Unpacking the Kwampirs RAT

blog.reversinglabs.com/blog/unpacking-kwampirs-rat

Blog Author
Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

1/13

https://blog.reversinglabs.com/blog/unpacking-kwampirs-rat
https://blog.reversinglabs.com/blog/tag/threat-research
https://blog.reversinglabs.com/blog/author/karlo-zanki

Introduction

Over the past few years, malware threats have increasingly started targeting the industrial
control systems. These threats are becoming so concerning that the FBI recently had to
issue a public warning about one in particular. As ZDNET reported, the US private sector
was warned about a malware campaign that targets supply chain software providers. The
malware referenced by this report was Kwampirs RAT - the malicious tool of choice from the
Orangeworm group.

Given the possible ramifications this campaign might have, we've decided to leverage the
Titanium platform for research into its inner workings. From the threat analysis viewpoint, the
most important part of this malware is its configuration (control servers, mutex it uses,
registry keys it creates...), since it's essentially a remote access trojan (RAT).

Following the breadcrumbs left in the network configuration, malware evolution can be
mapped to the campaigns carried out by the group. By investigating the connections of this
malware to the reports of new malware, its activity can be independently corroborated. But
more importantly, documenting the malware network infrastructure can help the defenders
protect their organizations from the ongoing attack more efficiently.

Expanding the picture

Every research builds upon what'’s already been disclosed, and so we started ours by finding
previous publications. As the referenced ZDNET article reports, this group has used the
malware since 2015, so it is safe to assume that a technical analysis of the threat already
exists. Two such technical reports were referenced in the article: the first one from

2/13

https://www.zdnet.com/article/fbi-warns-about-ongoing-attacks-against-software-supply-chain-companies/

Symantec, and the second from Lab52. Symantec's report was older and provided some
technical details, but it mostly focused on IOCs. On the other hand, Lab52’s report provided
a more in-depth technical analysis of the malware, listed used modules, and described the
dropping and infection phases in detail. This report also included a link to a tweet containing
YARA rules that can be used for detecting Kwampirs.

The next logical step in our research was to acquire the samples. Publicly available YARA
rules are a perfect starting point, as they are easily deployed to the ReversingLabs A1000
threat analysis platform. The Retro Hunt feature offers a quick way to match those YARA
rules against all samples seen by the Titanium Platform in the last 90 days. By Retro Hunting
with those rules, we found the following samples.

& Kwampirs kzankl LOCAL CLOUD RETRO E ® 51 0 0 ®0
Active from 2020-02-12 08:56 AM - edited by kzanki v Allrules v

File size

nown

other formats.

