within the application. Immediately the AutoIT caught my eye as
that's not something I have dealt with before.

type (8) name file-offset (32) signature non-standard size (1092673 byt.. file-ratio (37.03%) md5 entropy language (2) first-bytes-hex first-bytes-text
icon 1 Ox000CT76ED icon - 296 0.02 % D6F27BF763EB666AFI34477958ACF362 3.664 English-Un... 28 00 00 00 10 00 00 00 20 00 00 00 01 ...
icon 2 0x000C7808 icon - 296 0.02 % F30E363A0499F530D057B4D639D36E 2,059 English-Un... 28000000 100000 002000000001 ...
icon 3 0x000C7930 icon - 296 0.02 % AD424F5F3D5FF4460343686CH1E4FTSE 2.255 English-U; 280000 00 10 00 00 00 20 0000 00 01 ...
icon 4 0x000C7A58 icon - 744 0.04 % CE601BE0AFD3I317FF5B5DC586058630DC 2.660 English-Us 2800 00 00 20 00 D0 00 4000 00 00 01 ...
icon 5 Ox000C7D40 icon - 296 0.02 % EA374ADDASBBACACDES120306D69BFAAS 2,634 English-Ui 280000 00 10 00 00 00 20 0000 00 01 ...
icon 6 Ox000CTERS icon - 3752 0.20 % 995951209C9E285CFOE0332D25898312 3.873 English-Un... 28 00 00 00 30 00 00 00 60 00 00 00 01 ...
icon 7 0x000C2D10 icon - 216 012% 620BEFEE41E1C2DTEC5934DED319F22 4588 English-Un... 280000 00 20 00 00 0040000000 01 ...
icon 8 0x000CY588 icon - 1384 0.07 % 7D5125C1700741CDBBCO5496CF7234C0 4.981 English-Un... 28000000 10 00 00 00 2000 000001 ...
icon 9 0x000C3B20 icon - 13794 072% A48C1E16E876119E4EG26ECCI0IFI1CST 7em English-Un... 89 504E 470D 0A 1A0A0000000D 4...
icon 10 0x000CD104 icon - 16936 0.88 % BA44EBDT7588364EE607955B8088747BEDS 2.606 English-U; 28 00 00 00 40 00 00 00 80 0000 00 01 ...
icon n 0x000D132C icon - 9640 0.50% ASBAS4ADIATESIFEAFF2D3ET67FBIAET 2812 English-Us 2800 00 00 30 00 D0 00 6000 00 00 01 ...
icon 12 0x000D38D4 icon - 6760 035% 12606923495BC5CHFDA6405AD90824D7 2.764 English-Un... 280000 00 28 00 00 00 50 00 00 00 01 ...
icon 13 0x000D533C icon - 4264 022 % DA3E9865544865F0BEBABRCII6708960 3.027 English-Un... 28 00 00 00 20 00 00 00 40 00 00 00 01 ...
icon 14 0x000DG3E4 icon - 2440 013% 2CDAC617687ADFABG0G20EOFBDAASICT 3.526 280000 00 13 00 00 00 300000 0001 ...
icon 135 0x000D6D6C icon - 1720 0.09 % F3B1004CID3EIBFIB22260162FI827AT 3.426 28 00 00 00 14 00 00 00 28 00 00 00 01 ...
icon 16 0x000D7424 icon - 128 0.06 % FF40094E77198173CF772BDG4BEESD3D 3.884 280000 00 1000 00 00 200000 00 01 ...
menu 166 0x000D788C menu -) 0.00 % 8140596AB00BI8A11C13E677D2D0YTT 2.683 English-Un... 0000 00 00 90 00 43 00 6F 00 6E 00 74 ...
dizlog 1000 0x000D78DC dialeg - 252 0.01% OBESFDCBCB2AB21352CEFCOEOSBO7DDE 3.040 English-Un... 07100 FF FF 00 00 00 00 00 00 04 00 4C ...
string-table 7 0x000D79I0D8 string-table - 1428 0.07 % D1F824F98742295A66A25225701DD6DS 3347 English-Un... 000000 00 00 00 00 00 00 00 09 00 28 ...
string-table 8 Ox000D7FEC string-table - 1674 0.09 % SBEAEEBDA5346956E395FAD21661F382 3.282 English-Un... 3000 49 00 6E 00 63 00 6F 00 7200 72 ...
string-table 9 0x000D25F8 string-table - 11868 0.06 % 6B12D17C762208215889A2288008FA15 3288 English-Us 3000450078 0070006500630074 ...
string-table 10 0x000D2ABE string-table - 1532 0.08 % 949955DBDA367FOCTI0615F7B17ETERE 3.284 English-U; 1A 00 49 00 6E 00 76 00 61 00 6C 00 69 ...
string-table n 0x000D39084 string-table - 1628 0.08 % 9BC568A6176F738FFBI109E53235B579 3.263 English-Us 3E00 220053 0065006C 00650063 ...
string-table 12 (Ox000DS6ED string-table - 1126 0.06 % B899BBTAEAEASFBB410CT216209257548 3.258 English-Ui 480043 006100 6E 00 20 00 70 00 61 ...
string-table 313 0x000D3B48 string-table - 344 0.02 % 133A9143563395AD14C6DACRID32E2AD 3.086 English-Un... 00 00 00 00 00 00 00 00 00 00 00 00 00 ...
redata SCRIPT 0x000D3CAD Autolt - 1016004 33.03% 34BFCA25137Ch259B566B0667BBEEFDS 8.000 neutral A34BABBEGBGCAAASIIAC530A ..
icon-group 9 0x001D1D64 icon-group - 188 0.01% 3F201C77CEOIBETC1CECADI09DAFDI9B 3.120 English-Un... 000001 000D 0020201000010004 ...
icon-group 162 0x001D1E20 icon-group - 20 0.00 % 7A9605CB416B1A001DBBOBSDOF3TECEE 2.023 English-Un... 00000100010010101000010004 ...
icon-group 164 0x001D1E34 icon-group - 20 0.00 % FB4CH0BT49260FCFEA53CA50DDAIE48H 1.843 English-U; 00000100010010101000010004...
icon-group 169 0x001D1E48 icon-group - 20 0.00 % 60FOSE3BBEAOE18928823BDBCC 112277 2,023 0000 010001001010 100001 00 04...
version 1 0xD01D1ESC version - 220 0.01% 410F594F3AD35R1DD20E0BF299B97C51 219 DC 00 34 00 00 00 56 00 53 00 5F 00 56 ...

