An In-depth Look at MailTo Ransomware, Part One of
Three

%

SpiderLabs Blog

Loading...

Blogs & Stories
SpiderLabs Blog

Attracting more than a half-million annual readers, this is the security community's go-to
destination for technical breakdowns of the latest threats, critical vulnerability disclosures
and cutting-edge research.

In February, an Australian transportation company called Toll Group was hit by a
ransomware attack that reportedly spread to over 1000 servers and caused major
disruption for the company and its clients. Recently the same ransomware family was seen
attached to phishing_ emails targeting people's fear of COVID-19, a trend we've also been
seeing_quite a bit of. We got a hold of a sample of the ransomware and decided to take a
closer look to see what makes it tick. The ransomware in question is named MailTo but also

1/11

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/an-in-depth-look-at-mailto-ransomware-part-one-of-three/
https://threatpost.com/ransomware-attack-hinders-toll-group-operations/152552/
https://www.bleepingcomputer.com/news/security/netwalker-ransomware-infecting-users-via-coronavirus-phishing/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/multiple-phishing-attacks-discovered-using-the-coronavirus-theme/

NetWalker. MailTo was a name given to the ransomware based on the format of the
encrypted file names. NetWalker was a name given based on the ransomware’s decryption
tool. In this blog, we will refer to the ransomware as MailTo.

This series of blog posts will cover the internals of how the MailTo ransomware works, but
as a start, here's an overview of the full attack flow:

A

(% Process Injection Ransomware exe
»>
= Thread
=
Initizlize and Instal
: : : i : : Explorer.exe 01
- - -
Uninstall Start Encrypting
Explorer.exe 02
= =
_— —
L— —)
Kill Services Kill Processes Kill Scheduled Tasks

Figure 1 — Overview of MailTo Ransomware

Initialize and Install

The MailTo ransomware initialization involves the following steps:

» Resolving obfuscated API calls

o Configuration Decryption and Parsing
e Data collection

o Persistence and Installation

Resolving Obfuscated API Calls

Doing basic static analysis on the MailTo ransomware, it is apparent that the ransomware is
obfuscating many of its API calls due to a lack of found imports.

2/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b025d9b3adc9f200c-pi

Search

Figure 2 — MainTo Imports Unresolved

This is more apparent when opening the ransomware in a disassembler and analyzing the
first function call. Inside of the first function call, we can see hardcoded CRC32 hashes for
module and function names.

it1Random =
tt1InitAr

Figure 3 — MailTo

Import CRC32 Hashes

We can quickly denote that an array of function pointers is being built with the function
pointer addresses being resolved through a function iterating over the exports of a module,
hashing the name of the export with CRC32 and then comparing it with a hardcoded
CRC32 hash to know if it has the correct address. A list of loaded modules is scanned to
find if the module for the export is loaded or not. If the module is found to not be loaded, it is
loaded into memory via “LdrLoadDII” and added to a list of loaded modules.

3/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b025d9b3adcc2200c-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a4f059aa200d-pi

pitHeaders = (hMod + hMod-»e_lfanew);

if (phtHeaders)

i
pExports (hMod + pNtHeaders->OptionalHeader.DataDirectory[@].VirtualAddress);
pNames = hMod + pExports->AddressOfNames;
pFuncs = hMod 4 pExpor »AddressOfFunctions;
pOrdinals = hMod + pExports->AddressOfNameOrdinals;

{ i=8; i <« pExports->*NumberOfNames; ++i

{
f (CalcHash(hMod + *&pNames|
{

pExportsAddr = pNtHeaders->Optiona
(*&pFuncs[4 * *&pOrdinals[1]
|| *&pFuncs[4 * *&pOrdinals[2 * i]] pNtHeaders->OptionalHeader.DataDirectory[@].5ize + pExportsAddr)

hMod + *&pFuncs[4 * "BpOrdinals]

|l|I"'::t Addr hMod + *BpFuncs|
{ !pProcAddr)
rats
{ !imp->RtlAllocateHeap)

len Strlen(pProcAddr);
{7 i) < len; ++3)

r
L
(pProcAddr[ij]
I
L

pBuf = AllocateStringBuf(j);
{ pBuf)
T
L
Memcpy(pBuf, pProcAddr, j);
pBuf[j] = @;
al = LoadModuleA(pBuf);
f{ al)
I
L
v3 = CalcHash(&pProcAddr[j + 1]);
ret = FindProcByHash(al, w3);

FreeMemory(pBuf);

Figure 4 — MailTo API Call Resolving

The modules are also being resolved in a similar way but work differently by iterating over
the “InLoadOrderModuleList” located in the processes process environment block (PEB)
and comparing a CRC32 hash of the iterated “InLoadOrderModuleList”s “FullDIIName-
>Buffer” member.