91/91 —

Filtered by: ﬂ shared private focal m local local-retro doud cloud-retro

i}
L
~
a
=]
3

it

Threat Name Rule Format Eiles Size

B o 3daysago Win32 Trojan.Kwampirs bb3fSad35542035478cBacfdddcd4alce655...Kwampirs_Implant E/DI 2 148 KE =
B e Bdaysago Win32Trojan.Kwampirs 07aa3eca2bb021c94660d651f81b495596... Kwampirs_installer PE/Exe B 3MB =
ﬁ L] 6 daysago Win32.Trojan.Kwampirs 07333eca2b5021c94680d651f91b495296... Kwampirs_Shamoon_Code PE/Exe 6 13MB —
B o Gdaysage Win32Trojan.Kwampirs 20b7e5242322d2048673922520aca41795...Kwampirs_Installer PE/Exe 4 5605KB =
B e Bdaysage Win32Trojan.Kwampirs 20b7e524ea22d230486739225e%aca41f85.. .Kwampirs_Shamoon_Code PE/Exe 4 5605KB =
a @ 7daysago Win3z Trojan.Kwampirs 02d4cf9c800eB4911c06456077baB372e8... Kwampirs_Shamoon_Code PE/Exe 4 11MB =
E =] 7daysago Win32.Trojan.Kwampirs 02d4cf9c800e84911c6456077baB372e8... Kwampirs_Installer PE/Exe 4 11MB i
B e 15daysago Win32Trojan.Kwampirs b3eeddade9e93435724d6d5cefebS922b3.. .Kwampirs_Shamoon_Code PE/Exe 6 13MB =
B o 15daysago Win32Trojan.Kwampirs b3sed4aded293435724d6d60efeb392208 fKwampirs_Installer PE/Exe = 3MB =i
&] 13daysago Win32Trojan.Kwampirs 734bd7e918fbc588Ecd8c870ee53417bd3, J Kwampirs_mplant PE/DI 1 255KB =
& 9 13daysago Win32ZTrojanKwampirs 02d4cf9cB00e8491106456077ba8372e8... Kwampirs_Shamoon_Code PE/Exe 1 11MB =
& Q 13daysage Win32 Trojan.Kwampirs 02d4cf9c800e84911c6456077bag372e8... Kwampirs_lnstaller PE/Exe 1 11MB =
e @9 14daysago Win32Trojan.Disttrack 1dd6fl3e460e572c8cb2d7z2c347dabs3a.. Kwampirs_Shamoon_Code PE/Exe 1 1.5MB =
& L] 15daysago Win32.Trojan.Kwampirs cefd31e7eb4496913255350bc47202dbE1... Kwampirs_lmplant Unknown 1 255KB =

Retro Hunt results on ReversingLabs A1000

As the previously mentioned Lab52 technical analysis describes, the main RAT functionality
can be found in the DLL payload of the installer.

3/13

https://www.symantec.com/blogs/threat-intelligence/orangeworm-targets-healthcare-us-europe-asia
https://lab52.io/blog/orangeworm-group-kwampirs-analysis-update/
https://twitter.com/pancak3lullz/status/1225536379834290177
https://blog.reversinglabs.com/hubfs/Blog/Retro-Hunt-results-on-ReversingLabs-A1000.jpg

Payload analysis

Ll 734bd7e918fbc6888cd8c870ee53417bd... 9 Exports
.d Size: 255.0KB

Type: PE /DIl wmiax.dll

Format: -- ControlTrace
Threat: @ Win32.Trojan.Kwampirs
Firstseen: 2017-10-2509:17 UTC
Last seen: 2020-02-2708:20 UTC
User uploads: 1

boD &

Suspicious Known

Functions Exported by the RAT DLL

The Titanium platform analysis matched the facts described in the referenced technical
analysis. The DLL exports only one function named ControlTrace. Furthermore, the
similarity analysis also showed that this sample shares the same functionality with 726 other
samples within ReversingLabs TitaniumCloud, grouped by the RHA1 similarity algorithm.
These findings significantly expanded the analysis sample set.

B 73Anweslgfucet}ss:dscmuees3417»:... pod Summary CreatePOF [Actions

Firstseen: 2017-10-25 0917 UTC -
Lastseen: 2020-02-27 09:20 UTC B8

nnnnnnnnn

=
L]]

Tt

ER Y

L8

m o

&

Q=

&
F
@ -
B
H g
&
;

[y
Threat name associated with the RAT sample

Looking to complete the set, we picked another pivoting point - the detected threat name; in
this case, Win32.Trojan.Kwampirs. Searching for all samples of the DLL file type with this
threat name yielded even more matches.

The results of this search query, when sorted by their First Seen property, revealed even
more interesting data points. Sorting by First Seen time naturally groups these samples
based on their file size. This pivoting helps not only with grouping, but also with discovering

4/13

https://blog.reversinglabs.com/hubfs/Blog/Functions-Exported-by-the-RAT-DLL.jpg
https://blog.reversinglabs.com/hubfs/Blog/Threat-name-associated-with-the-RAT-sample.jpg

additional Kwampirs RAT versions.

threatname:Win32.Trojan.Kwampirs AND filetype:*dil*

Local (2)