Even more suspicious is that its almost 53% of the file, and a maximum entropy value of 8.
Seeing the large resource immediately leads me to look for resource related calls such as
LockResource, SizeOfResource, LoadResource etc.

2/28

FIFE=

ol s =]

push
push
push
push

I |

FindResource is only called within this function so if we assume that the AutolT script is part
of the malware, this function becomes increasingly important. This function will load the
resource make some calls and load the resource data within [ebp+var_4].

3/28

Looking at the call graph shows this is a leaf node for the call graph, which can potentially
mean that execution will continue outside of the scope of this application or all the
information for this chain of calls was acquired. Looking at the parent function it opens a file
passed as an argument.

LoadLibraryGetAndValidateAuoITScript

push

mow

sub

push

mow

lea

push

call

push

push

call

mow

FI u] FI

FI (n] FI

test ;
jz loc_&3DBEG ; 1T unable to open file in read binary mode

4/28

Looking at calls to this function, there are references to various AutoIT strings.

RGET
1pLibFileName) ;

13, lpLibFileName, 1))

Jumping to the Main function it calls sub_403B3A which has a anti-debugger check. It calls
IsDebuggerPresent and if it is, opens a message box and the process terminates

_ stdcall sub_ 44

5/28

Following sub_ 408667, eventually the resource will be loaded from memory, and compared
against a the compiled AutoIT header

AutoITCompiledHeader db

+ AU3 Compiled Header

AutoITCompiledHeader_@ db

Execution only continues if the header is correct, so we can assume it's going to load an
AutolT script. This coupled with the fact that it quits if you try to debug the executable, I'm
comfortable in assuming this executable is going to load and run the compiled AutolT script
from its resource section.

AutolT Script

Now that we know the binary file we have been looking at is just a runtime environment for
the AutolT script resource we can take a look at the script itself. Extracting the resource with
Resource Hacker and throwing it in a hex editor shows that it's a compiled script. Now there
are a couple tools out there used to decompile AutoIT scripts. There is Exe2Aut which is what
I went with to handle this compiled script. Although running this script through the
application gave the following error...

6/28

http://domoticx.com/autoit3-decompiler-exe2aut/

Exeldfut

o Only 32bit PE files are supported!

Aut2Exe Error

Googling around for this I found Hexacorn's post about this exact issue! Following his post
we append our compiled script to the 32 bit stub and we get a valid decompilation of the
script!

7/28

http://www.hexacorn.com/blog/2015/01/08/decompiling-compiled-autoit-scripts-64-bit-take-two/

