Bisonal: 10 years of play

D blog.talosintelligence.com/2020/03/bisonal-10-years-of-play.html

A
TaLos

THREAT

SPOTLIGHT

By Warren Mercer, Paul Rascagneres and Vitor Ventura.

Update 06/03/20: added samples from 2020.

Executive summary

o Security researchers detected and exposed the Bisonal malware over the past 10
years. But the Tonto team, the threat actor behind it, didn't stop.

» The victimology didn't change over time, either. Japanese, South Korean and Russian
organizations were the prime targets for this threat actor.

e The malware evolved to lower its detection ratio and improve the initial vector success
rate.

What's new?

Bisonal is a remote access trojan (RAT) that's part of the Tonto Team arsenal. The peculiarity
of the RAT is that it's been in use for more than 10 years — this is an uncommon and long
period for malware. Over the years, it has evolved and adapted mechanisms to avoid
detection while keeping the core of its RAT the same. We identified specific functions here
for more than six years.

How did it work?

1/45

https://blog.talosintelligence.com/2020/03/bisonal-10-years-of-play.html
https://1.bp.blogspot.com/-o2X3ClyOJnk/XmDe2k48MjI/AAAAAAAAAiY/40LqsUunXtQwuLr-AiDnxCpiuRtm_iWJgCK4BGAYYCw/s1600/recurring%2Bblog%2Bimages_threat%2Bspotlight%2Bcopy.jpg
https://twitter.com/SecurityBeard/
https://twitter.com/r00tbsd?lang%3Den
https://twitter.com/_vventura
https://malpedia.caad.fkie.fraunhofer.de/actor/tonto_team

Bisonal used multiple lure documents to entice their victims to open and then be infected
with Bisonal malware. This group has continued its operations for over a decade and they
continue to evolve their malware to avoid detection. Bisonal primarily used spear phishing to
obtain a foothold within their victims' networks. Their campaigns had very specific targets
which would suggest their end game was more around operational intelligence gathering and
espionage.

So what?

This is an extremely experienced group likely to keep their activities even after exposure,
even if we identified mistakes and bad copy/paste, they are doing this job for more than 10
years. We think that exposing this malware, explaining the behavior and the campaigns
where Bisonal was used is important to protect the potential future targets. The targets to this
point are located in the public and private sectors with a focus on Russia, Japan and South
Korea. We recommend the entities located in this area to prepare for this malware and actor
and implement detections based on the technical details provided in this article.

Victimology and campaigns

From our analysis and the intelligence shared by the community throughout the last decade
of activities of Bisonal, we can conclude that the actor behind this malware is specifically
targeted at the South East Asian region, namely Japan and Korea with another significant
focus on Russian-speaking victims.

Russia

. Japan

South Korea

COUNTRIES TARGETED
BY BISONAL

2/45

https://1.bp.blogspot.com/-cgCYzh-Sgos/XmCxY45sNyI/AAAAAAAAAso/hmm3XjEmOsUgnmHUY2A9e3rMmX6LN2UYACLcBGAsYHQ/s1600/image21.jpg

We identified a couple of decoy documents pointing to the victims. During the Heartbeat
campaign documented in 2012 by Trend Micro, dating back to 2009, the attacker used
Hangul Word Processor (HWP) decoy documents. This file format is mainly used in South
Korea. The report mentioned political parties, media outfits, a national policy research
institute, a military branch of South Korean armed forces, a small business sector
organization and branches of the South Korean government. Later in 2018, Unit 42 released
a Bisonal paper where we can see a spear-phishing campaign in Russian and a decoy
document alleged to be from Rostec, a Russian state-owned holding conglomerate
headquartered in Moscow.

File hessage Help f,':;‘ Tall me what you want to do
EI - B3 M- Lj Ly ra ';f Create Mew = r'?l Mark Unread nj,” P‘: u ,C' Find Q Zoom

= L
KC'.II'I;'IIU'IF.'K{ZHI‘;IG IIFI[:IF.'K'I M COEAaHEFD H(l".."lHlll.Hl:]—lf:lF}EJV.TL'—':J'IhHhIX K{'.I{:IT'IHFJH[HHDH ANA F:‘E‘]E{HHHK[]H .

B 2NN DuN... <info@rostecu> o Reply 2 Reply all ¥ Forward
To fgup@an-avtomatikamn Thiu 7262018 8:;55 AM

'\i__: Duticak blocked access to the folowing potentially unsafe attachments KounrekoHe B NDOEET NG CORLIHMAD MIATA UHD- CT ROWTENuH MY E00NERATER0RE LR paOOTHALDS

CEapOHL ENE

[lofpail pesb, YRRmMasmEE Konnar!
H dH0 nepeoro Man HanpasnAke Bam SOMONEKCHLIE NPOEKT, HANPABAEHHLIA HA YAYLWEH HE #KAMILHEEWY yoAoEWE paboTHeios 2oBopoHRHD

Bam oT gyww nozapasnsic!

C yBaMEHHEM,

9

' PocTtex
MTapinep & prawrng

NoAkywKEKHa EneHa BanepeesHa |

l.l'-||,l"‘l'In'.-'.l'.ll'rlI'a'.".‘:!:'“I'rl NEREDE s I:i‘.‘.il"‘l'.'.'.'l"."l'::'“uH

O ROENOELIMEaN D YRpaoaeeue
-

3/45

https://blog.trendmicro.com/trendlabs-security-intelligence/pulsing-the-heartbeat-apt/
https://unit42.paloaltonetworks.com/unit42-bisonal-malware-used-attacks-russia-south-korea/
https://1.bp.blogspot.com/-gzpTiB8HJT4/XmCxr24P3MI/AAAAAAAAAuY/nw2Yl0qniMEJrt7PG4aCgEJ5dLgkEincgCEwYBhgL/s1600/image34.png

Hr--:uﬂl.lru-:m:-h-r;m-rulm:u.ln.dn-m W H L T[0T E AlHh s & e paT-S0s R pabo o olaposmep dhash = i ‘Jﬂ___:_t_:J
Fie Edt View Doomert Tools Windoss Felp ®

D& Ciee oo Dal -

.
LJd ~

Poctex

PocTex MHAUMMPOBAN NWUNOTHBEIA NPOEKT NO CO3QAHMI0 KWUAWLWHO-CTPOWTENBHEIX
KOONEPaTBOB ANA PABOTHUKOB «0BOPOHKU»

2. Mocwea / 30 aveaps 2018 2oda

PocTex npW nofoepske AreHTCTEA WNOTEYHOND MWAMWHOMO KpegWwToBadHMA (AMMEK),
MunnpomTopra Pocchin M MuHcTpoA PoccHM NpPHCTYNMNA K pPeandsauMd KoMOneKcHoro
NPoSKTa, HANPABNEHHOrD HA YNYYIWEHWe HHMNWWHBIX YycnoBwd padoTHukoB oSopoHHOW
npoMeILneHHocTH, B ero pamkax kBannbHUMPOBAHHEIM CNeuManicTam npeanpuaTHA ONK
NPeNoCTABNASTCA BOIMOMHOCTE BCTYNHTE B HMHNMWHO-CTPOWTENbHBIE KOONEPATHELI M
NONYYHTE NOG AUNHWHOE CTROWTENLCTEO JEMENLHBIE YYACTEW, NpeaccTaBnAeMble AVKK,

MANOTHRIA NPOBKT, NPEOYCMATPHBAMMUWA BblgeneHie nepebik 20-30 YYACTHOR C NPUOOMOBOR
TeppuTopued nnowanek ot 10 go 15 coTok, craproean 8 Mockoeckoil ofinacT. Ha cnegyowem
JTane aHANOMMYHBE MEeps HWUAWMWHOA noggepsed MonyT ObiTe peanuiceaHs B8 KpacHoApcoke,
Capascke, ToneATTH ¥ ApYTUX pervoxax Pd, nepeyedb KOTopaiX npopabaTweaaTca Kopnopaumed,

Bolienenve 3eMNM AMA COTPYAMMKOE ODOPOMMBIX 33BOA0R MOA XMMMULHO-CTROWTENbHbIe =]
Finally, in 2018, Ahnlab released a paper about "Operation Bitter Biscuit" where Bisonal was
used against Korean and Japanese entities. India is also mentioned, but it was by another
malware named "Bioazih" by Ahnlab. In this paper, the editor mentions targets such as
manufacturers, defense industry and government.

Additionally, we can provide additional decoy documents. For example, a Korean document
used in September 2014 where the title was "Contact member and counselor of the
Agriculture, Forestry, Livestock, Food and Marine Fisheries Committee:"

4/45

https://1.bp.blogspot.com/-QwmpMoQI9dk/XmCxkvMqFcI/AAAAAAAAAtU/_AN7_WTeSEQGR58HIKSaPOnYyCY1Iz1zACEwYBhgL/s1600/image19.png
https://image.ahnlab.com/file_upload/asecissue_files/ASEC_REPORT_vol.88.pdf

O
o
4
rz
1=
e
=

FUAAY A X EHM U

= - o1 8 ?'ﬂ' AX) ‘ . ‘
;EH ol 1&5412“1Jna-.-=- .com
I E 910-3188-7000 J_L:'E el 342Enate.com
MEX | ORRY | aeo | o7s | asg0 |68 010-3002-5084 |2 yesunidig@ranmeilnet
gI=%18 |010-3691-8070 | B i0-a136-1474 | piE R e eRe A net
SHIL 010-ga37-8782 Ol X aramal10314) EJL.Ir'II..I ac kr
2L kimminaT985@nate,com
SMEM 010-B243-1457
ATETY :;_id"'i o E}g_gggg_giﬁ'
= = i AL St MO-2267-20070 [ry T e : f
[}1&_3334_92?1 23T 235 (284 :1:}%; H}E_Eaag_iﬂs-ﬁ Iy = EP‘dBEJ[-_‘-'}"ELr'.IT‘.EII.ne. H23
B -5203-1547
nZst 010-8413-2770
, 9% kyungds@na.go.kr
N ZEE 010-5005-3167 |2 21 4] eskfol@nate.com
010-23B1~410g | 3977 | 2008 0110 | B 010-8571-2587 |7 ; justiceldna.go.kr 941
AT 010-4138-5358 l—"ﬁ‘-bl Emﬂagl;ﬁ'c.sml':mblwn K
A1 bluyssiE@empal com
Z2E <1 | mEon N OB moosungdu@naver.com
010-8038-5274 2274 | 2803 0318 |AHE 010-4744-88 rasistuiinate.com 708
N o1 an-n7an | =& hogtee0924@hanmail.net
ZEE 010-2120-2780 iﬁq @
B 010-4769-7450 | BB, J_BTT%_H nago.la
23 3100 | 214 | os1s | LIES 010-2075-0000 | sl [TSRIE T EL et |)
010-3651~0u63 h T | YGE 819-gets- 110 1Sl sayb0za@naver.com)
e 010-6783-5992 | 3645 nelanione go ke
HEH skal7TZT@naver.com
=112 010-2784-8898 | £)| phisky@hanmail net
M o e 5 o640 | 2q00 qosp | DS 010-3858-1416 | 01a% 950165Ehanmall.net 241
010- 5238 1269 | © T | Hredal 010-4517-1105| 2t ??bahsang (@hanmail.nat
e 0% 010-8727-6245 | 0152 k9348245@naver.com

Or a Russian document about the CIPR Digital conference used in April 2018. This is an
application document that has been used to provide a decoy to the Bisonal malware. This
conference has some high-ranking government and business attendees.