FirstSeen A

-} 5years ago
e 4 years ago
4yearsago

[] 4 yearsago

L I N B
©

-] 4 yearsago

4 years ago
& 9 4 years ago

& O 4dyearsago

& o 4 yearsago
] & ¢ dyearszgo
] & o 4yearsago
& o 4 years ago
& o 4yearsago
& o 4 years ago
L & o 4 years 2go
. & o 4 years ago

=] 4 years ago
& o 4 yearsago
& o 4 yearsago
& o 4 years ago

& @ 4yearsago

& o 4yearsago
] & o dyearsago
] & O 4dyearszgo
& O 4dyearsago
& @ dyearsago
[& @ dyearsago
L & @ dyesrszgo

4 years ago
& o 4 years ago

& @ 4dyearsago

& ® 4yearsago
& o 4 years ago
& @ 4yearsago
= & @ dyearsago
& @ dyesarsago
& @ dyearsago
& o 4 years ago
| | & o 4 years ago

Threat
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwarnpirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32.Trojan.Kwampirs
Win32 Trojan.Kwampirs
Win32.Trojan.Kwampirs

Win32 Trojan.Kwampirs

W Ex001T

Name

bbSf6ad35542035478c8ccfdddc4a3ce65505¢66

830351482a9252f6261f35331955cce70d886fe2

§909c6689b3612c09130932856%a0fabc1972bb13

85361b6a64784b5a9c1b05ef5e13d7deca789081

(0d21cedc6fb23ca31d4933781bc748c50f0607eb

7e086dBe27639b7babB3d1eBed41e07a52efc185

630fc5b6e07bf4eB8d4elcSc7cld7daB340384312

47a009afd3525867c5b43c068fb1536049bb1fb6

Sfeec18d2dSfe8d7916d75ffccS68e6f234d6dc6

2e2a52bdbasd59e5414ff152f7a3462403100b76

325b1cc0b7b5bd082c318aedb66a46fBeelccb24

alfc3315ed4iBTa0f139236ef122bc0145cb904d

4¢l7adfd23e8d2dccBacBaa3aabb4cBcf24853ed

3d20d4cf5bdd5e330dc8aB5a70f5d3ae4e5350b

5844e220d8fald0fdcl40f324ec26fb601794a42

aBe0530613c4c0b675d4c18d3225931e42675421

2fe562241c05440ebf6cb786d070e62d10562393
0005c9d445a5f74811e552fa7d711174f2212c4

(022d1a3929ad851750c900c2¢175d1da0110dd3b

3d62f6bc0e43d2fdcaS36a7df28c3aee5bfe585¢c

1ee8ebcl62cf7511f5c18d32ed83737elc3a658a

2ed2ceS28cceS8d295a60330389f7a0987ecB8515

88eb52aaldf56aab35300565686798f328cd2f03

52251d1e6820e50af2d72db66184bd854530007¢

24291bd50b0903450810352e6ad8d363445036f8

41699d97218270fec79703743121f1673bed66a6

3e331ba7eB48659ca9374df15810023edeef895a

fd56b1df8f434297f1696f1e0e4239501a98d50d

6d1aldblfef50b5c0eabB85a89cb54538252540d2

38375d9fb77dBBd624c29dc9d0d47b07686e 7107

bB807d49bb78524022dc42e650f3706f960dd0fSH

d96c93ce3eda7lfdfeaddeeb39c5b4c5b25e1816

55e8a17db0bI3357703d452471113be70531594

31d88b516¢f8f3ddc6634af19522a87bf59c5c 7e

ala0115ad8df2446414354ac3950bb6356ccalbls

d1601ac7f3001025380047cc2eb7603d22730a2e

21300e13fbeebabb67eb7972244bbfG4c7Bec2af

1eb9e4509a16d912bce00e8be746841796729322

c1731767932blebfbl5e6984da04 3fbc1 21f50ff

Forma

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DIl

PE/DIl

PE/DI

PE/DIl

PE/DI

PE/DII

PE/DII

PE/DII

PE/DII

PE/DIl

PE/DII

PE/DIl
PE/DII

PE/DIl

PE/DIl

PE/DII

PE/DIl

PE/DI

PE/DII

PE/DII

PE/DII

PE/DII

PE/DIl

PE/DIl

PE/DIl

PE/DII

PE/DII

PE/DIl

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

330KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

530KB

330KB

235KB

255KB

255KB

255KB

255KB

255KB

255KB

255KB

255KB

276KB