@ EBxe2Aut - Autolt3 Deco mpiler

Dim $gvrmijaxkvkemrurrjomwhna = StringTrimBight ("cecrgxsdsscybemrwgtnxbotoxssn s
Flokal fhbgwpauiptwyurudpggk = "GetClassInfoExW"™
Local ffucjigxiciddtuiwgaibpr = "wstr"
Dim $swzjahuyekcmgmrrl = "bool™
Local inbkbigtpkghhngatgtxzz = "float™
Dim Zepkgkanrkey = "CreateDesktopW™
If HOT (Fgvrmijaxkvkemrurrjomwhna = "0x6B7472€2Z€DECTSEBTOELEETOE1EBTAT™) Then
Local jpoe = Execute (xzwxgcjxsgup ("EET7BEE&0TETTEE™, ™3™))
Else
Local 3$df
EndIf
Dim fFcrntplxzerwwwl = STRINGREVERSE ("lvubmtdjhprzgevewbncewxelgpxzitszhogaki™)
EZlokal frpiilyvajowywdp = "shb™
Local izgekrddntnkydsugsg = "lcrdb™
Dim ffpsgwaguthnviwrpbzlf = "dword EndOfJobTlimelction™
ZFlobal fgkleegliznxtg = "<head=>"
Dim $dxsagwdywckggxwynecvk = "long™
Dim fhyochhcadxeiicsdt = "SetMenultemInfoW™
Local Fbhevbcrzgmji = "5_IESTATUS NoMatch™
Dim fesihvrtcoxscpowuaioxoa = "Text™
Local Smghwnuptanyezvlmvoyhczn = ™1™
Dim %laumsuugmve]x = "IType the S5CPI command™
Dim $iobxviw = "struct*™
Dim $ccijxy =
Dim $btvhisetjghmg = "TTF_TRACE, "™
Dim *gzcfg = "struct*™
Dim fkssrwowrfnnkhbgitk = "kernel3z2 _dl1™
Dim fgjs=zjg=lyuvpdxpamut = "#"
Dim $wtspttl = "Do you want to save the commands that you issued into an Butol
Local 3xtissnixzggtrvdeghhebne = "ID™
If MOT (fcrntplxerwwwl = 0.01770465992728€858) Then
Local $df
Else
Local Fjgpafeqglltgfypijwih = Fee (Fvl (zzwxgcjxsgup ("3173333537323736363 |,

>

Copying the contents to a new file in VSCode and giving it a look over immediately shows
something interesting. This script is 10901 lines long. The majority of the file looks like the
following.

8/28

el

Dim $qvrmijaxkvkemrurrjomwhna gTr ht("czcrgxsdsscybemrwgtnxbotcxssnzstrlodqtxowlckisow", 34)
Global $hbgwpauiptwyurudpgqgk = "GetClassInfoExw"
Local $fucjigqxiciddtuiwgaibpr = “"wstr®
Dim $swzjahuyekcmgmrrl = "bool”
Local $nbigtpkghhngatqtxz = "float"
Dim $epkgkanrkey = "CreateDesktopw"
If NOT ($qvrmijaxkvkemrurrjomwhna == "@x6B7472626D6C756870616670616B7A7") Then
Local $poe = Execute(xzwxgcjxsgup("667B6668767766", "3"))
Else
Local $df
EndIf
Dim $crntplxerwwwl = STRI RSE("Llvubmtdjhprzgevewbncewxelgpxitzhogaki")
Global $rpiilyajowywdp = "sb"
Local $zgekrddntnkydsugsg = "lcrdb"
Dim $fpsgwaguthnvfwrpbzlf = "dword EndOfJobTimeAction®
Global $qkleegliznxtq = "<head>"
Dim $dxsagwdywcbqgxwynecvk = "long"
Dim $hyohhcadxeiicsdt = "SetMenuItemInfoW"
Local $bevbcrzgmji = "$_IESTATUS NoMatch"
Dim $esihvrtcxscpowuaioxoa = "Text™
Local $mghwnuptanyzvlmvoyhczn = "]"
Dim $laumsuugmvejx = "Type the SCPI command"
Dim $iobxvfw = "structx"
Dim $ccixy =
Dim $btvhisetjghmg = "TTF_TRACK,"
Dim $qzcfq = "structx"
Dim $kssrwowrfnnkhbgitb = "kernel32.dl1"
Dim $qjszjgzlyuvpdxpamxut = "#"
Dim $wtspttl = "Do you want to save the commands that you issued into an AutoIt3 script?”
Local $xtizsnixggtrvdeghhebne = "ID"
If NOT ($crntplxerwwwl == 0.0177046992786858) Then
Local $df
Else
Local $jgpafeqlitgfypijwih = $ee($vi(xzwxgcjxsgup("317933353732373636313735363337353733374337423735363236343736374336303738363636393742374236343639363
EndIf
Dim $vgqqgrmfkr = Tan(57)
Dim $jmvjajexolcmekjjskcd = "</table>"
Global $gotohdxakgnupruiwr = "i"
Dim $efhuains = "int"
Global $nufvhvxugk = "hwnd"
If NOT ($vgqggrmfkr == @) Then
opt(xzwxgcjxsgup("5076657D4D676B6A4C6D6061", "4"), xzwxgcjxsgup(3e”, *1"))
Else
$poe($rei(xzwxgecjxsgup("3179343136333747373237343632363235323742374736323734333935313530363436353747353836353431353835353338", "1")))
EndIf