5/45

https://1.bp.blogspot.com/-9JpCeLTQ8tM/XmCxizrlbZI/AAAAAAAAAvc/a9CY5s31xzsTCzpimDOLWB0nVHflYgELQCEwYBhgL/s1600/image15.png

DOPMA NOAAYH IAABKH HA BLICTYTINEHKE

WMHeTpyiyua no opopmaeniio 3aABKA Ha BHCTyNNEHHE B pamkax Hondepenyan LANP:

1. HeobxoguMo 33N0NHWTE PEFUCTPALMOHHYH opmy Qoknagyuea a0 27 anpena 2018 roga.
C 27 anpena 2018 roga no 25 maa 2018 roga crams Aoknagiskos KoHGep eHuse BO3soEH0 TONbKD
No AKYHOMY NPUFAELLEHMK WNEHOE opromeTeta LIWMNP

2. HeofBxogumo nony4ure ogobpesve Tesy mogeparopor. PaccmoTperue 3afBkM 3aHuMasT He Gonee
15 aHed. NMocne vero Baw noknag MoskeT BeiTe BXNONEH B OGHUMANEHYI0 NPOTPaMMY , 3 KHGOPMALUMA
0 Bac noABWTCA B pasfens YYacTHHEN 0DMUMANLHOMD CaRTa KoHGepEHLMH Cipr

3. Tema Bawero BRICTYNNEHWA QOMHHE COOTEETCTBOR ATE KNIOYEE M TeMaM Kondepaxysn LIMNP-2018.
OnMTeneHOCTE BRHCTYNAEHAA — 0T 3 40 5 MuH,

OT4ecTen

LOrm+HOCTE

HazgaHne Opradmaagm

WUBHEA CTENSHL [PErandu

In 2019, a Russian RTF document — cyganraa.doc (research.doc) — was used with an
exploit to drop the winhelp.will file, which contains Bisonal.

6/45

https://1.bp.blogspot.com/-bOc4mANwF_Y/XmCxuP4MHeI/AAAAAAAAAvk/s_L2tIrUd1I5BbnPWbvKi3FfOErchpGGgCEwYBhgL/s1600/image38.png

o/n ¥ TOO TainGap
1 Bauvrnagew

2 Bensrv

3 EeHuH

4 EvTad

5 Bonwe

6 BocHn MeplUorogms
7 Bpazun

8 Bypruua daco

9 KamepyH

10. | Kanag

11 BHXAY

12 Y

13 Ermnet

14 PpaHy

15 ["anHa

16. | Myaruman

17 FHATHAr

18. | MHooues

19 | ipnaup

Last year, we also identified multiple Korean decoy documents using similar RTF exploits to
deliver Bisonal, namely ¥2020 A = Of|AtOF 2 A Q| MH A 9| HHA{_EFZH(1).doc (State
Council Candidate (Minister of Justice Chumiae) Personnel Hearing Execution Plan (1) .doc)
and TR A EA(HFEE 2 F0|of) AFE 23] AA|A 2 A{(1).doc (Written Inquiry from
the 2020 Budget Operation Committee (Published) (1) .doc) which are both alleged
government documents.

7/45

https://1.bp.blogspot.com/-Wsk_AtH_wR0/XmCxqTWACKI/AAAAAAAAAvk/Cg7lZ3-yCCAfjI4wL9j21W1bZUWgHJGUgCEwYBhgL/s1600/image31.png

(b 2R 1 ARl = PRl
2020' A5 of¢-gh lAp 2

Based on our research and the released paper mentioned above, the Bisonal malware is
part of the Tonto Team arsenal. Tonto Team was mentioned in the media in 2017 as one of
the actors who targeted South Korea, when the country announced it would deploy a
Terminal High-Altitude Air Defense (THAAD) in response to North Korean missile tests. At
this time, researchers connected the Tonto Team to China.

10 years of evolution

Introduction

The first variant of Bisonal publicly released went by the name of "HeartBeat." At the end of
2019, the actor changed their TTP and started using the Microsoft Office extension (.wll) to
execute the Bisonal payload. Based on this recent change, we decided to dive into the 10
years of evolution of Bisonal. To do so, we analysed more than 50 different samples and
focused on the changes that appear during the years of usage.

2010: the birth

The oldest version of Bisonal we identified was compiled on Dec. 24, 2010. This version is

8/45

https://1.bp.blogspot.com/-e4vrUONaGMg/XmCxw29YALI/AAAAAAAAAvs/80O6gfqeqN8wzFQtRp70jkfsFBwTtYGxACEwYBhgL/s1600/image5.png
https://arstechnica.com/information-technology/2017/04/researchers-claim-china-trying-to-hack-south-korea-missile-defense-efforts/

the simplest we identified. The attacker created a Windows library (.dll) designed as a
Windows service (ServiceMain() entry point). When executed, the malware uses the
Windows API to communicate with the Service Control Manager (SCM) and finally execute a
thread. This thread contains the code of the malware.

The C2 server of this first Bisonal variant is youngO3[.Jmyfw[.]Jus (port 8888). We can notice
the usage of a dynamic DNS service. This is a Bisonal pattern. Even the newest version we
identified used this kind of service. The domain name was not obfuscated:

lea eax, [esp+108h+cp]

push eax ; int

push offset MultiByteStr ; "young@3.myfw.us"
call GetHostByName API

mov ecx, 1Fh

xor eax, eax

lea edi, [esp+116h+var 7F]

mov [esp+116h+var 808], ©

rep stosd

stosw

lea ecx, [esp+1l1@h+var 80]

push ecx ; int

push offset al27e01 ; "127.0.06.1"
stosb

call GetHostByName API

mov esi, ds:inet addr

add esp, 10h

The IP address is a rollback if the first C2 server is down. In this campaign, the rollback was
not used as it is configured to localhost. The communication to the C2 server is performed by
using raw sockets:

9/45

https://1.bp.blogspot.com/-AXWjmHGqPY8/XmCxoSAuF5I/AAAAAAAAAvs/7dlrWnYZEsgNjY3w7PsjpaSWN4XuYpCoACEwYBhgL/s1600/image26.png

; int _ cdecl NetworkConnection(int, struct sockaddr *name, struct sockaddr *)
MetworkConnection proc near
arg 8= dword ptr 4
name= dword ptr &8
arg_#8= dword ptr 8ch
push ebx
mow ebx, ds:socket
push ebp
mow ebp, ds:connect
push esi
mow esi, ds:shutdown
push edi
mow edi, ds:closesocket
I ¥
P
loc_1888aD9C :
oy eax, [esp+leh+name]
Mo ecx, ds:s
push 18h ; namelen
push eax : name
push eCx H
call ebp ; connect
test eax, eax
jz short loc 19@@8E2E

The first action of the malware is to send the hostname of the infected system and the

"kris0315" string. The sent data is not encrypted or obfuscated. We assume the string is an

identifier:

10/45

https://1.bp.blogspot.com/-tfKToieAZkM/XmCxhnFS89I/AAAAAAAAAvs/s8J6OXvfH-M-aFjd2agGj6VA7I-nsBzMgCEwYBhgL/s1600/image1.png

sub esp, G&h
lea eax, |[esp+bBh+nSize]
lea ecx, [esp+EBh+Buffer]
push eax ; nsize
push ecx 3 1pBuffer
mow [esp+7Bh+nSize], 32h ; "2
call ds:GetComputerNamel
Lest eax, eax
jnz short loc_leaeaans
P ¥ B v
ol = a1 =
add esp, &68h
retn loc_lepeaans:
' push esi
maw esi, [esp+6Ch+Dest]
lea edx, [esp+eCh+Buffer]
push edi
push edx : Source
push esi ; Dest
call ds:wcscpy
mow edi, offset Source ; "krisg31s”
or ecx, BFFFFFFFFh
xar 2ax, eax
repne scash
not ecx
push ecx ; Count
lea eax, |[esi+&dh]
push offset Source : "krisg3ls”
push eax ; Dest
call ds:strncpy
add esp, 14h
mo dword ptr [esi+@E4h], 1228DSFh
Mo eax, 1
pop edi
pop esi
add esp, 68h
retn
Setkris endp

The malware supports only three commands:

e Command execution: The execution is performed by the ShellExecuteW() API

¢ Listing the running processes

o Cleaning the malware: The malware first removes the registry key of the service and
removes the library. As the library is currently running, the deletion cannot be
performed immediately. The developer decided to use MoveFileEx() APl with the
MOVE_DELAY_UNTIL_REBOOT to remove the file at the reboot.

The malware contains the Bisonal string. It is interesting to notice the string is not used but is
still visible:

11/45

https://1.bp.blogspot.com/-KhOYglrF_Nk/XmCxpZeFWHI/AAAAAAAAAvU/kBVW9UpFpRID3AMTBRlodSLxAT0IN8c-QCEwYBhgL/s1600/image3.png

Address Length Type String

F¥ .text:10000390 00000008 C bisonal

‘s’ .text:10000398 00000010 C young03.myfw.us
[E text:1000041C 0O000000A C 127.0.0.1

E text:100004A0 00000009 C kris0315

|E| text: 10000578 0000000E C SocketError:

The sample was used in the HeartBeat campaign mentioned above.