235KB

2355KB

255KB

255KB

Formay

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DI

PE/DII

PE/DI

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DIl

PE/DII
PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DI

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DIl

PE/DII

PE/DII

PE/DII

PE/DII

PE/DII

PE/DI

PE/DII

PE/DIl

Search results sorted by their first occurrence and based on threat name and file type

5/13

https://blog.reversinglabs.com/hubfs/Blog/Search-results-sorted-by-their-first-occurrence-and-based-on-threat-name-and-file-type.jpg

Investigating the code patterns revealed strong similarities between the 530 KB samples and
the 255 KB samples described in the existing technical report. The main difference between
them was the BMP image found in the resources, which is actually an encrypted PE32
executable. This was only found in the dropper of the 255 KB samples. The second
significant difference was that C2 hosts were stored as plaintext.

The code patterns of the 148 KB sample slightly differed from the others. However, the
configuration decryption key and algorithm were still the same. Also, the exported function
name was not ControlTrace - it was MyDIIMain, and the original DLL name during
compilation wasn’t wmiax.dll but Actuator.dll instead.

M bb9f6ad35542035478c8ccfdddc4aSce65... © -

wd Size:148.0KB — Exports
Type: PE /DIl Actuator.dll
Format: -- MyDlIMain
Threat: @ Win32.Trojan.Kwampirs
Firstseen: 2015-05-12 05:23 UTC
Last seen: 2020-02-24 09:05 UTC
Useruploads: 1

P00 P

Functions exported by the newly discovered sample

Pivoting around the original DLL name uncovered another interesting sample that was not
attributed to Win32.Trojan.Kwampirs like the others.

filetype:*dll AND pe-original-name:"Actuator.dll” AND pe-export"MyDlIMain’ < Y¢ Heb n
Local (0) _ Coud -]| J Wi Export
FirstSeen . Threat Name Format Files Size
& Q Sysarsago Win32.Trojan.Zapchast 32a7b97eded=421df262933298535520ba7625bd PE/DI 1 1445KB =
& Q Syearsago Win32.Trojan.Kwampirs bb9f5ad35542035478cBccfdddc4a9ce65505c56 PE/DI 48KB =
& Q 12monthsago Win32.Trojan.Kwampirs 21abzbfde5663ee5f208775e2805052d2ff667d5 PE/DI geks =

Pivoting on new Export names

Analyzing this sample and comparing it to the previous one showed that they were practically
the same. This final sample had slightly simpler logic in some places, but the extracted
domains were identical. The most interesting difference between the two was the User Agent
string. The majority of Kwampirs samples have the User Agent string set to something like

6/13

https://blog.reversinglabs.com/hubfs/Blog/Functions-exported-by-the-newly-discovered-sample.jpg
https://blog.reversinglabs.com/hubfs/Blog/Pivoting-on-new-Export-names.jpg

“Mozilla/...”, but this sample had it set to “ItlsMe”. These facts, combined with the first
occurrence dates in our cloud, led to the conclusion that this was an earlier version in the
RAT’s development process.