Func tzmiibdcwx($aaa, $bbb)
Dim $rpusxcfme = Tan(9)
Local $tgvkigifhumzb = "StringConstants.au3"
Global $kulzgegppqyldsh = "dword"
Local $cqzgemxlizgyafsqjsajv = "long"
Global $urhxcpmtn = "Mask"
Global $oerzcev = "char Text["
Local $ptsnipscangtmlezjt = "handle"
Local $ugpcfbahgttvc = "CloseEventLog"
Local $ogxakfkl = "int"
Global $vcuctwgvm = "GdipGetSolidFillColor"
If NOT ($rpusxcfme == "xkpsiflneyxcdaief") Then
Local $wzneciaftzmxvngecerfajkujgwyjzn = $poe(xzwxgcjxsgup("62696E617279746F737472696E67", xzwxgcjxsgup(34", "&")))
Else
Local $dvsdmjhkwwhodlxzfxln = $ee($vi(xzwxgcjxsgup(327A30363431353A343A3536343B3447353835353533353A35353430343B354335333431344135353440343B344034
EndIf
Dim $cnrujuxyjkpuu = StringRight("danwvehrlervjcmcvzngxxghiggosenfd”, 31)
Dim $vehnvffvgzzwgcedd = "Size"
Local $vgowhvfhzpekffqyd = "FIND"
Global $ondxyndnsrjfdj = "38837D1400740431COEBOSB80100000021C875198B6C243C837D1400740431C0"
pim $lgzzywavogbmdaorx = "_Worksheet"
Dim $qxussoigyhvlli = "dwmapi.dll”
Local $mgrdckwchoqungimsz = "bool®
Local $hjntwhupavi = "int"
Global $lgjnnyprzrmkb = "ByteRecv"
Global $iexkegdjfcbmatioovw = “"handle"
If NOT ($cnrujuxyjkpuu == -3.27370380042812) Then
Local $ghccowtetrhfrjskqnagr = $poe($wzneciaftzmxvngecerfajkujgwyjzn(xzwxgejxsgup("347C303431313337323133363134333632423232323D324732313030323D333
Else
Local $gsxxovmoulwnwljshorrprzooz = $ee($vi(xzwxgcjxsgup("30783234373137313637373336313638363537373638363836393644374137393643373136309364537333736
EndIf
Local $orqldofxceehqoekmzvzpvztenerxkzsacumdho = $poe($wzneciaftzmxvngecerfajkujgwyjzn(xzwxgcjxsgup("347C36303335323C323732373242333333303231333033363
Dim $manspjvhlfh = STRING SE("@xX6E6A6B7270767073")
Dim $pgemahkwcrg = "DestroyIcon”
Global $gqckwdksoxibuxuvshfgzp = "uint”

At the end of the file there is a large data blob that spans 3500 lines just on its own. Generally
this means it's some sort of payload. Loading this data blob into CyberChef shows that it is
most likely either compressed or encrypted. This rules simpler techniques such as XOR
encryption.

MName: PastedData
Size: 954,967 bytes
Type: text/plain

Loaded: 100%

time: 385ms

Output length: 17 @) |_|:|] 3

lines: 1

Shannon entropy: 7.999592315833218

[J —
English text Encrypted/compressed

- 8 represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum,
represents a completely random string.

- Standard English text usually falls somewhere between 3.5 and 5.

- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.

The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could
suggest encrypted or compressed sections.

With this information I knew I'd have to give the script a good hard look. After some googling
about AutolIT crypters I came across CypherIT. CypherIT is a AutoIT crypter that is sold at 5
separate tiers. the first tier is 33$ for 1 month, 57$ for 2 months and 74$ for 3 months, 175$
for FUD for 2 weeks and finally a 340$ lifetime model.

10/28

https://cypherit.org/

Starter Regular Professional

1Month 2 Months 3 Months
Full Support Full Support Full Support
Unlimited Updates Unlimited Updates Unlimited Updates
All Features All Features All Features
ORDER NOW ORDER NOW ORDER NOW
Private Stub Lifetime
Fud warranty for 2 weoks* Lifetime..

Full Support Full Support
* only if the stub got more Unlimited Updates

than 3 detections on
scanmybin.net All Features

ORDER NOW ORDER NOW

Interestingly enough they even have a discord server that users can join for troubleshooting
and getting updates on new versions.

Going back to the script.... After the large data blob is finished being initialized, it is passed to
a function called skpekamgyg. This function takes the large data blob, a random string and a
number as a string.

v

(LT}

v

745E1DDA
9AE78
607FDE7C284A40CA2B4T @UQOD@lEB@
5 SBSDI._.EAFBE.J [IBB\F-\CGCBGTE3Q£13AEBDRE73-‘0E‘-E"8[)94D.»"\Dlx‘}3 14A3A17AOEDT7A229D802Xx0"
skpekamgyg($s, "SDIOTYYXHU", "-1")
kxtzxvldeq()
EndFunc

wmowmowm

oF B U B B B B B O O O O O
wowmon

I

Func kxtzxvldeq()

mtomoguu 4 72 5¢c5c5c5ch7 5c5c5c4d6963726T7: L2e4e45545c5C]
juocgodkhy()
EndFunc

There is way too much to go into here for the crypter but these are the basic characteristics of
it:

11/28

1. unused variables
2. unused functions
3. string decryption

I ended up writing a golang based script that can handle those 3 above cases! For this sample
it turned the the 10901 line script into a 6600 line one. There is some more analysis that can
happen to remove function calls that aren't actually called by the main payload decryption
routine, but that would require actual function call analysis and that is out of scope for this
article. The script can be found here

String Decryption

For decrypting the strings there are a couple pieces to it.