Sha256: baObcf05aaefa17fbfo9b1b2fa924edbd761a20329c59fb73adbaae2a68d2307
C2 server: youngO03[.Jmyfw[.]us

2011: obfuscation my darling & more espionage capabilities

2011 March: commect()

We identified a sample from March 18, 2011. The sample is really similar to the variant from
2010. We can notice that the developers wanted to hide some API usage. They use the
LoadLibrary() API followed by GetProcAdress(). But they obfuscated the function name
strings by splitting it in two. Here is an example:

.data:10e024C4 ; CHAR LibFileName[]
.data:100024C4 LibFileName db 'ws2 32.d11',0
.data:100024CF align 16h
.data:100024D6 Connect Partl dd 'mmoc’
.data:10800824D4 Connect Part2 dd "tce’

Once the two strings are concatenated and with the little-endian, the string becomes
"commect." After the malware replaces the "m" by "n:"

12/45

https://1.bp.blogspot.com/-mOHv2q3y_dY/XmCxp-drqQI/AAAAAAAAAvU/Xmi7TyWG3y8Uj8LVJPko4KK4n1lzpkQmQCEwYBhgL/s1600/image30.png
https://1.bp.blogspot.com/-252ffrEh4no/XmCxpL7E7XI/AAAAAAAAAvs/vWd7y4Jk25ot_1ZSFIDfpbEIYASbVz1_wCEwYBhgL/s1600/image29.png

sub
mov
mov
mov
push
mov
push
mov
mov
mov
mov
call
lea
mov
push
push
call
test

jz

esp, OCh

eax, Connect Partl

ecx, Connect Part2

dword ptr [esp+@Ch+ProcName], eax
esi

al, 6Eh ; 'n’

offset LibFileName ; "Ws2 32.d11"
[esp+14h+var 8], ecx
[esp+14h+var 4], ©
[esp+14h+ProcName+3], al
[esp+14h+ProcName+2], al
ds:LoadLibraryA

edx, [esp+10h+ProcName]

esi, eax

edx ; lpProcName
esi ; hModule
ds:GetProcAddress

eax, eax

short loc 100004069

L

They use this trick for a couple of other API such as CreateThread(), CreatePipe(),

PeekNamedPipe(), CreateProcessA(), CreateToolhelp32Snapshot(), ReadFile(), WriteFile()

and, finally, the string "cmd.exe."

The attacker also implemented a new order: execution of a command by using named pipe
to get the output of the executed command. The attackers execute cmd.exe, followed by the
command to be executed. An interesting point is the adding of a charset on each executed

command:

13/45

https://1.bp.blogspot.com/-2eG7tJrkmNk/XmCxirkKKcI/AAAAAAAAAvo/-XffQ5MOMVAyS7OP1K8LdXddOqSQhg_LACEwYBhgL/s1600/image14.png

Y

s =
mov eax, [esp+696h+hFile]
lea edx, [esp+690h+NumberOfByteshritten]
push %) ;3 lpOverlapped
push edx ; 1pNumberOfBytesWritten
push Ah ; nNumberOfBytesToWrite
push offset aChcpl251 ; "CHCP 1251\n"
push eax ; hFile
mov [esp+6Ad4h+var 670], 1
call ds:WriteFile
7

This charset is designed to cover languages that use Cyrillic script such as Russian,
Bulgarian and Serbian. This hardcoded string could be an indicator concerning the targets of
this malware.

sha256 : bb61cc261508d36d97d589d8eb48aaba10f5707d223ab5d5e34d98947c2f72af
C2 server: kissyouO1[.]Jmyfw[.Jus

2011 September: The big changes

The developer decided to remove the MFC library and put almost all the code in a unique
function. The number of functions is divided by three. Here is the main thread graph flow:

14/45

https://1.bp.blogspot.com/-0P2y-PooKEo/XmCxo-pfSDI/AAAAAAAAAvY/i4o8WLtUUZsdp9Sv5F3uKdfNPczKyupUACEwYBhgL/s1600/image28.png

L

i |

L

-

=N
LTEE

Additionally, the string such as the domain names of the URLs is encoded by using the XOR

algorithm (Ox1f for example). The network communication is also obfuscated with a XOR
(0x28).

On the version, the attacker supports the proxy server. It was a limitation of the previous

variants. If the target would have a proxy, the malware would not be able to communicate
outside. The attacker retrieves the proxy configuration in the registry:

15/45

https://1.bp.blogspot.com/-X6zyUF8na2s/XmCxxYbk7hI/AAAAAAAAAvo/omMEkR0uyPEyu1wvZOILnyCxB4HRJUNaACEwYBhgL/s1600/image6.png

L |

=
laoc_7l1a@159C:

man edx, [esp+8Edh+phkResult]

mav ebx, ds:RegQueryValusExa

lea eax, |[esp+8Edh+cbbData]

lea ecx, |[esp+abEdh+Type]

push eax : lpcbData

push a : lphata

push ecx ;3 1pType

push a ; lpReserved
push offset ValueName ; "Proszyserver’”
push edx ; hKey

call ehx : RepQueryvalueFxa

may eax, [esp+BEdh+cbDatal

push eax ; unsigned int
call PR2AVAPAXIEZ ; operatar new(uint)
may ecx, |[esp+dEsh+cbbData]

Mo esi, eax

My edx, acx

xaor cax, cax

mo edi, esi

add 2sp, 4

shr e, 2

rep stosd

My ecx, odx

and ecx, 3

rep stosh

may adx, [esp+dEdh+phkResult]

lea eax, |esp+dEdh+chbbata]

push eax ; lpchData

lea ecx, [esp+BEEBh+Type]

push esi ; lpData

push ecK i lpType

push a ; lpReserved
push offset ValueMame ; "ProxyServer”
push edx ; hKey

call ebx : RegQueryWalueExd

test eax, eax

jz short loc 71628168EB

The network communication is divided in two parts. The first part uses the Microsoft
Windows Wininet library. The purpose is to send reconnaissance information to the
attackers. The data is sent to the server via InternetOpenA() and InternetOpenURLA(). The
C2 server of the analysed sample is hxxp://fund[.Jcmc[.]or[.]kr/UploadFile/fame/x/00.asp. The
malware sent to the operator the following information: the campaign ID (named Flag by the
developer), the hostname of the compromised system, the IP address, the OS version, the
proxy server of the system and if the system is running on VMware. To get this information,
the attacker the VMXh-Magic-Value (0x0a). The second part of the communication is
dedicated to the orders and the exfiltration. This part is similar to the previous samples: raw
sockets usage.

The features of the malware are the same as previously with new capabilities such as file
creation and removal.

16/45

https://1.bp.blogspot.com/-YZxcPfFGS1w/XmCxwW4x1lI/AAAAAAAAAvg/Rh6YHrNF4_MDIcp5Zq_5ZO9aSHtsba7ZwCEwYBhgL/s1600/image42.png
https://www.aldeid.com/wiki/VMXh-Magic-Value

The author removed the malware cleaning feature and implements two others features: the
developer adds PostThreadMessageW() to send message inside the thread and in the
previous version the developer used TerminalProcess() API to stop the process executed via
the named pipes, in the version the developer append the "exit\r\b" string to the executed

command in order to exit properly:

A Sah, —cas

repne scasb

mov edx, [esp+1C98h+hWritePipe]

not ecx

dec ecx

push ecx ; NNumberOfBytesTolWrite
lea ecx, [esp+1C9Ch+Stril]

push ecx ; lpBuffer

push edx ; hFile

call ds:WriteFile

push 1F4h ; dwMilliseconds
call ebp ; Sleep

mov esi, offset aExit ; "exit\r\n"
lea eax, [esp+1C90h+Stril]

Another interesting change is the fact they don't use CHCP command anymore to force the
charset but use code page. You can see in the screenshot 0x4E3 (1251 - Cyrillic Russian)

and 0x362 (866 - DOS Cyrillic Russian):

17/45

https://1.bp.blogspot.com/-8LwCDN5cP8A/XmCxlXT074I/AAAAAAAAAvs/wuYygC3xdOQKP0BOzRHaib1cSbOQGErBgCEwYBhgL/s1600/image20.png

led Cx

ecx, [esp+1C93h+Bytesfead]
edw, [esp+lio@h+lideCharstr]

»

; cchWideChar
i IpWideCharstr

eax, [esp+1{98h+MultiBytesStr]

¥

&

; chMultiByte
; IpMultiBytestr
; dwFlags

; Codelage

il el
push B ; MaxCount
lea eax, [esprlCath+Strl]
push offset str2 ; 'ipconfig®
push cax 3 5trl
call ds:istrncmp
Moy ecx, [esp+lCaCh+BytesRead]
add esp, @ih
lea edx, [esp+lCoBh+WideCharstr]
test e3x, eax
push BCX
push adx
lea eax, [=2sp+1C98h+MultiBytestr]
push AFFFFFFFFh
push BEX
push ehx
qnz short loc 718813AD
= ' .d_‘: ' :‘j_:
push 4E3h
imp shart loc_718@13C0D| loc_718813A0: loc_71@813R4:
push 362h moy
imp short loc 718813000 lea
[push BOK
push edx
lea
push @FFFFFFFFh
push T
push ehx
push ehx
. Ty
e
loc 718813(D:
call ds:MultiBytelowWideChar
Moy ecx, [esp+rli9sh+BytesRead]
lea fax . [ean+1093h+WideCharstrl

Sha256: 43606116e03672d5c2bca7d072caa573d3fc2463795427d6f5abfa25403bd280
C2 for the orders: dnsdns1[.]PassAs|.]Jus
C2 URL for reconnaissance: hxxp://fund[.Jcmc[.]or[.]kr/UploadFile/fame/x/00.asp

2011 October: oops where is my cleaning function?

In October 2011, the attacker re-implements the cleaning function.

18/45

https://1.bp.blogspot.com/-x7KtbRzJj_0/XmCxrs9vdPI/AAAAAAAAAvg/OW_3Us5bPhks40R3oowISJryDSo94AKFACEwYBhgL/s1600/image33.png

[

loc_71e@229C: 3 hsCObject
push esi

mav esi, ds:CloseServiceHandle

call esi ; CloseServiceHandle

push edi ;3 hsCObject
call esi ; CloseServiceHandle

mov ecx, 7

mow esi, offset aCWindowsSystem ; "c:“V\windows'\system32'\\rudll. 411"
lea edi, [ebp+ExistingFileNamea]

rep movsd

movsw

mow ecx, 3%h ; '9'

xar eax, eax

lea edi, [ebp+var_186]

rep stosd

stosw

push 4 5 dwFlags

push 5] ; lphewFileName
lea eax, [ebp+ExistingFileName]
push Bax ; lpExistingFileName
call ds:MoveFileFExA

moy eax, 1

mov ecx, [ebp+ms_exc.registration.Next]
mov large fs:8, ecx

pop edi

pop esi

pop ebx

mow esp, ebp

pop ebp

retn

;v S starts at 719821B8
MalwareCleaning endp

In this implementation, the developer first uses the Windows service management APl in
order to remove the service (instead of removing directly the registry key as he did
previously) and, finally, remove the file with the same API as previously (MoveFileExA()).