Y L]

ull e (= lull s =

mov [ebp+var_3D], @ moy [ebp+var_3D], O

mov [ebp+var_3C], esi nov [ebp+var_3C], esi

mov [ebp+var_uC], esi mov [ebp+var_4C], esi

mov [ebp+var_34], esi moy [ebp+var_34], esi

mov [ebp+var_58], esi mov [ebp+var_54], esi

mov [ebp+var_38], esi mov [ebp+var 38], esi

mov [ebp+hInternet], esi mov [ebp+hInternet], esi

mov [ebp+ms_exc.registration.TryLevel], esi| mov [ebp+ns_exc.registration.TrylLevel], esi
push esi ; duwFlags push esi ; duFlags

push edx 5 lpszProxyBypass push edx ; lpszProxyBypass
push ecx ; lpszProxy push ecx ; 1pszProxy

push eax ; dwAccessType push eax ; duAccessType
push offset szAgent ; "ItIsHe™ push offset szAgent ; "Mozilla/5.8 (Windows NT 6.1; WOW64; rv:"...
call ds:InternetOpen¥ call ds:InternetOpen¥

mov edi, eax mov edi, eax

nov [ebp+hInternet], edi mou [ebp+hInternet], edi

push esi ; size_t push esi ; size t

mnov eax, dword ptr [ebp+arg_8] mov eax, dword ptr [ebp+arg_8]

push eax ; char push eax ; char

lea ecx, [ebp+var_AiC] lea ecx, [ebp+var_uC]

push ecx ; int push ecx ; int

push 4 ; char push b ; char

®or ecx, ecx ®or ecx, ecx

lea edx, [ebp+var_3C] lea edx, [ebp+var_3C]

call sub_10001000 call sub_10081320

add esp, 16h add esp, 16h

mov esi, [ebpsvar_3C] mov esi, [ebp+uar_2C]

test al, al test al, al

jnz short loc_188817A9 jnz short loc_10881AF9

User Agent strings difference

Collecting the samples is more than a data hoarding exercise. It's necessary for writing a
reliable malware configuration parser that extracts network configurations from collected
samples - primarily the C2 URLs. These URLs are interesting because of the way this RAT
finds active C2 servers. Every sample comes with a hardcoded list of 200 URLSs that it tries
to access in the sequential order. The C2 locations are either in the form of domain names or
IP addresses. The malware uses the first active URL it finds as the C2 server.

Since the malware configuration is hidden away in the installer that drops the DLL onto the
system, an unpacker needs to be created alongside the parser. This unpacker decomposes
the installation component and extracts the DLL, allowing the parser to collect the necessary
C2 information.

Using this combination of extraction and parsing, roughly 1600 URLs were collected. There
was some duplication in the list, as some URLs were found within multiple samples. When
this data was deduplicated, the number of URLs decreased to 1586 URLs.

Analyzing the results of the extraction revealed that some of the droppers used the same
payload, even though their hashes were different. The only difference between those
samples was a 64-byte string used for random file name generation as a part of its execution
logic. This indicates that the new dropper samples recently seen in the cloud are, in fact,
freshly compiled, even though they use the old DLL payloads.

Grouping samples into campaigns

7/13

https://blog.reversinglabs.com/hubfs/Blog/User-Agent-strings-difference.jpg

Malicious operations are usually carried out in waves (or campaigns) that typically share the
same control server infrastructure. Each of the Kwampirs samples we collected came with a
set of 200 control server URLs. Since 1586 of those URLs were unique, it is safe to assume
they were remnants of multiple campaigns. As the number of extracted URLs is not a
multiple of 200, it is likely that some parts of the network infrastructure were reused by
multiple campaigns.

Grouping samples into campaigns is a challenge. One way to split the dataset is by the time
of discovery, but it might not be the best way. In this case, some samples were already nicely
grouped together by the combination of their size and their discovery time. However, that still
left a large set of 600+ samples of files 255 KB in size.

Since this collection of samples was too big for manual inspection, we relied on static
analysis for assistance. Processing the samples with our Titanium platform and plugging the
results into the ELK stack could help us find suitable grouping criteria.