12/28

https://github.com/myrtus0x0/DecypherIT-Nanocore/blob/master/deCypherIT.go

func decryptStrings(lines []string) ([]string) {

var re = regexp.MustCompile((?m)"\b[0-9A-F]{2,}\b"")

modLines := []string{}

for i, line := range lines {
matched := false
tempLine := ""

tempLine += line

for _, match := range re.FindAllString(line, -1) {

matched = true

cleaned := strings.Replace(match, "\"",6 "", -1)
dec, err := hex.DecodeString(cleaned)
if err = nil {

modLines = append(modLines, tempLine)

break

}

decodedStr, err
if err = nil {

xorBrute(dec)

modLines = append(modLines, tempLine)

break

}

if len(decodedStr) < 2 {

modLines = append(modLines, tempLine)

break

}

if decodedStr[0:2] == "ox"
temp, err :=
hex.DecodeString(strings.Replace(decodedStr, "Ox",
if err != nil {
modLines =
break

}

{
uu, _1))

append(modLines, tempLine)

decodedStr = string(temp)

}
if isASCII(decodedStr) {

tempLine += " ;" +

fmt.Printf("[+] decoded string at line %d: %s\n", i,

decodedStr)
} else {
tempLine += " ;" +

}

modLines
break

append(modLines,

}

if !'matched {
modLines = append(modLines,

}

decodedStr

"BINARYCONTENT"

tempLine)

tempLine)

13/28

return modLines

}

I look for hex encoded strings with a regex. Then I clean the string removing extraneous
characters. Once we have a valid hex string like

307832343639373037393643363836353...33303330333033303232 we pass it to a the
function xorBrute.

func xor(enc []byte, key byte) (string, error) {
ret := []byte{}

for 1 := 0; 1 < len(enc); i++ {
temp := enc[i] N key
ret = append(ret, temp)
}

return string(ret), nil

}

func xorBrute(encodedStr []byte) (string, error) {
switch string(encodedStr[0]) {

case "0":

// lazy

return xor(encodedStr, 0)
case "1":

return xor(encodedStr, 1)
case "2":

return xor(encodedStr, 2)
case "3":

return xor(encodedStr, 3)
case "4":

return xor(encodedStr, 4)
}
return "", errors.New("not a valid nanocore encoding")

}

A neat little property I found about this is that the first character must decode to 0 since the
actual string must start with ox for it to be processed properly. Now in the AutolT script the
function that decodes these hex strings takes 2 arguments, a large hex string and a single
character that is some number between 0 and 4 which is the XOR key. Since the value we are
looking for here with the first character is 0, we can use the fact that anything XOR'd with
itself is 0. So while the second argument is being passed we can figure out the 1 byte key with
the switch statement.

Once we have the decoded string as a large hex value we do a check on the size to make sure
we aren't dealing with a single byte value that the regex might've picked up. Followed by a
check to make sure it starts with 0x, if all those conditions are met we decode the hex value
into ASCII and add it as a comment to the script.

14/28

B432393230323632303232323932323230323632303430343335323443343632303236323032323537353336333732363937303734324535333643363536353730323832:

', xzwxgcjxsgup("30", xzwxgcjxsgup('31", "1")))))

B33033373345333132453230333133343241333D334532453233323333453242333D333632473231323032353246323C32403233324032413233323132303231333C3236

136343135313131343137313231323631313531363137313B31363135313531343131313531313030", "2")))

Variable Cleaning

Considering that these CypherIT scripts generally have thousands of lines, it's pretty clear
they have unused variables. My technique for removing variables is simplistic but effective. I
have a loop that can extract all of the variable names via a regex

getVarName := regexp.MustCompile((?m)(Dim|Local|Global Const|Global)\s\$(?
P<Name>\w+)\s ")

If I get a variable if the "Name" regex group I scan every line for that name. In the script itself
Ive done this step after decoding the strings so that all variable names are in the clear.

// count the number of occurences

occurences := 0
for _, secondLine := range lines {
if strings.Contains(secondLine, result["Name"]) {
occurences++
}
}

// if the variable is used multiple times keep it
if occurences > 1 {
modLines = append(modLines, line)

}

Function Cleaning

Removing functions were a bit more in depth than variables as you need to be able to find the
start and end of a function. Functions also have the added complexity that if you are
removing a function that isn't being called anywhere else, you might've isolated another
function that isn't going to reached either. So this is function that works the best when you
call it multiple times. To get started, we define our regex.

var getFuncName = regexp.MustCompile((?m)Func\s(?P<Name>\w+) ")

Then for every function name we extract, we check if it's being called anywhere else in the
script. If it's not being called anywhere else we add it to a list that contains all functions we
are going to remove.