Sha256:43459f5117bee7b49f2cee7ce934471e01fb2aa2856f230943460e14e19183a6
C2 for the orders: jennifer998[.]lookin][.]at

C2 for rollback: 196[.]44[.149[.]154

C2 URL for reconnaissance: hxxp://fund[.]Jcmc[.]or[.]kr/UploadFile/fame/x/00.asp

2011 December: Not a service anymore

The new variant from December 2011 is not a service anymore but a simple library (.dll). The

19/45

https://1.bp.blogspot.com/-J1fRssQ7Z1g/XmCxvFPT4BI/AAAAAAAAAvo/vEfLtVX-29MfZY7DBU-uYrQziv2uFmGBACEwYBhgL/s1600/image40.png

library is executed via a launcher (conime.exe) and the persistence mechanism is not a
service anymore but a registry key (CurrentVersion\\Run\\task).

The malware is lighter than the previous version but includes more espionage features such
as file exfiltration, file listing, driver listing, process-killing, file removing. The other features
are the same as previously.

It is interesting to note that the obfuscated reconnaissance is still hard-coded in the binary
but it is not used anymore. The code used for the reconnaissance was removed but the
developer forgot the IP variable.

Sha256: 915ad316¢fd48755a9e429dd5aacbee266aca9c454e9cf0507c81b30cc4222e5
C2 for the orders: v3net[.]rr[.]nu

C2 for rollback: faceto[.]JUglyAs[.Jcom

C2 URL for reconnaissance: hxxp://fund[.Jcmc][.]or[.]kr/UploadFile/fame/x/mh/o.asp

Hardcoded identifiers

In this version, we identify hard coded identifiers. We assume these IDs are campaign or
target ID. Here is a list of IDs:

» 1031

e jp0201

e jp-serv

e mhi

e m1213

e classnk

e 95mhi

e NSCSVC

In the next version, a campaign ID will be also used. The ID we believe is in reference to
Japan targets. We believe these targets to sit within both the public and private sectors and
they are specifically targeted to further enhance the attacker's capabilities through
espionage.

2012: File format year

February: Let's hide my code in an almost legit library

In February 2012, the developer tried to hide the malicious code in the middle of a legit
library. The malicious library was named msacm32.dll and contains the same exports as a

20/45

legit library from Microsoft Windows named msacm.dll. Here is the export of the malicious
library with the same name than the real one:

@XREgThunkEﬁtr}‘ 10002300 1

@acm[ﬁlriverﬂsddﬁ 100023ED 2

acmDriverﬁ.ddW 100023F0 3

(28] acmDriverClose 10002400 4

acmDriverDEtails.ﬂ. 10002410 5

|'§,-E| acmDriverDetailsW 10002420 B

acmDriverEnum 10002430 7

(58] acmDriverlD 10002440 8

acmDrivnrMnssagn 10002450 =]

E’f’] acmDriverOpen 10002460 10
acmDriverPricrity 10002470 11
@ acmOriverRemove 10002480 12
acmFiltF.lr{'.hnnﬁF.l.-’-‘-. 10002490 12
@acml’—ulterfhm}ﬁew 10002440 14
acmFilterDetailsA 10002480 15
fZEacmHIterDetallsw 100024C0 16
acmFilterEnum.ﬁ. 10002400 17
@acml—ult&rmumw 100024E0 18
acmFilterTagDetailsA 100024F0 19
EﬂacmFulterTagDetailﬂw 10002500 20
acrnFiIterTagEnumﬁ. 10002510 21
@acmFulterTagEnumW 10002520 22
acmFormatChoosed 10002530 23
ET| acmFormatChoose\W 10002540 24
2] acmFormatDetailsh 10002550 25
E‘ acmFormatDetailsW 10002560 26
@acmFormatEnumﬁ. 10002570 27
E?‘ acmFormatEnumwW 10002580 28
@ acmFormatSuggest 10002590 29
E‘T' acmFormatTagDetailsA 10002540 30
@acmFormatTagDetar’lsW 10002560 31

As previously the hard-coded C2 for reconnaissance variable is here. Without being used.

Sha256: 6f8bbea18965b21dc8b9163a5d5205e2c5e84d6a4f8629b06abe73b11a809cca
C2 for the orders: since[.]Jqpoe[.Jcom

C2 for rollback: applejp[.]Jmyfw][.]Jus

C2 URL for reconnaissance: hxxp://fund[.]Jcmc[.]or[.]kr/UploadFile/fame/x/00.asp

2012 May & December: | miss services

In May and December 2012, the developers modified the .dIl to come back to a Windows

21/45

https://1.bp.blogspot.com/-xu0x41mo0Jc/XmCxhp5QBeI/AAAAAAAAAvo/DZOjtCsFIFssgIKBkcN7wXpDEB2wxxWgQCEwYBhgL/s1600/image10.png

service.

As previously described, the hardcoded C2 for reconnaissance variable is here. Without
being used.

Sha256: b75c986¢f63e0b5c201da228675dadeff53c701746853dfba6747bd287bdbb1d
C2 for the orders: since[.]Jqpoe[.Jcom

C2 for rollback: 69[.]197[.]149[.]98

C2 URL for reconnaissance: hxxp://fund[.Jcmc][.]or[.]kr/UploadFile/fame/x/00.asp

Sha256: 979d4e6665ddd4c515f916ad9e9efd9eca7550290507848c52cf824dfbd72a7e
C2 for the orders: usababal.Jmyfw][.]Jus

C2 for rollback: indbaba[.Jmyfw[.]Jus

C2 URL for reconnaissance: hxxp://indbabababal.]Jdns94[.]Jcom/o.asp

2012 October: Standalone PE

In October 2012, the attackers used an .exe. The attacker chose a standalone PE.
As previously the hard coded C2 for reconnaissance variable is here. without being used.

Sha256: 6f4a1b423¢c3936969717b1cfb25437ae8d779c095f158e3fded94ababb6171ad
C2 for the orders: mycount[.]MrsLove[.]Jcom

C2 for rollback: mycount[.]MrsLove[.Jcom

C2 URL for reconnaissance: hxxp://fund[.]Jcmc[.]or[.]kr/UploadFile/fame/x/00.asp

2013: RIP

We did not identify any Bisonal samples used in 2013. The first explanation could be that it
was used so much that it stays under our radar. The second explanation could be a
publication from Trend Micro on January 3, 2013. In the publication, the editor described a
campaign where Bisonal was used. Maybe the actor decided to stop using Bisonal?

2014: The rebirth

Packer

For the first time, the Bisonal developers decided to use a packer: MPRESS. The Bisonal
string also disappears from the binary however the workflow of the malware stays the same
and some features are copy/pasted from the previous Bisonal variant.

22/45

https://blog.trendmicro.com/trendlabs-security-intelligence/pulsing-the-heartbeat-apt/

Obfuscation

The domain and the port number are obfuscated but it is not a simple XOR anymore. The
developers implemented its own byte manipulation algorithm. The developer also
implemented an obfuscation concerning OS detection. The OS version string is not stored as

a string anymore but as bytes:
. ; ¥

e T =
mov [esp+5@Ch+var 4741, 37h ; 7'
loc 4@24CC: Jmp loc 48262F
mov [esp+5@Ch+var 4741, 56h ; 'V'|
mov [esp+58Ch+var_ 4727, &6%h ; "1
mov [esp+58Ch+var_478], 73h ; 's'
mow [esp+58Ch+var 46E], 74h ; 't
mow [esp+58Ch+var_46C], &1h ; 'a'
jmp loc 48262F

It is interesting to note that a few samples from 2014 do not use the obfuscation described
above.

Malware core

The developer rewrote a large part of the code however the workflow is the same as
previously and some features are copy/paste. The binary is compiled with the MFC
framework.

The biggest change is the network communication with the C2 server. The malware does not
use a raw socket anymore but all the communications are performed with Winlnet. The
malware performs connection to the C2 server by using InternetOpenA() with an hardcoded
User-Agent: "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322". Note
the missing parenthesis at the end of the User-Agent. This typo will be there till today.

23/45

https://1.bp.blogspot.com/-6eWfabMKrIE/XmCxn6cx88I/AAAAAAAAAvg/M27YBAVHAisiZG10-GkNv8TPKEIsVmr4ACEwYBhgL/s1600/image25.png

push a ; dwFlags
push & i lpszProxyBypass
push [} : lpszProxy
push 5] 3 dwhccessType
push offset szaAgent ; "Mozilla/s4.@ (compatible; MSIE 6.8; Wind”...
call ds:InternetQpand
moy edi, ecax
test edi, edi
inz short loc_ 481FD9
. - L]
H=E =
pop edi
pop esi loc_4@1FD9:
pop ebp mo dw, nserverfort
pop ehx push a8 ; dwlontext
add gsp, # | push a8 ; dwFlaps
retn push 3 ; dwService
push a8 i lpszPassword
push B 1 lpszlseriame
push edx ; nserverfort
push offset szServerflame ; "oAn”
push edi ; hlnternet
call ds:InternstConnacth
mo ebx, eax
test ehbx, ebx
jnz shart loc_a828ak
= ' o
push edi : hInternet
call ds:InternetClossHandle loc_4028BE: ; dwContext
pop edi push 8
pop esi push ad48818ah ; dwFlapgs
pop ebp push & i IplpszacceptTypes
Kor eax, eax push e ; lpszReferrer
pop ebx push e ; lpszVersion
add esp, 8 push offsel sz0bjectName ; IpszObjectName
retn push offset szverb "POST"
push chx 3 hCannect
call ds iHttpOpenRequesta
mo esl, eax
test esi, esi
jnz shart loc_ 482849

This variant has exactly the same features as the previous variant: file listing, OS version
getting, process killing, drive listing, execution via ShellExecuteW(), execution via named
pipe, cleaning, file removal, file downloading.