Right away, two of the metadata fields struck us as the most convenient - Rich header
information and the file compilation timestamp. Rich header is a structure that often appears
in PE files just before the PE signature. It contains information about the compiling and
linking processes, such as the toolchain version artifacts. In this case, Rich header revealed
that all samples were compiled with Visual Studio 2010. Their timestamps did not correlate
with their first appearance in our cloud, which was in May 2015 and later. In fact, they all
appeared as if they had been compiled a few years before their appearance in the cloud.
Given what’s known about the operations of this group, it probably means that the samples

8/13

were compiled in a virtual machine with deliberately inaccurate time.

richHeader: Descending metadata.application.pe.fileHeader.timeDateStamp.keyword: Descending

Rich header and timestamp grouping

Grouping the samples based on these criteria produced much cleaner results for the
domains extracted from them. Each group of samples had one or two sets of URLs in their
configurations, which were repeated the same number of times. With that, the grouping was
complete and it provided the following insight into the sample-to-campaign relationships.

9/13

https://blog.reversinglabs.com/hubfs/Blog/Rich-header-and-timestamp-grouping.jpg

Same payload code

: Fri Jun 17 14:34:54 2011
By sample size B e
Campaign Campaign 0x99176524
Fri Dec 14 14:51:14 2012
[] Wed Jun 22 13:51:40 2011
Campaign Campaign 0xa0176524

Fri Apr 08 14:57:19 2011

0xd662bfed

14818 530KB

Tue Jun 29 11:43:06 2010

ee

0x2a4e9335

265KB

By RHA bucket Campaign

0xe907b3f1

Sat Jul 21 16:49:00 2012
Campaign

..

Same RICH header

Final grouping of samples

Version correlation

For visualization purposes, the extracted data was loaded into Maltego that created a graph
showing correlation between samples and the domains used across different campaigns.
This confirmed that most of the campaigns were interconnected by one or multiple control
domains.

-
P =T
) p
campaign_0 %@ - Sy e
¢ 4 (s e =
Campaign_1

% = DNS |
www.kcnpecdbnserv.org [—

njmainncjjfn.nl % %
=5 =
%

nejfjrin

fimednfjryhdsrv.nl T b
\ o s
B - 3 = rh
- o
: = rh :
i z dswfjr.nl Campaign_B

Campaign_E Campaign D i

dswpowerncdn.nl

=

nejnejncjnednsnv.nl

/ N

/0

=

jfndsw.fr

10/13

https://blog.reversinglabs.com/hubfs/Blog/Final-grouping-of-samples.jpg
https://blog.reversinglabs.com/hubfs/Blog/Campaign-correlation-and-connectivity.jpg

Campaign correlation and connectivity

Processing historical DNS resolution data for one of the domains extracted from a recently
seen sample revealed more interesting data. As shown in the RisklQ’s Passivetotal, the
domain dswmain.org that was seen in CampaignC resolved to two hosts in the past.

= @riskia Q dswmain.org ®

D 20181117 Name.com, Inc

© categorize
=n 2020-02-28 Domain Protection S...

Query Resuirs

DATA
2 > § a 2 o el 1 0 o

Resolutions Whais Certificates Subdomains Trackers Components Host Pairs OSINT Hashes

FILTERS @ RESOLUTIONS ©
SYETEM TAC X 1-20f2 « Sort:Last Seen Descending ¥ 25/Page v
» SYSTEM TAG (2/ 4
Resolve Location Network ASN First Last
¥ ¥ Linode 2
« X routable 2 172.105.123.10 G 172.105.112.0/20 63949 2019-11-22 2020-02-28
b 172104.209.54 us 172.104.208.0/20 63948 2018-1117 2019-11-20

Historic DNS resolution for dswmian.org site

Currently it redirects to a sinkhole server with the IP address 172.105.123.10. Looking at the
list of the domains that have resolved to that host, we can see more domains that are part of
Kwampirs campaigns - not all of them, but a small subset. Most of the extracted domains
don’t resolve to anything yet, so they could be used as backup domains when the active
control domain is compromised or goes down. Since this was a sinkhole server, this
information couldn’t confirm the assumption that these campaigns shared the infrastructure,
but it does show which domains were used and when they were used in the past.