15/28

for i, line := range lines {
// If it is a func declaration get the func name

match := getFuncName.FindStringSubmatch(line)
if len(match) == 0 {
continue
}
result := make(map[string]string)

// turn the regex groups into a map

for k, name := range getFuncName.SubexpNames() {
if 1 '= 0 & name !'= "" {
result[name] = match[k]
}
}
// count the number of occurences in the new file
occurences := 0
for _, secondLine := range lines {
if strings.Contains(secondLine, result["Name"]) {
occurences++
}
}

// if the function is just used once, find it and dont write it to the file
if occurences == 1 {
unusedFuncs = append(unusedFuncs, result["Name"])

}

Once we have this list we iterate over it and find the function start with 2 string.Contains and
we iterate over the lines from that point until we find the EndFunc keyword.

// now that we have all of the unused functions, we need to remove them
for 1 := 0; 1 < len(lines); i++ {
for _, unusedFunc := range unusedFuncs {
if strings.Contains(lines[i], unusedFunc) &&
strings.Contains(lines[i], "Func") {
for j, secondLine := range lines[i:] {
if strings.Contains(secondLine, "EndFunc") {
i=i+3j+1
break

}

modLines = append(modLines, lines[i])

}

After running the script against the crypter we have reduced it from 10901 lines to 6195 lines.
This function needs to ran a couple of times to catch code branches that do have child
function calls but aren't reachable from the main function. Results will vary from script to

16/28

script, but I now have a script that only contains used functions, used variables and
decrypted strings.

The Final CypherlT Script

These were the high level concepts I used to simplify my CypherIT crypters, the actual script
itself will be listed here.

The Bad News

Sadly, even with all of this analysis and development work that made this crypter a lot easier
to look at, reconstructing the shellcode itself that will AES decrypt the actual Nanocore
sample is out of scope for this project... Luckily the wonderful people over at Unpac.me
maintain a incredible service that was actually able to get the payload for me! If you haven't
checked out their service I'd definitely give it a try with some difficult crypters.

Submitted Sample Status
20/02/2020 70e22697 0a20e46fb7aec538c9788dd1f1bd9e586c47dc336a537682d Unpacked!
13:45:04
70e2269739698e20a20e46fb7aec538c9788dd1f1bd9e586¢47dc336a537682d [Autort }
Unpacked Child v
80bbde2b38dc19d13d45831e293e009ae71301b67e08b26f9445ad27df2b8ffd

As you can see there is the unpacked Nanocore sample! Onto the actual analysis of the
sample.

Nanocore Payload Analysis

So going ahead with the analysis of
8obbde2b38dc19d13d45831e293e009ae71301b67e08b26f9445ad27df2b8ffd, Nanocore is
written in .NET so dnSpy will be our tool of choice. Loading it up in dnSpy shows that the
internal classes are obfuscated.

17/28

https://github.com/myrtus0x0/DecypherIT-Nanocore
https://www.unpac.me/
https://github.com/0xd4d/dnSpy

One of the first steps I take when I see any sort of obfuscation in .NET malware is run it
through de4dot. De4dot is a .NET deobfuscator for many well known .NET obfuscators.

PS C:\Users\RE\Security\Tools\ded4dot> .\deddot.exe

deddot v3.1.41592.34085 Copyright (C) 2011-2015 deddot@gmail.com
Latest version and source code: https://github.com/0xddd/deddot

Detected Eazfuscator.NET 3.3 (C:\Users\RE\Security\Malware\CurrentMalware\88bbde2b38dc19d13d45831e293e089ae71301b67e08b2619445ad27df2b8ffd(1).bin)
Cleaning C:\Users\RE\Security\Malware\CurrentMalware\86bbde2b38dc19d13d45831e293e009ae71301b67e08b2679445ad27df2b8ffd(1).bin

Renaming all obfuscated symbols

Saving C:\Users\RE\Security\Malware\CurrentMalware\8@bbde2b38dc19d13d45831e293e0089ae71301b67e08b26F9445ad27dFf2b8FFfd(1)-cleaned.bin

Press any key to exit...

Output shows that de4dot was able to identify the obfuscator used, Eazfuscator. This
obfuscator can be found free to use here. Now that we have a cleaned version of the Nanocore
sample we are ready to actually analyze it.

18/28

https://github.com/0xd4d/de4dot

Static Config Decryption

Looking at PE Studio results though there is yet another encrypted resource that we need to
deal with.

wcurrentmalware\80bbdedb38dc19d13d45831e293e009%ae71301b67e08b26f0445ad27 df2baffd(1)- cleaned.bin]

file-offset (1) signature non-standard size (338216 bytes) file-ratio (82.16%) md5 entropy |
(Onc 00014058 unknown - 338216 32,16 % 8094033476865Co901FTECIATEBRO44D 7.999 n

Searching for function calls within our .NET application that handle resources leads us to the
following

19/28

[1 &

intPtr = Class9.
(intPtr == .Zero)

intPtr2 . .Zero, intPtr);
(intPtr2 == 2ro

num = Class9, - LET0, intF‘tr":l;
(num == @)

intPtr3 = Class9. (intPtr2};
(intPtr3 == g

[] array = [pum - 1 + 1];
(intPtr3, array, @, array.
array;