Here is an example of code similarities on the execution via named pipe function. On the left
a sample from Bisonal 2014 and on the right Bisonal 2011. The code is not exactly the same

but the workflow and some constants are similar.

24/45

https://1.bp.blogspot.com/-4eSvNOujjiI/XmCxihAT9fI/AAAAAAAAAvk/z0eqI2nWTvk_5dccqFPvRunyeexXojHsACEwYBhgL/s1600/image13.png

e s, hebject

ANFRAR: i CadePage

Hard-coded Identifiers & URL pattern

In this new version, we identify three hard-coded identifiers:

e Campaign ID: an ID put in the exfiltrated data with the hosthame and the OS version.
We assume this ID is used to identify the campaign and the target by the operator;

» Malware ID: used to generate the first "word" of the URL. We assume this ID is used to
identify the malware version (from a network protocol point of view);

e Third ID: used to generate the end "word" of the URL. It generally looks like a file
name.

The URL pattern is the following: hxxp://C2_domain:PORT/MalwarelDVictimIPThirdID

SHA256: c6baef8fe63e673f1bd509a0f695c3b5b02ff7cfe897900e7167ebab66f304ca
C2 URL: hxxp://lwww/[.]hosting[.]tempors[.Jcom:443/av9d0.0.0.0akspbv.txt

2016: More packers

In 2016, the developer implemented a new way of packing Bisonal. An initial static analysis
immediately shows an executable with very little information. IDA Pro only shows five
functions and almost no imports.

25/45

https://1.bp.blogspot.com/-nHqb7e8c-jE/XmCxumiKnpI/AAAAAAAAAvY/-yxZbcwggVoqhj6PffZYuPsfA-gx5KMZQCEwYBhgL/s1600/image39.png

(] Fuscsnt mciew o8 = m — @ e B ol fre— 1] [— T o i} il 1
Functicn nanms Aglik s Dkl Mairs Ay
E wHart E I D
:f-_ rudbiub 1 :_L||-I'I-C Wh i3 CWinApp-Getfustime] assiyoid) [[AT
(7] sui ANARCT B and4300s cortrallp FASVCRT
T nadbsubs # T 00a430FR Islcennic USER3Z
7 st ADBRCG ?ﬂ LUEEERRI HigDwbetetdalueid! ADNARIRS
7] sl A0BCA2) aa4a3147 HHpperEtaguisti WANINE
FI LUIEE BRI A gethastname Wht 12

Looking at the few functions available it becomes clear the packer uses several anti-analysis

tricks. In the unpacking stage, the malware has a lot of useless jumps and calls which makes
the code tracking in the debugger harder.

After the unpacking is done the malware continued to use several anti-analysis measures.
There are almost no direct calls to functions. It is common during the unpacking process to

26/45

https://1.bp.blogspot.com/-4Ll1Zb03AuE/XmCxvPHKfzI/AAAAAAAAAvc/LrR4YnSrBfwEO43QctjjrET6cMsCgij_gCEwYBhgL/s1600/image4.png
https://1.bp.blogspot.com/-XU1xKziaq8Q/XmCxtNoteWI/AAAAAAAAAvo/1qcrGEIE4eAijMa14GHaR-NruiKnhJf5ACEwYBhgL/s1600/image36.png

find useless code, like sequences of one instruction followed by a jump or increments in

register values almost immediately followed by decrements. The initial unpacking is based
on the manipulation of the return addresses pushed in the stack and the ordering of the data
within the .text section. A second stage will allocate memory and unpack code into it, which

finally will unpack code into a section that is originally empty called .textbss. This is where
the core of the malware will be.

All API calls are made through a dispatcher function. Which is not called directly either,
before this function is called it goes through a series of jumps and the stack is filled with
encoded offset values.

The call of the jump table entry:

15d_sample. 00401658
push ebx

mcall 15d_sample.401E83 ; InternetReadFiled

cmp eax,es’

pop ecx

mov dword ptr ss:|lebp-C],eax

jle 15d_sample.4019/F

Push parameter for dispatch function into the stack:

27/45

https://1.bp.blogspot.com/-EEeilbxoYg8/XmCxx-dBWOI/AAAAAAAAAvk/jfFHOmOzhW4HS29fcpq__Hof6lU2jE_ogCEwYBhgL/s1600/image7.png

15d_sample.0040721cC
jmp 15d_sample.4072DC

15d_sample. 00407 2DC
jmp 211283C
0211283C

Push all general-purpose registers into the stack:

0211283C

ush dword ptr ss:fesp+20
2112122

Bpopad

Before calling the actual dispatch function, all registers are saved to the stack, by doing this

28/45

https://1.bp.blogspot.com/-UGEbZtVRo4g/XmCxjcoTRyI/AAAAAAAAAvY/OFWGhbpHivQnGVlm-KolAazjkRIYw66DgCEwYBhgL/s1600/image17.png
https://1.bp.blogspot.com/-DYI_jN2_d1g/XmCxjG3eDcI/AAAAAAAAAvo/FSIcqGvoM5IYHsAotBMnri8A6-RrEJ4CwCEwYBhgL/s1600/image16.png

the offset value is no longer on the top of the stack so the malware needs to put it back on

the top of the stack.
[$-24 0320 TEINED
£-20 0321 00CCO00s
§-1cC 032¢ 00000000
$-18 032F 032FFBEO
$-14 0324 032FF718
£-10 032} 00cc000C
i-C 032§ 00000000
-8 032¢ 00000000
-4 032t 032FFBOHAB
§ == 032} AEBDL1EF
$+4 032§ 00401650

-h

| return to 15d_sample. 00401650 H#

At this time and just before the argument in the stack we also have the return address, inside
the core of the malware. The dispatcher function will push the desired API function address
into the stack. Afterward, it will do the same for the general-purpose registers.

A 150 saplees - FID

CED - Thoead: 240 - #37edbay [Flisaatned]
like Virw [LC iR Irace Flgns s ries Ot g A HIIY
oE 5 tawy tuBi e wLES
| @ v B omh [Gleg O Moks ® Crosipoins | B MemoryMap | [S)) Col Shck e SEH Sorigt @ Symbok €3 Soun [W Thcads b
.] Funhad ,
. FETA2E 2N puzh dword ptr =s;flesps 20 | Ui L
« | 07117801 BB DGCFHFFFE T 11217 Lax 03
5 1 o EnX oo
E——- c3 | Fax ECx 00D
. . = EU SRR ¢ [TH Enx O
. K LE] 1
. T] '::"-I:"-n"—._uiim BT
13 EOT HCED
13 s
13 EIF 1
13 FFLASGS il
3 I]
int3 o | Dot {shooall) =5 = Lok
nth —
£ » Li [espsd] (MELLED 154 T, (HHOLED]
. 4 2: [esped] DOCLOMK
}: [espec] D00 o0
A: [eapelD] OOOO0000
5: [espilda] GI2FFRGE L
Denigd @ Durp 5 00 wat | Lisciaks T — L0140 From
| ascra | 1
]] I P
i 01 W
0 00 00| b®, Gy
1 W W - —
it Wi Wi 69754, 4], 51 w
]] < >
Cammandd [T
| |3 hresnbegaint o 071 128461 Tihave 'Whisten] Dedmigeing: :01:46:53

After calling the dispatcher function the malware will first restore the generic purpose
registers from the stack, thus leaving the API function address at the top of the stack.
Logically, after the ret instruction is executed the code will jump into the API function.

This mechanism allows the malware to execute API functions without ever using the Call

instruction, making it difficult to perform the analysis. The other side effect is that even after
the code is unpacked if the analyst tries to dump it and analyze it statically, it will be hard for
the disassembler to understand the code.

29/45

https://1.bp.blogspot.com/-sa-yv5Nd31o/XmCxtd_mULI/AAAAAAAAAvU/T_n3myfwDAsNzEDLvb1t4Z0sHGZR61nGACEwYBhgL/s1600/image37.png
https://1.bp.blogspot.com/-TFtnnu0b5YM/XmCxiCBhnBI/AAAAAAAAAvk/DoIH36PO6j4BAYiJT-cfoLnoE4Q3zm4MACEwYBhgL/s1600/image12.png

02117122

eax dword pre o [#1166
i-: m

DLLEL20
dword ptr ds; [=SGetTickCount= |
WOV BCK , EAK
suh ey dword ptr cs: [FLI6S10]
cp ecx 1 3RR
e 7115184

dword ptr os; [F116514]
ehward ptre o [FIDGS10] ,eax
dmr‘dpﬂll‘ b : [elRpsuneTRireads |
dword pre os: [BIRBCDC], 4
ZULFI6S

27112150
ush 0
dword pte ds: [<SEX]TPPocesss |

0FLIFI6S
cmp Byte pre ds: [QEDSGD0] .0
e zﬂn?ﬁ

2112076 711216k
amd dword pre ds: [2LRECHE) 0 inc dword pre de: [ZT1GC5E |
isp 2112000
02113170
mod byt pre ds! [21168@0],1

07112134
push esi
ush dword pre ss:fespedll 0 [espel]:Lb@_ 258 a1, 33"
dword prr da:!?l.lﬁg!cj
woy esi,ean
oy eax dword pre dbr{lm%
sub pax deord pee e (2116050
&AF eax,lt
oop_esh,can
ib 2

112185

07117143
EEIN 2 LofElE
021121a8

mipr pax dword pteo s (211606]
ey eax dwerd pre ds: [eax+esi%4]
wiy dword pre soofespe 2O, eax
esi
]

The dispatcher function has other tricks up its sleeve. Every time it is called it will use the
anti-debug GetTickCount() to check if it is being debugged. If there is a discrepancy in the
timing it will terminate the process. The termination can be as simple as a call to
ExitProcess(), or it will first resume a thread that will display a message to the user. So that it
ensures the thread has a chance to run, it will return the API call sleep() no matter what was
originally requested. Once sleep() is executed, the error message thread will have a chance
to be executed and will terminate the process.

From the functionality point of view, there aren't many differences between the 2014
versions. Always using three hard-coded identifiers mentioned previously but with different
values.

30/45

https://1.bp.blogspot.com/-P6g3T0wLyQY/XmCxmwicCFI/AAAAAAAAAvU/pqtaOW3liq0Ptn-GR4D-Nnw6MmYaRGvLgCEwYBhgL/s1600/image23.png

SHA256: 15d5¢84db1fc7e13c03ff1c103f652fbced5d1831c4d98aad8694c08817044cc
C2 URL: hxxp://emsit[.]serveirc[.Jcom/ks8d0.0.0.0akspbu.txt

2018: | miss you

During 2018, the attackers used a mix of samples using the MFC framework or the Visual C
libraries. The registry key used for the persistence is now named "mismyou".