HMODULE _LLJ:L-_ FindModuleByHash({int hash)

struct _LIST_ENTRY *InLoadOrderModulelist; [esp+@h] [ebp-18h]
_PEB_FIXED *pPeb; [esp+ah] [ebp-Ch]
_LDR_MODULE *entry; [esp+Ch] [ebp-4h]

pPeb = GetPeb();
pPeb)
{
InLoadOrderModuleList = &pPeb->Ldr->InMemoryOrderModulelist;
(entry = InLoadOrderModulelist-»Flink; entry != InLoadOrderModulelist; entry = entry->InLoadOrderModulelist.Fl

r
L

{ Cre32u(entry->FullDlIName.Buffer, c'l'_“_'-P=u'_ljll.'.a"c._|:'|g'_|' »» 1, 1) == hash)
entry->InInitializationOrderModulelist.Flink;

Figure 5 — MailTo Module Resolving

In the sample we analyzed, a total of 149 function calls were resolved, with many being
undocumented functions such as “NtGetContextThread”, “NtQueueApcThread”, and more.

https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a4f059bd200d-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a514fec6200b-pi

Configuration Decryption and Parsing

The configuration for the MailTo ransomware can be found under the resource section of
the executable as a resource labeled with the name “1337”.

4|} 1337 00018058 (04 00 00 00 2B 7E 43 2D CF E6 OE 9C 5C 7F 62 CA +~C- W b
..[f 31337 ; 0||| 00018068 |BE 36 39 13 ES FD 9B 8C D1 43 7C C6 35 2E E1 25 [|| &9 Cl 5. %
00018078 (D5 C6 SA 13 C1 AC 2D D1 9F BA 6E 4A 57 A7 DO E2 Z - nJW

Figure 6 — Encrypted Configuration Resource (Resource Hacker)

The configuration is extracted using typical resource extraction functions such as

LE 11 ” ”

“FindResource”, “LoadResource”, “LockResource”, and “SizeOfResource”.

wurce(pResource);

Qg

en} && ParseConfigData(pData))

Figure 7 — Function Used for Retrieving the Resource

One function of interest to note is the “FindModuleBase” (not apart of the standard Windows
API). We suspect this function is used in place of the “GetModuleHandle” Windows API
function as when the ransomware is injected, it is not linked in the PEB-
>|InLoadOrderModuleList meaning that “GetModuleHandle” will not be able to return the
image base of the ransomware, thus leaving the ransomware to resolve the image base on
its own. This function works by ANDing the address of itself with “OxFFFFFO000”, this gives
us the start of the memory page that the code relies on. The ransomware then subtracts by
512 bytes until the ransomware reaches a “MZ” header. The expected “MZ” header will be
the start of the ransomware mapped file itself.

5/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a514ff58200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b025d9b3ade14200c-pi

HMODULE _ cdecl FindModuleBase()
r
L

HMODULE ij; [esp+Bh] [ebp-4h]

Figure 8 — Returns Image

for (i = (FindModuleBase & @x

Base of Ransomware

The configuration is encrypted using the RC4 algorithm. Luckily the key and key length are
easily determined by the first bytes of the resource. In this sample the first four bytes
determine the length of the RC4 encryption key. The following bytes dictated by the
previous read length, is the encryption key. This encryption key is then used with the RC4
algorithm over the size of the entire resource to decrypt the ransomware’s configuration.
The decrypted configuration data is finally parsed into a global structure.

4 Dump 3 =[5l | u bumps

Figure 9 — Encryption on the Left, Decryption on the Right

Configuration Description

The below table is a description of the configuration of the MailTo ransomware.

6/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a5150052200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a4f05b0f200d-pi

Field Description
mpk Public key
mode Encryption mode
thr Maximum threads allowed for encryption
spsz Encryption chunk size
namesz Random name length
idsz Random ID length
crmask Encrypted file name format
mail Emails to appear in ransom note and encrypted file names
Ifile Ransomware note file name format
lend Ransomware note
white Whitelisted file paths and extension to not encrypt
kill Blacklist of processes, services, and scheduled tasks to kill
net Encrypt network shared drives and network paths
unlocker File paths and processes to ignore while unlocking locked files

One field of interest is “mpk”. We presume this field stands for “my public key” as this is a
base64 encoding of the attacker’s public key. This field is of interest to us because it is one
of the first indicators that the ransomware's encryption will not be decryptable without the
attacker’s private key. “white”, “kill”, “net”, and “unlocker” are also fields of interest as they
help us guess the functionality we should see within the ransomware.