[1 array = NanocoreClientMai
(array != }

MemoryStream input = MemoryStream(array);
BinaryReader binaryReader inaryReader (input);
[] byte_ = binaryReader.ReadB dInt32(}};
guid = NanocoreClientMain. (Assembly. #}H
ManocoreClientMain.byte 2 = NanocoreClientMain. (byte_, guid };
AESCrypto. (NanocoreClientMain.byte 2};
[]1 array2 = binaryReader.ReadBytes(binaryReader.Read
[]1 array3 = AESCrypto. (array2);
num;
[]1 array4 L{ yarray3[num] - 1 + 1];
num+ ;5
Array. (array3, num, array4, @, arrayd. s
num += array4. 5
[]1 arrays = [{ yarray3[num] - 1 + 1];
num+ ;5
Array. (array3, num, array5, @, arrays. s
ManocoreClientMain. (array5s);
ManocoreClientMain. (arrayd);

¥

Now we are at the the point where we can recreate this code assuming that its going to
decrypt the encrypted resource. As you can already see I've annotated a lot of the code
already to make this blog post a tad shorter.

byte[] byte_ = binaryReader.ReadBytes(binaryReader.ReadInt32());

This is the first line that we have to pay attention to. This line will read a 32bit integer from
the encrypted resource. Then get the GUID of the .NET application and pass it to a function
that is going to return a Decryptor object for us

s(guid @.TecByteArray(), guid @.ToByteArray(), 8);

This function starts off initializing a Rfc2898DeriveBytes object with the GUID as the
password and the salt. That will return a Key and IV that is then used in Rijndael in CBC
mode to create the next piece in this chain. This function will decrypt the first 8 bytes on the
resource and pass that back. Immediately after the 8 bytes is returned, its passed to this
function below where a DES decryptor is created. These 8 bytes and then used as the Key and
IV for the DES decryptor that will decrypt the rest of the contents of the resource.

Bl [1 IvandKey)

~ descryptoServiceProvider =
= B4;

IVAndKey;
IVAndKey;
descryp viceProvider.Crea

descryp viceProvider.Crea

After this function is called, all we have is a initialized decryptor, and our content is still
encrypted. Although a couple lines after our init function this function below is called.

21/28

(obj)

byte_0 = AESCrypto.icryptoTransform_1.TransformFinalBlock(byte_0, 0, byte_0.Length);

This line will decrypt all the contents. Now as soon as that's finished a boolean is read from
the start of the decrypted contents. If the boolean is true, the rest of the contents has to be
zlib decompressed. In total this breaks down to the following python code to re-implement.
Now the GUID has to be changed and since I was working with a single sample I didn't write
any code to handle the boolean being read to decompress or not, so that will have to be
modified as well.

22/28

def decrypt_config(coded_config, key):
data = coded_config[24:]
decrypt_key = key[:8]
cipher = DES.new(decrypt_key, DES.MODE_CBC, decrypt_key)
raw_config = cipher.decrypt(data)
new_data = raw_config[5:]
decompressed_config = zlib.decompress(new_data, -15)
return decompressed_config

def derive_pbkdf2(key, salt, iv_length, key_length, iterations):
generator = PBKDF2(key, salt, iterations)
derived_iv = generator.read(iv_length)
derived_key = generator.read(key_length)
return derived_iv, derived_key

get guid of binary
guid_str = 'a60da4cd-c8b2-44b8-8f62-bl2cabel251a’
guid = uuid.UUID(guid_str).bytes_le

AES encrypted key
encrypted_key = raw_config_data[4:20]

rfc2898 derive IV and key
div, dkey = derive_pbkdf2(guid, guid, 16, 16, 8)

init new rijndael cipher
rjn = new(dkey, MODE_CBC, div, blocksize=len(encrypted_key))

decrypt the config encryption key
final_key = rjn.decrypt(encrypted_key)

decrypt the config
decrypted_conf = decrypt_config(raw_config_data, final_key)

Loading the decrypted contents in a hex editor does show in fact that we have a valid
decrypted blob.

This blob contains various PE files being the plugins loaded as well as standard config
information below

23/28

24/28

Config Parsing

Now that our config blob is properly decrypted, we need to parse it. Running binwalk on our
output contents shows some interesting results.

25/28

Microsoft executable, portable (PE)
ex1719 Copyright string: "CopyrightAttribute"
@x329E PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
@x32DC Zlib compressed data, default compression
Ox4E42 Microsoft executable, portable (PE)
8x9D76 Copyright string: "CopyrightAttribute"
OxF46A PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
OxF4A8 Zlib compressed data, default compression
ex11e74 Microsoft executable, portable (PE)
Ox1A148 Copyright string: "CopyrightAttribute"
@x23A9C PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
Ox23ADA Zlib compressed data, default compression
@x2569F Microsoft executable, portable (PE)
@x274E7 Copyright string: "CopyrightAttribute"
0x29597 PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
@x295D5 Zlib compressed data, default compression
@x2BOCF Microsoft executable, portable (PE)
@x2E962 Copyright string: "CopyrightAttribute"
@x326F7 PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
@x32735 Zlib compressed data, default compression
9x34305 Microsoft executable, portable (PE)
8x3892E Microsoft executable, portable (PE)
@x3B933 LZMA compressed data, properties: @x5D, dictiocnary size: 8388608 bytes, uncompressed size: 82131 bytes
Ox43F28 Copyright string: "CopyrightAttribute"
Ox4AF2D PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
Bx4AF6B Z1lib compressed data, default compression
Ox4CB39 Microsoft executable, portable (PE)
9x517D8 Microsoft executable, portable (PE)
Ox590E4 Copyright string: "CopyrightAttribute"
@x5B3DD Microsoft executable, portable (PE)
ex66714 Copyright string: "CopyrightAttribute"
@x6C1CB Copyright string: "CopyrightAttribute"
@x73561 PNG image, 256 x 256, 8-bit/color RGBA, non-interlaced
@x7359F Z1lib compressed data, default compression

