
1/12

March 12, 2020

Vicious Panda: The COVID Campaign
research.checkpoint.com/2020/vicious-panda-the-covid-campaign

March 12, 2020

Introduction

Check Point Research discovered a new campaign against the Mongolian public sector, which takes advantage of the current
Coronavirus scare, in order to deliver a previously unknown malware implant to the target.

A closer look at this campaign allowed us to tie it to other operations which were carried out by the same anonymous group, dating back
to at least 2016. Over the years, these operations targeted different sectors in multiple countries, such as Ukraine, Russia, and Belarus.

In this report, we will provide a full analysis of the TTPs utilized throughout this campaign, the infrastructure, and the new tools we
uncovered during our research, of what we believe to be a Chinese-based threat actor.

Lure Documents

The investigation started when we identified two suspicious RTF documents sent to the Mongolian public sector. The documents were
written in the Mongolian language, with one of them allegedly from the Mongolian Ministry of Foreign Affairs:

https://research.checkpoint.com/2020/vicious-panda-the-covid-campaign

2/12

Document 1: Information about the prevalence of new Coronavirus infections

Document 2: Purchases for buildings in documentary projects

These RTF files were weaponized using version 7.x of a tool named RoyalRoad (aka 8.t).

This tool, which is commonly used by various Chinese threat actors, allows the attacker to create customized documents with embedded
objects that exploit the Equation Editor vulnerabilities of Microsoft Word.

Infection Chain

After the victim opens the specially crafted RTF document, and the Microsoft Word vulnerability is exploited, a file named intel.wll is
dropped into the Word startup folder: %APPDATA%\Microsoft\Word\STARTUP .

This persistence technique is often used by newer versions of the so-called RoyalRoad. Every time that Microsoft Word application is
launched, all the DLL files with a WLL extension in the Word Startup folder would launch as well, triggering the infection chain we
describe below:

https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://attack.mitre.org/techniques/T1137/

3/12

Infection Chain Diagram

This not only serves as a persistence technique, but also prevents the infection chain from fully “detonating” if run inside a sandbox, as a
relaunch of Microsoft Word is required for the full execution of the malware.

After it’s loaded, the malicious intel.wll DLL proceeds to download and decrypt the next stage of the infection chain, from one of the
threat actor’s servers: 95.179.242[.]6 .

The next stage downloaded is also a DLL file, and it serves as the main loader of the malware framework developed by the attackers. It is
executed using Rundll32 , and it communicates with another one of the threat actor’s C&C servers (95.179.242[.]27) to receive
additional functionality.

The threat actor operates the C&C server in a limited daily window, going online only for a few hours each day, making it harder to
analyze and gain access to the advanced parts of the infection chain.

At the final stage of the infection chain, after the appropriate command is received, the malicious loader downloads and decrypts a RAT
module, also in the form of a DLL file, and loads it into memory. This plug-in like architecture might hint at the existence of other modules,
in addition to the payload we received.

The RAT module appears to be a custom and unique malware, though it also includes some rather common core capabilities, listed
below:

Take a screenshot
List files and directories
Create and delete directories
Move and delete files
Download a file
Execute a new process
Get a list of all services

Open Window

At the beginning of our research, one of the attacker’s servers, which served the next stage malware, had directory listing enabled for a
limited time. This allowed us to download all hosted files, as well as to gain some insight into the operation timeline and the working hours
of the attackers.

4/12

Open directory at 95.179.242[.]6

Even though they were available for download, all the files on the server came encrypted.

Luckily, by utilizing the same encryption scheme seen in our infection chain, we were able to decrypt most of the files stored on the
server.

key = "VkvX7CK7X7*t$x&hssLR6fOyFSaKrFJKx&@#AK*$nsCNKPe"

def decrypt(enc,offset):

 decrypted = ""

 for i in range(len(enc)):

 decrypted += chr((ord(enc[i]) ^ ord(key[(i + offset) & 0x3f])))

 return decrypted

Decryption scheme derived from “intel.wll”

The dozen of files that we were able to decrypt can be divided into four main clusters of malware loader families. Their embedded internal
names and core functionality are described below:

http_dll.dll (Intel.wll) The first stage loader described above. Decrypts the C&C address, then downloads and decrypts the next
stage DLL, and executes it via Rundll32 .

ppdown.dll Functions as downloader and decryptor for the .rar files stored on the attackers’ server. Reads an
access.txt file from the server, decrypts it and splits the result into 3 parts:

1) The name of the next stage to download.

2) The next stage export function to call.

3) The decryption key for the next stage.

Rundll32Templete.dll This variant serves as loader and decryptor for next stage payload. The payload is encrypted in .sect section.

Minisdllpub.dll The second stage loader, fully described below. Loads additional DLL plugins. A similar version of this
payload, called minisdllpublog.dll, contains some additional debug printing capabilities.