7/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b025d9b3adeb2200c-pi

"mpk™: “7XMIFXVLESEATQF 2ATSRFXQOVCIOOhL 7H+AXEKPIBAWC=",

"mode": a,

"thr": 1568,|

"spsz": 51288,

"namesz": 8,

"idsz": 5,

"crmask": ".mailto] {mailil}].{id}",

"mail”: ["kkeessnnkkaa@cock.li", "hhaaxxhhaaxx@tuta.io”™],

"1file™: "{ID}-Readme.txt"™,

"lend": "SGkhDQpZb3vyIGZpbaVzIGFyZSElbmNyeXEaZWOuDQpEbaweZWsjcnlwdGykIGZpbaWz IGZvciBaaGlz]
VB YWdgYmUgdWskTX1 zdG9vICELesERaGUgImF joCEAaGFAIHROISEjb2 1wdXR1c iBzbaa3cyBkb3duL CANCMF Uz
GUEY2otcHVBZXIg WSk IGF 7Y 2vwd CEBaGFaIH1vdSBoYXZ1 TGl ZWagy 29t cHIVEWL ZzZW0 sDQpyZWIvb3Rpbmo v c 2
IvdswNCmleIcNvdxkIG] 1 IGZpbaYZ IGAUIHROZSBUZXRZD2IrIGI1baouz 2 1uZyeebyBvdch 1cIB1C2Vy CywgEC 3V
27X15THd1bGwecHIvdGY jdavELCEShIUEY 2 Ful 30gaGowI SEaby By ZWivdmvy THROZWegd 2 18a691dCBvdX I gaEysd
TWNvdmyy THLvdXTgZml s Z¥Mgd218a591dCBhIGR1YIIScHYEcHIvZ 3 IhbSwgeWa 1 I 1 he SEKYW1hZ 2UedGhl1 bSEhk
GlzIGEgCa9zC2]ianxpdHkgdGhhd CESb2vy I6Z pbiayz IHdpbawebm2Z X IgymUgcmvedX JuZWQuDQpab3 Igdxmeda
wgbmoeIHdhaxQgZmoy IHlvdXIgbavadavyIaZvc iBhIGxvbmcgdaltZswgbwF pbCE YA gYmUg YWl 1C 2VKLCEIZSE
Z¥0EdEEgaWSs jhHVEZSBEhIVY TGNV ZGUgaWsgdGhl IGVE YW1 sOgeke2NvZGVS™ ,

"white":

{
“path”: ["*systemvolumeinformation®, "*windows.old", "*: “\wusers**temp®, "*msocad
WVOAAFwindows", "F\\programfile*\\vmware", ."*appdata*microscft”, ."*appdata*packagd
"\ \programfile*\\windowsportable*", ."*windowsdefender”, "*\\programfile*\‘\windowsmt"
SV prograetile*\wmicrosoftgames®, "*\\programfile*\\commonfiles\\system™, "*\\progra
‘iusersih\F\appdata’ AV \microsoft®, "V \usersyh v\ \appdatad\Fwmicrosoft”],

"file": ["ntuser.dat*", "iconcache.db™, "gdipfont*.dat", "ntuser.imi", "usrclass.dat"
“bootfont.bin®], “ext™: [“msp®, “exe”, “sys", “msc”, “"mod”, “clb”, “"mui®, “regtrans-msg
"ps1”, "mpa", "cpl”, "icl", "msu®, "msi®, "nls", "scr®, "adv", "386", "com", "hlp", "

1

"Kill™:
i

use": true,

“prc”: ["nslsvice.exe™, "pg*", "nservice.exe", "cbvscserv*", "mirtscan.exe®, "cbservi
"sap*"’, "b1*", “"fdlaunch*", "msmdsrv*", "report*", "msdtssr*", "coldfus*", “cfdoi*",

"encsvc.exe", "excel.exe", "synctime.exe", "mspub.exe”, "ocautoupds.exe", "thebat.exe"
“ocomm.exe”, "dbsnmp.exe", "thebated.exe", "winword.exe”, "oracle.exe”, "xfssvCcoon.exd