11/13

https://blog.reversinglabs.com/hubfs/Blog/Historic-DNS-resolution-for-dswmian.org-site.jpg

= Hriswa | Q 172.105.123.10 ®

B Routable o Categorize

@ 2019-07-02 Linode, LLC
2020-02-28 172.105.112.0/20

Resolutions Whois Certificates Trackers Components Host Pairs OSINT Hashes Projects

FILTERS @ RESOLUTIONS @
) v 1-240f24 % Sort: Last Seen Descending ¥ 25/Page v
Resolve First Last
' hfcysqdtkbr.pw 2020-01-22 2020-02-27
' powersitemainservf|r.org 2019-11-22 2020-02-27
4 nrjfjrkcnsite.org 2019-11-22 2020-02-27
¥ SOURCE (2 7 25) r7.slar.us 2019-09-21 2020-02-26
v X risldq 24 firfrsitenchdnfjr.org 2019-11-24 2020-02-26
¥ X kaspersky 1
mainpbnpower.info 2019-11-21 2020-02-25
dswmain.org 2019-11-22 2020-02-24
Ifnnrfjrfjr com 2019-11-23 2020-02-22
srvkcnyhd.org 2019-11-23 2020-02-21
sitencjsite.org 2019-11-25 2020-02-20
pbnkenjfnikjserv org 2019-11-25 2020-02-20
www._pbnken|fnikjserv.org 2020-02-19 2020-02-19
www._sltencjsite.org 2020-02-19 2020-02-19
www_fjrijrsitenchdnfjr.org 2020-02-19 2020-02-19

w_srvncdnservsiteyhd.org 2020-02-19 2020-02-19
W wersitemainservir.org 2020-02-19 2020-02-19
www.srvkcnyhd.org 2019-12-02 2020-02-19
WWW.ncjjfn.org 2020-02-19 2020-02-19

Pivoting on the resolved IP address

Interestingly, a few domains on that list haven’t been extracted from any of the encountered
samples. However, they do look like the domains that Kwampirs could have used, since they
consist of several repeated random letters. This might mean there are a few more
campaigns for which the samples are yet to be collected. Still, based on the timeline when
these domains were first seen by the passive DNS service, it is likely that they are used by
some older samples, and are part of a campaign that’s already been mapped.

Conclusion

Protection from supply chain attacks is two-fold. Organizations must protect their
development environment and ensure their suppliers are not compromised. Kwampirs RAT
represents a targeted attack against the secure software supply chain, and needs to be
closely monitored for new activity.

Warnings issued by the FBI are corroborated by our research presented here. The attackers
are still using the same methods of infection, tools, and network infrastructure, which
indicates that their activity is constant.

Converting open source threat intelligence into actionable data is a difficult task made easy

12/13

https://blog.reversinglabs.com/hubfs/Blog/Pivoting-on-the-resolved-IP-address.jpg

with the ReversingLabs Titanium Platform. Pulling from a vast data repository, it enables the
defenders to collect necessary samples and extract valuable I0Cs that can be used to
protect the organisation from past and ongoing attacks.

I0C list

The following links contain the data extracted from the collected samples. These I0Cs can
be used to improve the security of your organizations by creating blocking firewall and
intrusion detection systems rules. They can also be used to search the SIEM logs for
infected endpoints. IOCs are grouped as described previously in this article.

SHA1: https://blog.reversinglabs.com/hubfs/Blog/I0OC%20list/ SHA1_LIST.txt

Campaign 0: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_0_l1OC.ixt
Campaign 1: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_1_10C.txt
Campaign A: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_A_10C.txt
Campaign B: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_B_10C.txt
Campaign C: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_C_IOC.txt
Campaign D: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_D_IOC.txt
Campaign E: https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_E_10C.txt

Campaign F: https://blog.reversinglabs.com/hubfs/Blog/I0C%20list/Campaign_F_10C.txt

Read our other RAT blogs:

MORE BLOG ARTICLES

13/13

https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/SHA1_LIST.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_0_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_1_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_A_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_B_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_C_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_D_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_E_IOC.txt
https://blog.reversinglabs.com/hubfs/Blog/IOC%20list/Campaign_F_IOC.txt