In September 2018, the developer made a mistake. Normally on this variant of Bisonal the
domain names are encoded. However, the developer forgot to obfuscate the strings and put
them in clear text into the variables but the deobfuscation function is still executed:

i =

loc 48140A: ; hKey

push [ebp+phkResult]

call ds:RegCloseKey

push 1Eh

push offset a2lkmgMyHomeipN ; "21kmg.my-homeip.net”
lea eax, [ebp+var B8]

push 4

push eax

mov [ebp+var 8], 12345678h

call DeObfuscation

push 1Eh

push offset Source ; "21kmg.my-homeip.net™
lea eax, [ebp+var_ 8]

push 4

push eax

call DeObfuscation

sub nServerPort, 8Ah

push ebx ; Time

call ds:time

The mistake has for effect to destroy the domain and generate garbage strings. The malware
will try to perfect connection to this bad domain (hxxp:/fti#vissibike ?reeiE 1kdi
25:70/ks8d0.0.0.0akspbu.txt). You can see here a screenshot of the debugger trying to
perform a connect on it:

31/45

https://1.bp.blogspot.com/-8xrt91xZ-94/XmCxk-uhTgI/AAAAAAAAAvc/icPS9yPs7xM2ODy3U18DzLxwTiBg2tzYgCEwYBhgL/s1600/image2.png

[& o B coph

CT hotes & Peepbpoints B Merory Map) Call Sack S SEH Y Soipt L F SO 4 Baferes
AR WA R, A
=T s
B350 P e ..J._ | S A
= R4 AFOOHE i d.HI uml-p 4018
BOES af D ared byte ptr : b - 56, 0
v h

33co zOr U ..

= O cmp |.-.n..1. r mefesn K, esd
Fil:a rep stosd

LMk

S jres Bl -Hq\lll ll|I1I.‘ﬂ.|

b8 SO0 P mh dH3 (i

~ L8 0% _|q.| dB-! :.a-pl-: 4')[5‘5-‘!
[[EEa] e
Boa% AR <»..|r|nr | bp- 53
bl

ER SYLEN000 call g Ly

B ALl BMO4000 wre ax word ptr s A0A0ED |

Erd 3

pir =opfesp-10Q, e
1
ysind pie b [alrstesnetc ok il lex]

..... 15
Ed3n ACEIA000
31

FEIW

5

FEG
- I|I b

|,.- LT
'&!

I.‘I ACAUL O
B3 FE4L4000

.1
FE1S BC 5240

ka4 E0 sy I-nd. o, b
=~ 7§ i e dB:i_:.—'ll III:II. 2:
TS FC) ||l|||w||'. F l'

.
v
0 ~ il . -

i C BodS £8 Tea cax, dwiord pte oo Jobp 130

% L, OF pishy B
. 5] puzh Eax
« || BosotRIR 5 poh =i
* e >

-
deoed pre [EITIOD «dB1_samp e, ALAT erneTooneec Tas |edel nfneT . IATe reToone T

Mon ascii string

Tent IO 50S dE3_sample cwe: 51505 1505

MWoeme) @omez @ooncl Boemod B 0wt B8 oww to=] Lol H St |
-
OMIRFRSAA !! !:- l.'.! FAlF Hﬁﬂ:::
0rineni | G0 16 5F ch| s DO
:j.:l.ﬂ ::: y [EAHEHEA
2 InFnEd ﬁﬂﬂ:‘g
:-; :I'CI :K‘: CHAHEH IO
2 inEn 3 gﬁﬂ:g
::j::ﬁ' “*—: [RAHEHEA]
anencd OO0
s st
orinEnrd 0':::‘:;;::;“:
et i A |l
< oAl FEYRY RUEin 2 AT Py

e2InEcra ||_. l,",'l 00 30| o] WD 2 RF 1 e OO0
Loziseczal oo fo w ool) g il vl

SHA256: 92be1bc11d7403a5e9ad029ef48de36bcff9c6a069eb44b88b12f1efc773c504
C2: kted56erhg[.]Jdynssl[.Jcom

SHA256: d83fbe8a15d318b64b4e7713a32912f8cbc7efbfae84449916a0cbc5682a7516
C2 fail: hxxp://RLjivissbike 2reei# 1kdiZy:70/ks8d0.0.0.0akspbu.txt

2019 - Office Extension and a new packer

Packer

Static analysis of this executable shows only two functions, but a regular number of imports.

32/45

https://1.bp.blogspot.com/-rd_F51LtFK0/XmCxybMcRrI/AAAAAAAAAvo/bR8Jdvflvks5VCf9SdN4Z0Zkhy21gMO_gCEwYBhgL/s1600/image8.png

This time the packer shares some of the characteristics from the advanced one used in
2016.

o_saepl e, LSRR
o Pl SHE
[/ 14 ELN FE

]
o

2 ii P

b]

T e —
= o_imgle. mics

n®
'R

¥

§
=
i
H
i

o
:
;|

i
:

i

#
i
15

There is a lot of useless code, including jumps and bswap operations. Upon detecting a
debugger attached to it, the malware will display the message below and terminate the
execution.

Error X

A RIETE

T AR EFR TP R A IE T I T
EXEEEREMZTIER

‘ oK |

This message translates to "The debugger was found to be running in your operating

33/45

https://1.bp.blogspot.com/-MhwfoxYyle8/XmCxngNW4UI/AAAAAAAAAvc/BrMIsaFSBA0p0KB4kSYDkpCXxnbH0NXpgCEwYBhgL/s1600/image24.png
https://1.bp.blogspot.com/-cWUJp7p4QOI/XmCxhvKkk_I/AAAAAAAAAvs/5jTe3IGJ_vgkNbt2rpBHDADfkWY_HfhEACEwYBhgL/s1600/image11.png

system. This turns it off before running the program again!".

This packer also hides the calls to API functions. This time instead of using a dispatcher
function, the malware pushes the arguments into the stack as usual but will then perform a
call to a jump table built during the unpacking, in the .text section memory region.

0O45BOSF S0 nop

DD45BOED +~ 72 00 jb d7_sample. 45B0&2

0045B0OG2 v E9 E91AF571 Jmp <wininet. HitpOpenRequestA>
D045BOGT ~ FE A9 Jjle _sample. 458012

D045B069 De salc

DO45BOGA D4 9A aam 9A

0045B06C 1B22 sbb esp,dword ptr ds:[edx]
O045BOGE C2 C497 BER 27C

00458071 304F 27 xor byte ptr ds:[edi+27],cl
O045BOT 4 CE into

DO045BOTS 66: 45 inc bp

0045B0O77 56 push es1

00458073 SE pop esi

0O045B079 + 74 00 je d7_sample. 45B07B

0045BO7E « E9 100AES7L jmp «wininet. InternetOpend:
0045 BOB0 AS movsa

D0O45B081 EZ2 BO loop d7_sample. 45B032

O045B0OES 24 99 and al,5%

DD45B08S a0 nap

D045 B0OE86 SB pD]‘J ebx

DD45E 325 471FDEBD XOor eax,BDDEL1F47

00458 81DE 4684C4EE sbb ebx,EEC45446

O045E + 71 00 jno d7_sample. 458094

00458 « F1 00 jno d7_sample. 45B096

00458 « E@ 153BEGTL jmp ewininet. InternetReadrFiles
DO45B E7 F9 out F9,eax

00458 + F4 21 je d7_sample. 45B0C0O

DO45B 40 1nNc eax

0045 B0AD DC24a fsubr st(0),gword ptr ds:[edx]
D045BDAZ B0OAE B34C1758 B3 sub byte ptr ds:[esi+58174CE3],B3
D045B0DAS9 CB ret far

0045 B0AA D95A 9D fstp dword ptr ds:[edx-63],st(0)
0045 BOAD 59 pop ecx

0045 BOAE « F£3 00 jae d7_sample. 45B0B0

0045BOBO 87D3 wchg ebx,edx

0045BOB2 87DA xchg edx,ebx

DD45BOES ~ E9 0O7C8EA7L jmp <wininet. INternetConnectis
0045BOB9 AZ SACBCSDBE MoV OyLe PLT O5: [DBLSLESA] a1
0045BOBE F&55 &8 not byte ptr ﬂﬂ:tebp!ﬁﬂ
0045B0C1 1E push ds

DO45BOC 2 BE FESAD0114 mov es51 ,14015AFE

0045B0CT DEEE fsubp st(3),.s5t(0)

O04EBOCS 0OE push cs=s

O045BOCA 024F 4E add cl,byte ptr ds: [edi+4E]
0045 BOCD ~ 74 00 je d7_sample. 45BOCF

D045BOCF 20 nap

D045B0DO ~ ES DBSESEF7 jmp =user32.LoadIconw:-

Even though a call is made, these are not functions, in fact, most of the code in this jump
table is useless except for the last instruction of each entry. Each entry finishes with a jmp
instruction into the respective API function. Effectively the malware doesn't do any call to API
functions, it always performs a jump. The return address is loaded into the stack when the
malware does a call to the jump table. The end result is the same has in the packer from
2016, but with a simpler mechanism.

The majority of the code was moved into a packed area. The malware configuration (such as
C2 server and the User-Agent) is outside that area. The packer uses a thread-local storage
(TLS) callback to unpack some of the code. At this stage, it uses in-place unpacking avoiding

34/45

https://1.bp.blogspot.com/-ScPD9DzRY7U/XmCxj7oywRI/AAAAAAAAAvY/uLNxrOYW6Vgrmizp5JUUMjNn_R9rGdDewCEwYBhgL/s1600/image18.png

memory allocations. One of the anti-analysis features included in this packer is the lack of
calls to API functions. In the early stages of execution, the malware loads the libraries and
retrieves the addresses from functions it needs.

Feature-wise, there is no change when compared with the 2016 version, in fact when
compared the C2 beaconing functions even share some of the offsets.

Office Extension

In 2019, the actor behind Bisonal used a new way to deploy the machine on the target's
systems. They sent a malicious RTF document to the targets with an exploit targeting the
CVE-2018-0798 (Microsoft's Equation Editor vulnerability). The purpose of the shellcode was
not to execute the malware (as it is usual) but simply to drop it in the
%APPDATA%\microsoft\word\startup\ repository with the .wll extension.