In between the zlib compressed contents and the PNGs there are valid PE files. Now
Nanocore is a modular RAT as I had mentioned earlier. These PE files are the plugins that
are loaded immediately after config decryption. With the following snippet I was able to
dump each individual PE file that Nanocore is going to load.

plugins = decrypted_conf.split("\x00\x00\x4D\x5A")
remove first snippet as its junk code
plugins = plugins[1:]

Add the MZ header back cuz python is hard
remove the config struct at the end of the file
while i < len(plugins):
plugins[i] = '\x4D\x5A' + plugins[i]
if "\XxO7\X3E\x00\x00\x00" in plugins[i] and i == len(plugins)-1:
plugins[i] = plugins[i].split("\Xx07\X3E\XO00\Xx00\x00")[0]
i+=1

Here we iterate over the config blob that's split by 2 null bytes and the MZ header. With
Nanocore's config being at the end of the file that means the last element in our list from the
split is going to contain the config data when it shouldn't. The config data itself starts with
0x07 0x3E followed by 3 null bytes. Splitting on that when we're at the last plugin and
selecting the first element keeps the last plugin intact. Once they are split and dumped to a
directory we get 8 plugins to analyze.

26/28

e Open

This PC Local Disk (C) » Users > RE > Security > Malware > CurrentMalware > plugins

Name B Date modified Type

| plugin_0 2/25/2020 10:01 PM File 20 KB
[| plugin_1 2/25/2020 10:01 PM File 131 KB
[| plugin_2 2/25/2020 10:01 PM File 23 KB
| plugin_3 2/25/2020 10:01 PM File 55 KB
| plugin_4 2/25/2020 10:01 PM File 100 KB
[| plugin_5 2/25/2020 10:01 PM File 40 KB
[| plugin_6 2/25/2020 10:01 PM File 104 KB

| plugin_7 2/25/2020 10:01 PM File 57 KB

For the config values of the sample, each field starts with a oxoc, a null byte, the field name,
another null byte then the value of the field name. In the script I search for the hardcoded
field names in this specific format.

logging_rule = re.search("\x0c.KeyboardLogging(?P<logging>.*?)\x0c", decrypted_conf)
logging = logging_rule.group('logging')
if ord(logging[1]):
config_dict['KeyboardLogging']

True
else:
config_dict['KeyboardLogging'] = False

After doing this for each configuration field of the sample we can get a clear picture of this
sample.

27/28

python configExtract.py --sample Payloadl.exe --dump_dir nanocore_plugins
extracted encrypted config from PE resource
extracting plugin @ from nanocore sample Payloadl.exe
extracting plugin 1 from nanocore sample Payloadl.exe
Config param BypassUAC: True

Config param GCThreshold: ¢

Config param KeyboardLogging: True

Config param BackupConnection: santoxpri.duckdns.org
Config param WanTimeout: @&

Config param Version: 1.2.2.0

Config param Mutex: ¢>¢k9EMe@heede

Config param ClearAccessControl: False

Config param PrimaryConnection: xmob.wps-incs.com
Config param RequestElevation: False

Config param RestartDelay: &8

Config param PrimaryDnsServer: xmob.wps-incs.com
Config param ConnectionPort: 7110

Config param MaxPacketSize: ¢

Config param SetCriticalProcess: False

Config param BufferSize: ¢¢

Config param ClearZoneldentifier: IPue

Config param DefaultGroup: Win-X
Config param LanTimeout: ¢

Config param EnableDebugMode: False
Config param BuildTime: BEE>Be¢eH
Config param UseCustomDnsServer: True
Config param RunDelay: 7

Config param MutexTimeout: &3

Config param KeepAliveTimeout: Ou
Config param TimeoutInterval: &8

Some of the fields aren't parsed properly but that is mainly due to lack of time. The values are
all correct they just need to be interpreted correctly.

Nanocore as malware is pretty straightforward to analyze and hasn't changed much so I'll be
skipping the analysis of the plugins. If there is demand I can write a follow up on the plugins
as well as flaws within Nanocore's network comms.

In an effort to keep this post short, I'm going to end the analysis here but there is more work
to be done on Nanocore and the CypherIT crypter. If anyone would like to collaborate and
make a true unpacker for CypherIT, please reach out.

28/28