Payload types found on the server

Connection to other samples

After gaining access to the additional decrypted files, we were able to hunt for similar samples.

Searching for similar files by the internal names (http_dll , Rundll32Templete and minisdllpub), unique exported functions
(Engdic , WSSet and MSCheck) and code similarities (decryption methods, communication patterns, etc.), allowed us to find more
samples related to the attacker:

5560644578a6bcf1ba79f380ca8bdb2f9a4
b40b7

http_dll.dll

207477076d069999533e0150be06a20ba74
d5378

http_dll.dll

https://research.checkpoint.com/cdn-cgi/l/email-protection

5/12

b942e1d1a0b5f0e66da3aa9bbd0fb46b8e1
6d71d

http_dll.dll

9ef97f90dcdfe123ccb7d9b45e6fa9eceb2
446f0

hcc_dll.dll

cf5fb4017483cdf1d5eb659ebc9cd7d1958
8d935

Rundll32Templet
e.dll

92de0a807cfb1a332aa0d886a6981e7dee1
6d621

Rundll32Templet
e.dll

cde40c325fcf179242831a145fd918ca728
8d9dc

minisdllpublog.
dll

2426f9db2d962a444391aa3ddf75882faad
0b67c

IrmonSvc.dll

9eda00aae384b2f9509fa48945ae8209039
12a90

IrmonSvc.dll

2e50c075343ab20228a8c0c094722bbff71
c4a2a

IrmonSvc.dll

2f80f51188dc9aea697868864d88925d64c
26abc

NWCWorkstation.
dll

Newly discovered related samples

One of the samples found (92de0a807cfb1a332aa0d886a6981e7dee16d621) led us to an article covering a similar initial infection chain,
which appears to be after Ukrainian targets.

Another sample (9ef97f90dcdfe123ccb7d9b45e6fa9eceb2446f0) was originally dropped by an RTF document which appears to be
targeting entities in the Russian Federation, back in late 2018.

Infrastructure

Analyzing the newly discovered samples introduced us to a larger part of the infrastructure utilized by the threat actor, and a common
TTP: All the C&C servers were hosted on Vultr servers and the domains were registered via the GoDaddy registrar.

https://bbs.pediy.com/thread-256810.htm
https://www.virustotal.com/gui/file/5187c9a84f5e69ba4b08538c3f5e7432e7b45ac84dec456ea07325ff5e94319a/detection

6/12

Infrastructure overview

As we analyzed this campaign, in addition to the infrastructure used, we also noticed an interesting behavior by the attackers

At a certain point, the C&C server 95.179.242[.]6 stopped serving the open directory listing. A few days later dw.adyboh[.]com
became an open directory:

Open directory listing at dw.adyboh[.]com

This might indicate that the attackers are enabling directory listing, when one of their payload delivery servers is in active use.

Attribution

7/12

From the malicious document perspective, we believe that the naming scheme for intel.wll – which is dropped by version 7.x of
RoyalRoad is not enough to make a clear cut attribution, as we observed the same name used by various threat actors dropping

different malware families such as Bisonal and Poison Ivy .

From the payload perspective, on the other hand, once we found the additional related samples mentioned in the Hunting section above,
we were able to connect it to a known threat group. In the NWCWorkstation.dll sample mentioned above, we observed a unique string
as part of the logging functionality: “V09SS0lO”. This led us to an article from 2017 by Palo Alto Networks, titles Threat Actors Target
Government of Belarus, which describes an attack that utilizes a RAT named BYEBY .

The article itself also connects to a previous article dating back to 2016, where the same tools were used in an attack targeting the
Mongolian government. The article also explores the connections between these attacks and previous attacks related to the Enfal
Trojan.

By comparing the IOCs from the 2017 attack to our campaign we observed several similarities:

Infrastructure Similarities

The servers from the 2017 publication were set on the same infrastructure as all the other samples found during our investigation, and
utilize Vultr and GoDaddy services.

Code Similarities

When analyzing one of the files from the open directory (bf9ef96b9dc8bdbc6996491d8167a8e1e63283fe), we noticed that it decrypts
and loads a DLL named wincore.dll . By investigating this dropped file, we were able to make several correlations to the BYEBY
sample from 2017:

1. String similarity:

“BYEBY” strings

“wincore.dll” strings

1. Function similarity – Important functions in both BYEBY and wincore.dll have almost the same implementation. One such
function is the payloads’ main thread function.

https://unit42.paloaltonetworks.com/unit42-threat-actors-target-government-belarus-using-cmstar-trojan/
https://unit42.paloaltonetworks.com/digital-quartermaster-scenario-demonstrated-in-attacks-against-the-mongolian-government/

8/12

Malware implementation similarities

1. Global Call-Graph and X-Ref Graph – Even though some obfuscation exists in both samples, we were able to verify that they have
similar call and reference graphs, meaning that the core functionality of the executables is the same.