The libraries in this directory with this specific extension will be loaded as a Microsoft Office
extension. So next time the user opens an Office application, the malware will be loaded and
executed. The purpose of the malware is to deploy Bisonal on the infected system
($tmpS$\tmplogon.exe) and to create a Run registry key in order to execute Bisonal at the
next reboot of the system.

We think the purpose of this multistage execution is an anti sandbox technique. If you look at
the report after executing the malicious document, you only see one action: the .wll file
creation. The user also needs to open an Office application and finally a reboot is needed in
order to execute the real payload: Bisonal.

Bigger is better

We identified a version of Bisonal using Office extension with a really specific behavior
during the installation of the malicious payload. The dropper appends 80MB of binary data at
the end of the Bisonal binary:

35/45

ol = all
xor al, al
pop esi loc_leaalaiea:
mo esp, ebp|push edi
pop ebp push @
retn lea eax, [ebp+var_4]
push eax
push 7D@aeh
push offset PE_Xored
push esi
call WriteFile
mo edi, 230888h
lea ecx, [ecx+@]
S Yy
loc_18881858:
push 8
lea ecx, [ebp+var 4]
push ecx
push 24h ; "%
push offset a@01101616801101 ; “"eelleleleelielleplesllslslesllalilesl”
push esi
call kriteFile_
dec edi
qnz short loc_ 1881858

The binary value is "56 MM" is ASCII characters. If we look at the malware, we can see the

appended data:
ppesddae® 30 3:
epesddbe
eee8ddce
@eesddde
Be88dded
peesddfe
eee8deoe
Pee8deld
PEoBde2@
eoosde3e
eee8de4o
eee8des50
PEo8desR
pee8de7e
poe8dese
©608de90
@008dead
geesdebe

L

o
1Y
[an

plieeleellelelee
|1181100100110101 |
|ea11p11001001101 |
|eleellelleeieell |
|eleleellelleeles |
|11e1018011011661 |
|es11e101001101106 |
|elealleleleallel |
|1e01001101010011 |
|e11ee1e011016168 |
|11811801001168161 |
|eai1e11e010011601 |
|eleellelleeleall |
|elel1ee11e1100108 |
|11810100110116061 |
|ea11p10100110110 |
|eleelleleleel1iel |
|1e01001101010011 |

[FER T

o =
[TF Ty
= &
WL
=
(WY
D ®
)
=&
w
=1

L
!

Wl
o

L
Lo
[FELY]
o =
b L L L
[o
[FERL Y]
o =
L L
(R =
oW W
L
]
o
[o

L
Lt ek
[
LAY
LW
[x2]
W

R R
LFY)
=
L L
D = ®
=

38
3

1
3@
38 31 38
31

(W%}
fuiry
e L
=

WL
Lo i
L
=

L
gyt
L L

i = B
Wl
W
=t

Joad ey L
[an]
L
=

L
]
w
=
O & & =
LYY]
(RO =
LYY
=)

w
w
=

(TR TR T
[
LFY]

ek
[y

Ly

[

[an]
i
iy
L
=

L La b g L
(an]
W
=

L)
L]
[¥1}

W o W W w
L]
L
L]

L
=
=2
L
=

= &

PR]

S =

U]

=

L
a3
=

[P
(=Y

[F1]
]
[P
]
w
=
w

[y
w
Wl
[
w

D=2 ®

Lk
o
[
Lt
o~
Ly
L]
Lad
[

(LT T
=
[
L
=

g L L
[an]
L

=

Wl
=2
=

[FTFT]
Lo

B
)

[

L L L L

- hur -
L
=

-]

L ¥}

=

L
(R

wow

]
W
=S e

[FY]
=i
Ly
=
w
w
[
w
[

We are not sure of the purpose of the creation of a huge binary. It could be an anti-analysis
technique. Some tools limit the size of the analyzed files. For example, by using the
VirusTotal standard API, we cannot upload files bigger than 32MB. We also identified
sandboxes that cannot handle big files correctly. Remember, size matters.

36/45

https://1.bp.blogspot.com/-bFsOTIjZgLg/XmCxytA123I/AAAAAAAAAvs/Qs2LkaO2UdsShdzfvQYCtUbqPxRwiKZAgCEwYBhgL/s1600/image9.png
https://1.bp.blogspot.com/-j31QT2b4_20/XmCxq8cZUFI/AAAAAAAAAvo/MSUklvd-8oIlOCq1triF1-P2E-3u5fmLACEwYBhgL/s1600/image32.png

Malware code

The developer partially refactored the code. The variant from 2019 keeps exactly the same

features. The two main changes are the obfuscation and the network protocol to
communicate to the C2 server.

The developers used two different obfuscation algorithms: one for the C2 encoding and one

for the data. The C2 encoding is a simple XOR (as in 2012):

ol = v
loc_48136E:
mov cl, byte ptr aBbbTxtFpgZaozV[eax] ; "bbb;txt{fpg, $%;zaoz;vzx"
xor cl, 15h
mov name[eax], cl
inc eax
cmp eax, edx
jl short loc_4@136E
I

|l ey =

loc 481382:

xor eax, eax

test esi, esi

jle short loc_48139C

YT

A
loc 481388:
mowv dl, byte ptr aljj3yyn3jQnuyK[eax] ; "jiji3yyn3j|gnuy|ktn3~rp"
xor dl, 1Dh
mov byte_487184[eax], dl
inc eax
cmp eax, esi
jl short loc_481388

The C2 encoding communication is also different. As the data are now sent with the GET

- W

method, the data must be in ASCII. That's they add base64 encoding in order to get
supported characters in the HTTP query.

For the first time, the developer switched from POST requests to GET requests:

37/45

https://1.bp.blogspot.com/-4DENo0URPRc/XmCxmQHSJII/AAAAAAAAAvY/vueLuWf0Op4GsTLK6wWgb7xyJLipm7P0gCEwYBhgL/s1600/image22.png

add

lea

push
push
push
push
push
push
push
push
call
mov

test
jnz

esp, ©OCh

ecx, [esp+19C14h+szObjectName]

5 ; dwContext
84400100h ; dwFlags

% ; lplpszAcceptTypes
5 ; lpszReferrer

% ; lpszVersion
ecx ; lpszObjectName
offset szVerb ; "GET"

ebx ; hConnect
ds:HttpOpenRequestA

esi, eax

esi, esi

short loc_ 401940

The exfiltrated data is appended to the URL. Here is the pattern:
hxxp://C2_domain/MalwarelDVictim|PThirdIDExfiltratedDataBase64

SHA256:37d1bd82527d50df3246f12b931c69¢c2b9e978b593a64e89d16bfe0eb54645b0

C2 URL:hxxp://lwww[.]Jamanser951][.]Jotzo[.]Jcom/uiho0.0.0.0edrftg.txt

2020 Business as Usual

Ahnlab, a South Korean software company, simultaneously published a paper regarding

Bisonal's activity in South Korea. In this case, the infection vector has changed from previous

samples. The initial stage is a binary that drops a decoy document (Powerpoint or Excel
document), a VisualBasic script and the packed Bisonal payload. The payload is dropped
with a .jpg extension that's been renamed to ".exe." Here is an example decoy document:

38/45

https://1.bp.blogspot.com/-aso330UYCLQ/XmCxv0aYDwI/AAAAAAAAAvg/UOYPENN1DgAUoOdbijcmKtjBjosR1g5oQCEwYBhgL/s1600/image41.png
https://asec.ahnlab.com/1298

“ Heme Ins =

v [Lapaut

B Reset

e

4 Slide =

Jlipboard & Clides

B £ U § ae 2%

Amimations Shde Show Review Wiews

- | iz oz b= i 1y Hg ¥ Shape | i
*A A i — =t . N { JJ = ;
= | B = tir 4]
. % = H = | i3 Shapes Arrange
ha EESE B s S e se
Paragraph Drawnirig Ed

Slides | Cutine x|

Mol aade

The purpose of the VisualBasic script is to execute the payload. Similar to attacks in 2019,
the attacker appends data in order to generate a large binary. Although the malicious part of
the binary is only 2MB, the final file is more than 120MB in size, padded out with random
data. This may be an attempt to evade antivirus engines that only scan up to a maximum file
size. The payload has been packed with a new packer.

The code of Bisonal is similar to the version of 2019. The attacker implements indirect API
calls by using GetProcAddress() and LoadLibrary() API.

39/45

https://1.bp.blogspot.com/-0rpZjN0g6QE/XmJPHL98QJI/AAAAAAAAAv0/oPyr9DVvxk0LUoCJrSdFVsstPmcOujzGwCLcBGAsYHQ/s1600/image28.png

mow
push
call
Moy

mowv

push
push
call
push
push
mov

call
push
push
moy

call
push
mow

call
push
push
call
push
mow

call
mowv

push
push
call
push
push
mov

call
push
push
mov

ebp, ds:loadlibraryl

offset LibFileMame ; "Shell3Z.dll”
ebp ; LoadlLibraryW

esi, ds:GetProcAddress

ebx, eax
offset ProcMame ; "ShellExecuteW"
ebx ; hModule

esi ; GetProcAddress

offset aShellexecuteex ; "ShellExecuteExh”
ebx ;3 hModule
ShellExecuteWAPI, eax

esi ; GetProcAddress

offset aShchangenotify ; "SHChangeNotify”
ebx ; hModule
ShellExecuteExWAPT, eax

esi ; GetProcAddress

offset aShlwapipll ; "Shlwapi.dll”
SHChangeNotifyAPT, eax

ebp ; LoadLibraryW

offset aShdeletevaluea ; "SHDeleteValued"
eax ; hModule

esi ; GetProcAddress

offset aWininetDll ; "wininet.dll”
SHDeleteValueAAPT, eax

ebp ; LoadLibraryW

ebx, eax
offset alnternetopena ; "InternetOpend”
ebx ; hModule

esi ; GetProcAddress

offset alnternetconnec ; "InternetConnectA”
ebx ; hModule

InternetOpenAAPI, eax

esl ; GetProcAddress

offset alnternetcloseh ; "InternetCloseHandle™
ebx ; hModule

InternetConnectAPI, eax

Sha256: b7ef3ec4d9b0fd29c86c9a4b2a94819a80c83e44cdc47a9091786d839beba7c4d
C2: imbc[.]Jonthewifi[.]Jcom

Bisonal timelines summary

40/45

https://1.bp.blogspot.com/-8pN18mL0o4I/XmJPNRfRdCI/AAAAAAAAAv4/T5vjcKw-FNoemr0dYone2xzEnBgL_N36ACLcBGAsYHQ/s1600/image36.png

BISONAL: 10 YEARS OF EVOLUTION

2010 2011 20012 2013 2014 2015 2016 2017 2018

RAW SOCKET API

WININET API

APl OBFUSCATION

USAGE OF PACKER

C2 OBFUSCATION

OFFICE EXTENSION

Conclusion

The actor behind Bisonal is clearly motivated and has an interest in Russian, Korean and
Japanese victims. The development of Bisonal has been active for more than a decade. We
have observed the code evolving with the different publications but also with the evolution of
Microsoft Windows.