"swc": ["Lotus*", "veeam*", "cbvscserv*", "hMmailServer”, "backup*", "*backup*", "apad
"ITSADMIN®, "omsad", "dc*32", "serveradministrator”, “wbengine™, "mr2kserv®, "MSExcha
"wrsvc", "stc_endpt_swc", "acrsch2swc"],

"swowalt”: 38,
"task": ["reboot", "restart", "shutdown", "logoff", "back"]

"ignore":
i
"use": true,
"disk™: true,
“share®: ["1pcg”, "adming"]

by

"unlocker":

i

use": true,

“ignore”:

1

"use": true,

"pspath®: ["*: \\windows*", "*: ‘\winnt*", "*: ‘\programfile®*‘\vmwar*"],
"prc": ["psexec.exe", "system"]

Decrypted and Formatted Configuration

https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a4f05b78200d-pi

Data Collection

There are two main global structures used throughout the MailTo ransomware. One

structure contains data about the system and holds information for encryption, and the other

structure contains data that has been parsed from the configuration. The first structure we
named “Machinelnfo” and has much of its data initialized right after the configuration has
finished decrypting. The “Machinelnfo” structures holds, and is initialized with, some of the
following data:

o Major/Minor version of operating system

o If the operating system is 64bit or not

« If the ransomware is running under the local system account

« If the ransomware is running with TokenElevationTypeFull

e Process ID of the ransomware

e CRC32 hash of its process name

o Various encryption data (encryption keys, length, hashes, data, etc)
e Ransomware file path

e Ransomware name length and path length

The data in this structure is read from, and wrote to, throughout the ransomware’s
execution.

Persistence and Installation

File Path

One of the first installation steps the MailTo ransomware will take is to generate a unique
name with a size based on the field “namesz”, in this sample, 8 characters.

The next step is to find out if the ransomware process is running under SysWOWG64. If the
ransomware determines that it is running under SysWOW®64, then it will create a copy of
itself to the following path:

Program Files (x86)/<uniqueName>/<uniqueName.exe>

Otherwise, if the ransomware determines that the opposite is true, it will copy itself to the
following path:

Program Files/<uniqueName>/<uniqueName.exe>

If the ransomware has been executed without administrative privileges, it will copy the file
to:

C:\Users\<username>\AppData\Roaming\<uniqueName>\<uniqueName.exe>

9/11

After it has been copied to a path, the ransomware will delete itself from the original
execution location.

Registry Keys

MailTo makes use of registry keys to store encryption keys and to set up persistence on the
victim’s machine.

When the ransomware sets up a registry key for persistence it will make use of the following
registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
A value is then placed under this registry key with a path to the ransomware:

3'_3‘] eeddbead REG_5Z ChUsers\ByteMe\AppData\ Roamingeedd6ead\ eed Qb ead. exe
Figure 11 — Persistence registry key

If the ransomware fails to place the value at this registry key (often when it has not been run
with administrative privileges), it will attempt to place the value under this registry key
instead:

HKEY_ CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

MailTo also creates its own registry key and value named under its generated unique name.
The value holds a 140-byte binary blob of data which stores encryption key information
necessary for encryption and decryption (used with the attacker's decryptor which has their
private key).

Key:
HKEY_CURRENT_USER\SOFTWARE\<uniqueName>\
Value (REG_BINARY):

HKEY_CURRENT_USER\SOFTWARE\<uniqueName>\<uniqueName>

3] eedead REG_BINARY B985 2b 90 ef 75 cf 92 o7 a6 11 a7 b0 fic 83 94 41 o4 Bb ae 1708 ad ebi 8F 32 0f 6a 3e 37 21 7§ le c2 ac 3¢ a8 32 af 68 25 5d b4 31 8c B bd D leac..,

Figure 12 — Registry key storing encryption-related data in binary form

Conclusion

At this point, MailTo has installed itself on the victim's system, initialized all of the important
configuration options (like the encryption keys it will use) and, finally, set up a process for
persistence so that the malware will be able to relaunch itself even after a reboot. In the
next two parts of this series, we'll show you how the malware executes, embeds itself and
starts the process of encrypting the victim's valuable data.

10/11

https://npercoco.typepad.com/.a/6a0133f264aa62970b025d9b3adec5200c-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0240a51500cc200b-pi

Full Series

An In-depth Look at MailTo Ransomware, Part Two
An In-depth Look at MailTo Ransomware, Part Three

11/11

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/an-in-depth-look-at-mailto-ransomware-part-two-of-three/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/an-in-depth-look-at-mailto-ransomware-part-three-of-three/