Payload – In Depth Analysis

To recap, the second stage payload in the attack chain, is an encrypted DLL file named minisdllpub.dll . The DLL, downloaded from
95.179.242[.]6 , is a downloader for an additional payload. In the following section, we go over its implementation and highlight the

characteristics which are unique to this payload.

Minisdllpub.dll begins by creating a mutex with the name Afx:DV3ControlHost . This is a unique indicator that can later be used
to hunt for more samples in the wild. It then defines a structure of size 0x5f8 to store system and environment information such as the
name of the running computer, IP addresses, the username, and OS Version. Next, another structure of size 0x3FC is created, this time
to store pointers to loaded DLLs and API functions, as well as the command and control IP address (95.179.242[.]27) and port
(443).

After setting up these structures, the flow continues and a new thread is created. First, it fetches several lists of API functions, and
dynamically loads them. As can be seen in the following image, each list is comprised of the name of a library followed by a sequence of
API functions to load from this library. Pointers to these functions are then added to the previous structure which are used to dynamically
invoke them when needed.

Comma-separated lists of API functions, prepended with the library name

9/12

The second stage payload then sets up HTTP or HTTPS communication, depends on several checks, and starts communicating with its
remote control in new threads. When the server replies, it sends XOR encoded DLL to the malware, with the key 0x51 .
Minisdllpub.dll then decodes the given payload and dynamically loads the new PE to memory.

When loaded, it searches for an export function with the name e. The malware then keeps listening to commands from the server, and
when those are received, it passes them to the "e" function of the newly loaded payload. By doing so, the second-stage is operating as
a middle-man between the C&C and the final payload – a remote access tool.

The malware is searching for the export function “e”, in order to invoke it

At this point, we have a unique layout of modules loaded on the victim’s computer. First, is the Minisdllpub.dll that was initially
loaded using Rundll32 by http_dll.dll (intel.wll) when a Microsoft Office application was executed. Next, we have the RAT
payload itself which receives its control commands not directly from the C&C, but through Minisdllpub.dll that acts as a mediator.

Loader execution flow

Interestingly, in addition to the commands to execute, Minisdllpub.dll also passes several structures to the final payload. The
structures which were previously built and filled, are now used by the RAT to dynamically invoke API functions and deliver data to the
C&C server. This unique approach of re-using function pointers that were loaded in the previous module makes the analyzing the RAT
hardly possible without having the previous stage as well.

The supported functionalities of the final payload, as well as the respective commands it receives and sends, are described in the table in
Appendix A.

Conclusion

10/12

In this campaign, we observed the latest iteration of what seems to be a long-running Chinese-based operation against a variety of
governments and organizations worldwide. This specific campaign leverages the COVID-19 pandemic to lure victims to trigger the
infection chain.

The attackers updated their toolset from documents with macros and older RTF exploits to the latest variation of the “RoyalRoad” RTF
exploit-builder observed in the wild.

The full intention of this Chinese APT group is still a mystery, but it is clear they are here to stay and will update their tools and do
whatever it takes to attract new victims to their network.

Check Point SandBlast Agent protects against this APT attack, and prevents it from the very first steps.

Appendix A: RAT Module – Supported Commands

Command ID
(Sent from C&C)

Sub Command ID
(Sent from C&C)

Description Response ID
(Sent from Bot)

0x21 Write a file to a specified path. Set the written file’s timestamp to
the timestamp of the local kernel32.dll.

0x22

0x23 Get contents of a file. 0x24

0x25 List files in a directory. 0x26

0x2E Execute command in a new thread. 0x31

0x2F Execute a command. 0x30

0x32 0x00 Create a directory of by a given path. 0x33

0x32 0x01 Remove a directory in a given path. 0x33

0x32 0x02 Move a file from a given path to a given directory. 0x33

0x32 0x03 Delete a file in a given path. 0x33

0x32 0x04 Move a file from a given path to a given directory. (Same as
subcommand 0x02)

0x33

0x34 0x07 Get a list of all the services. 0x35

0x34 0x08 Execute a new process using WinExec. 0x35

0x34 0x09 Execute a new process. (Same as subcommand 0x08) 0x35

0x34 0x0A Take a screenshot. 0x35

0x34 0x15 Set registry key values. 0x35

0x34 0x16 Download file from URL. 0x3A or 0x3B

0x34 0x17 Download file from URL. (Same as subcommand 0x16) 0x3A or 0x3B

0x34 0x18 Create Pipes and execute a new process. 0x3D or 0x3B

0x34 0x19 Create Pipes and execute a new process (same as 0x18). 0x3D or 0x3B

0x36 Copy the file of the current process with a “.t” extension and
modify the registry.