However, specific functions are still used today, many years after the original implementation
of the Bional malware. Even if Bisonal could be considered as simple with less than 30
functions, it has spent its life targeting sensitive entities in both the public and private sectors.
Some campaigns were even mentioned on mainstream media against military entities within
the mentioned regions.

During the decade of activities, we also can see mistakes and rollbacks from the attackers.
For example, in one campaign they put the domain name of the C2 server in plaintext in the
malware which had the function to generate a non-ASCI| string for the C2 servers once
decoded. In this condition, the malware cannot work on the compromised system. Even after
so many years of activities, the attackers make mistakes.

We don't see any reason why this actor will stop in the near future. With this investigation
and the analysis of this decade of activity, we hope to force this actor to innovate by
providing a better understanding of his arsenal and more specifically how Bisonal works.

Coverage

Ways our customers can detect and block this threat are listed below.

41/45

https://1.bp.blogspot.com/-jS6GTfUu_Gs/XmCxsQOgHtI/AAAAAAAAAvY/D_U9wMh0z4glzlIK_DefDFH0IXlJEoZqQCEwYBhgL/s1600/image35.jpg

AMP
Cloudlock
CWwWs

Email Security

Network Security

Stealthwatch
Stealthwatch Cloud
Threat Grid

Umbrella

WSA

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors. Exploit Prevention present within AMP is designed to
protect customers from unknown attacks such as this automatically.

Cisco Cloud Web Security (CWS) or Web Security Appliance (WSA) web scanning prevents
access to malicious websites and detects malware used in these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such as Next-Generation Firewall (NGFW), Next-Generation
Intrusion Prevention System (NGIPS), Cisco ISR, and_Meraki MX can detect malicious
activity associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on_Snort.org.

I0Cs

OSQuery

Cisco AMP users can use Orbital Advanced Search to run complex OSqueries to see if their
endpoints are infected with this specific threat. For specific OSqueries on this threat, click
below:

42/45

https://1.bp.blogspot.com/-3hLd1vqMG4Y/XmCxovp6MlI/AAAAAAAAAvo/3iAhBGf--i0YuAKz_Y8jQeD5IRuRQ8PKACEwYBhgL/s1600/image27.png
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://www.cisco.com/c/en/us/products/routers/branch-routers/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products

» Bisonal File Path Detected
o Bisonal Registry Detected

SHA256:

0cf9d9e01184d22d54a3f9b6ef6c290105eaa32¢c7063355ca477d94b130976af
7dc58ff4389301a6eccc37098682742b96e5171d908acdeb62aeaa787496¢80a
0ff88a6cd7dcd27f14ebb7b2c97727b81e1aa701280d1164685¢c52¢c234e4a9df
8252f2cdedf16f404d43c81d005ea8ebb10594477f738e40efacf9013e1470d2
915ad316¢cfd48755a9e429dd5aacbee266aca9c454e9cf9507¢c81b30cc4222e5
1128d10347dd602ecd3228faa389add11415bf6936e2328101311264547afa75
92be1bc11d7403a5e9ad029ef48de36bcff9c6a069eb44b88b12f1efc773c504
15d5¢84db1fc7e13c03ff1c103f652fbced5d1831¢c4d98aad8694c08817044cc
9638e7bb963ac881bd81071d305dea91b040536¢c55b7ee79b526b8afcfad6972
1e66579b856cd331518d67¢351bcb2b102399d8ade53370797228b289e905dc1
979d4e6665ddd4c515f916ad9e9efd9eca7550290507848c52cf824dfbd72a7e
22b3a86f91d2eb5a8a1e1cdc044bcf6aca898663071be5233bac00c0f0d3c001
9¢86¢2dd001c47b933c6b5f43c8f87a6d0c01c066e3520e651fab51d19355d3¢c
2c1e0facf563bb2054d9a883144ef9bad77ba75cdb46cc80843821¢c363c0a9dc
a4a5c60a392d236b76907f58597e83ba9c9d4cfc6a4502ef3e0e149b8710a0c6
359835c4a9dbe2d95e483464659744409e877cb6f5d791daa33fd601a01376fc
b1da7e1963dc09c325ba3ea2442a54afea02929ec26477a1b120ae44368082f8
37d1bd82527d50df3246f12b931¢c69c2b9e978b593a64e89d16bfe0eb54645b0
b75c986¢f63e0b5¢c201da228675dadeff53c701746853dfba6747bd287bdbb1d
43459f5117bee7b49f2cee7ce934471e01fb2aa2856f230943460e14e19183a6
b85e4168972b287589841919aef2ce0fde271ee1f0863510e521a2920fcc658e
43606116e03672d5c2bca7d072caa573d3fc2463795427d6f5abfa25403bd280
bd1a9b148580dad430683639b747d1c49932db5d8f6eb2d90e2583af976810dc
436fc9530015¢c2d2b952a16d2a3dfa202d1cb1c577b580811b9b48355855591b
c5496dc3fa96b657ab4467c551877bbced56fd07c00c7ccb199¢1794235bf710
444e864a3bb2abb1edccab4a5cd45bc0039f2a48e01615b2719da65a40a5140e
cbbaef8fe63e673f1bd509a0f695c3b5b02ff7cfe897900e7167ebab66f304ca
cdba1a69d75f3e2256dccc16255aef07ded41¢c257b2cc95¢ccb801a0063445926
5caada5737b0a6c8c8f8a27bfcd0fb2221af68a4856278¢c3919b37279daa7409
d19b85891dd0f83808b70fbe68a56a64e828611dfe53d04a6¢c1c211f1352b5b5
6676934d7f214cb256407400357¢c1f7ead69a523b3017f6a5bc30d06a11a8305
d7692a71b85c869ee11647b80eabd42b2e4303233c525a8fa7ebbec3599e2¢c8b
67e286¢7308dda5cd8fe4a1340f354927e5791cebef0ef02c93a4e063e11c4ad
d83fbe8a15d318b64bde7713a32912f8cbc7efbfae84449916a0cbc5682a7516
6¢714653a8fab4eef1de2f0148e5e8cf514907f6f523bf09c8ee126bebcdbdcc

43/45

https://github.com/Cisco-Talos/osquery_queries/blob/master/packs/win_malware.conf#L4
https://github.com/Cisco-Talos/osquery_queries/blob/master/packs/win_malware.conf#L11

dd88b31275b7079899d945fc6de2dceaf7e8fc143ef24beSbb336585ddf6af1e
6cc4707942f9323347c95066a43b30f874f1b1c783960cf8ed9ecf5914f85ba7
eb7681c653ef1942103cd3272fd124eaf73e79bb830be978535¢18b73c87b985
6ef4df8460ba57b836f52a9a73e2d739a3f2aa832bec6b663af53b55dc74a63d
effd31b11bdc6486082967c2d8e53d979e59a88ba28e68a1c94f5a064a8a966d
6f4a1b423c3936969717b1cfb25437ae8d779c095f158e3fded94ababb6171ad
6f8bbea18965b21dc8b9163a5d5205e2c5e84d6a4f8629b06abe73b11a809cca
f3a30e5f8bfd0f936597bcef7cb43df11ec566467001dff9365771900e90acb
77a36530555eada268238050996839bd34670e8bfda477c30d9dd66574625f59
f9302b7ecc32b891edeaf61353dc5e976832b7104ec0d36f164 1f1f40cf6fe12
799d858(f77c296841c1522804ed45c24171484d9618211¢c817df01424bcO981a
23d263b6f55ac81f64c3c3cf628dd169d745e0f2b264581305f2f46efc879587
72f6a54d0d09a16e6fde9800aa845cd1866001538afb2¢c8f61f3606f5e13f35a
4bad5898373eb644662a8c1d5d5¢c674e2558908e34bb2fd915f3350b0f28752b
b7ef3ec4d9b0fd29c86c9a4b2a94819a80c83e44cdc47a9091786d839beba7cs

C2 servers:

0906[.]Jtoh[.]info
dnsdns1[.]PassAs|.]Jus
euiro8966[.Jorganiccrap[.Jcom
jennifer998[.]lookin[.]at
kfsinfo[.]ByInter[.]net
kted56erhg[.]dynssl[.Jcom
mycount[.]MrsLove[.Jcom
since[.]Jgpoe[.Jcom
usababa[.Jmyfw][.]Jus
v3net[.]rr[.]Jnu
wwwl[.]Jamanser951][.]Jotzo[.]Jcom
www(.]Jamanser951.otzo[.Jcom
137[.]170[.]185[.]211
196[.]44[.]149[.]1154
21kmg[.]Jmy-homeip[.]net
61[.]90[.]202[.]1197
61[.]90[.]202[.]198
69[.]1197[.]1149[.198
agent[.]Jmy-homeip[.]net
applejp[.]Jmyfw[.]us
dnsdns1[.]PassAs|.]Jus
emsit[.]serveirc[.Jcom
etude[.]servemp3[.Jcom
euiro8966][.Jorganiccrap[.Jcom

44/45

faceto[.]JUglyAs[.Jcom
games[.]Jmy-homeip[.Jcom
hansunl[.]serveblog[.]net
hxxp://HLiHviEMHRe 2rEiE 1kdiZ:70/ks8d0.0.0.0akspbu.txt
indbaba[.Jmyfw][.]Jus
kazama[.]Jmyfw][.Jus
kreng[.]bounceme[.]net
kted56erhg[.]Jdynssl[.Jcom
mycount[.]MrsLove[.]Jcom
navegol.]serveblog[.]net
shinkhek[.Jmyfw[.]us
wew[.Jmymom][.]info
www[.]hosting[.Jtempors[.Jcom
wwwl[.]nayanal.]Jadultdns][.]net
www/.]dds.walshdavis[.Jcom
imbc[.]Jonthewifi[.Jcom

45/45