0x37

Appendix B: Files on the server

Internal File Name SHA-1 Server
Location

Exports

http_dll.dll dde7dd81eb9527b7ef99ebeefa821b11581b98e0 img\0115\WRql7X Engdic

http_dll.dll fc9c38718e4d2c75a8ba894352fa2b3c9348c3d7 bin\0612wy3\KFuGrS-code MSCheck

ppdown.dll 601a08e77ccb83ffcd4a3914286bb00e9b192cd6 bin\0612wy3\KFuGrS MSCheck

ppdown.dll 27a029c864bb39910304d7ff2ca1396f22aa32a2 bin\0612wy3\KFuGrS-ppd-bak MSCheck

https://www.checkpoint.com/products/advanced-endpoint-protection/

11/12

Rundll32Templete.dll 8b121bc5bd9382dfdf1431987a5131576321aefb img\0115\CYMi0Y-bak

img\0115\R7pEFv

WSSet

Rundll32Templete.dll
(x64)

bf9ef96b9dc8bdbc6996491d8167a8e1e63283fe bin\test0625\CmlN0i MSCheck

minisdllpub.dll fcf75e7cad45099bf977fe719a8a5fc245bd66b8 img\0115\CYMi0Y

img\0120\VIdALQ

img\1224\AF9i1i

WSSet

minisdllpublog.dll 0bedd80bf62417760d25ce87dea0ce9a084c163c bin\0612wy3\KFuGrS-www

bin\0617wy3\LX5sG1

MSCheck

gg.dll 5eee7a65ae5b5171bf29c329683aacc7eb99ee0c bin\0612wy3\TTXk1U.rar MSCheck

minisdllpub.dll 3900054580bd4155b4b72ccf7144c6188987cd31 Dropped by

8b121bc5bd9382dfdf1431987a5131576321aefb

WSSet

wincore.dll e7826f5d9a9b08e758224ef34e2212d7a8f1b728 Dropped by

bf9ef96b9dc8bdbc6996491d8167a8e1e63283fe

LoadKernel

Appendix C: Additional IOCs

Servers:

95.179.242[.]6

95.179.242[.]27

199.247.25[.]102

95.179.210[.]61

95.179.156[.]97

dw.adyboh[.]com

wy.adyboh[.]com

feb.kkooppt[.]com

compdate.my03[.]com

jocoly.esvnpe[.]com

bmy.hqoohoa[.]com

bur.vueleslie[.]com

wind.windmilldrops[.]com

RTFs:

234a10e432e0939820b2f40bf612eda9229db720

751155c42e01837f0b17e3b8615be2a9189c997a

ae042ec91ac661fdc0230bdddaafdc386fb442a3

d7f69f7bd7fc96d842fcac054e8768fd1ecaa88a

dba2fa756263549948fac6935911c3e0d4d1fa1f

DLLs:

12/12

0e0b006e85e905555c90dfc0c00b306bca062e7b

dde7dd81eb9527b7ef99ebeefa821b11581b98e0

fc9c38718e4d2c75a8ba894352fa2b3c9348c3d7

601a08e77ccb83ffcd4a3914286bb00e9b192cd6

27a029c864bb39910304d7ff2ca1396f22aa32a2

8b121bc5bd9382dfdf1431987a5131576321aefb

bf9ef96b9dc8bdbc6996491d8167a8e1e63283fe

fcf75e7cad45099bf977fe719a8a5fc245bd66b8

0bedd80bf62417760d25ce87dea0ce9a084c163c

5eee7a65ae5b5171bf29c329683aacc7eb99ee0c

3900054580bd4155b4b72ccf7144c6188987cd31

e7826f5d9a9b08e758224ef34e2212d7a8f1b728

a93ae61ce57db88be52593fc3f1565a442c34679

5ff9ecc1184c9952a16b9941b311d1a038fcab56

36e302e6751cc1a141d3a243ca19ec74bec9226a

080baf77c96ee71131b8ce4b057c126686c0c696

c945c9f4a56fd1057cac66fbc8b3e021974b1ec6

5560644578a6bcf1ba79f380ca8bdb2f9a4b40b7

207477076d069999533e0150be06a20ba74d5378

b942e1d1a0b5f0e66da3aa9bbd0fb46b8e16d71d

9ef97f90dcdfe123ccb7d9b45e6fa9eceb2446f0

cf5fb4017483cdf1d5eb659ebc9cd7d19588d935

92de0a807cfb1a332aa0d886a6981e7dee16d621

cde40c325fcf179242831a145fd918ca7288d9dc

2426f9db2d962a444391aa3ddf75882faad0b67c

9eda00aae384b2f9509fa48945ae820903912a90

2e50c075343ab20228a8c0c094722bbff71c4a2a

2f80f51188dc9aea697868864d88925d64c26abc

RAT:

238a1d2be44b684f5fe848081ba4c3e6ff821917

