
1/25

BackDoor.Spyder.1
vms.drweb.com/virus/

Packer: absent

Compilation date: 01.12.2016 05:57:59

SHA1 hash:

4c871eae022c8088f6e8d46e17002cd0c0006650

Description

A backdoor written in C++ and designed to run on 64-bit Microsoft Windows operating
systems. It is used for targeted attacks on information systems, collecting information about
an infected device, loading functional malicious modules, coordinating their work, and
providing communication with the C&C server. In the infected system, it exists as a DLL file
and is loaded by the system service using the DLL Hijacking method. After injection, it
functions in the computer's RAM.

Operating routine

The backdoor is a malicious DLL file. The function names in its export table duplicate the
exported functions of the apphelp.dll system library.

https://vms.drweb.com/virus/?i=23648386

2/25

On the infected computer, the backdoor file was located in C:\Windows\System32\oci.dll
catalog. The file’s original name from the export table is dll. It was loaded by the MSDTC
system service using the DLL Hijacking method (Microsoft Distributed Transaction
Coordinator Service).

From a functional point of view, the sample is a loader for the main payload, which is stored
in the .data section as a DLL, with some elements of the DOS and PE headers equal to zero.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_2.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_3.png

3/25

The loader operation

Loading is performed in a function designated as malmain_3 and called from the DLL entry
point via two transitional functions.

First, the header signatures are checked. If they are not standard, the
ERROR_BAD_EXE_FORMAT error value is set; however, this action does not affect the
loader operation in any way.

The memory for the image is then allocated according to the
IMAGE_NT_HEADERS64.OptionalHeader.SizeOfImage value, and the loader_struc
auxiliary structure is formed.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_4.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_5.png

4/25

struct loader_struc
{
 IMAGE_NT_HEADERS64 *pPE_header;
 LPVOID ImageBase;
 HMODULE *p_imported_modules
 QWORD number_of_imported_modules
 HMODULE (__stdcall *pLoadLibrary)(LPCSTR lpLibFileName);
 FARPROC (__stdcall *pGetProcAddress)(HMODULE hModule, LPCSTR lpProcName);
 BOOL (__stdcall *pFreeLibrary)(HMODULE hLibModule);
 QWORD unk;
};

This is followed by the standard process of loading the PE module into memory and calling
the loaded module's entry point (DllMain) with the DLL_PROCESS_ATTACH argument, and
after exiting it, calling it again with DLL_PROCESS_DETACH.

The main module operation

In the main module, the values of all signatures required for the correct file loading are equal
to zero.

IMAGE_DOS_HEADER.e_magic
IMAGE_NT_HEADERS64.Signature
IMAGE_NT_HEADERS64.FileHeader.Magic

In addition, TimeDateStamp and section names also have a null value. The remaining values
are correct, thus after manually editing the necessary signatures, the file can be downloaded
for analysis as a proper PE module.

The analysis of the main module is complicated, since atypical methods of calling functions
are periodically used. The UT hash library is used for storing and processing structures. It
allows one to convert standard C structures to hash tables by adding a single member of the
ut_hash_handle type. All library functions, such as adding elements, search, delete, etc., are
implemented as macros, which leads them to be forcibly inlined by the compiler in the code
of the main (calling) function.

The mbedtls library is used to interact with the C&C server.

DllMain function

At the beginning of execution, the Global\\BFE_Notify_Event_{65a097fe-6102-446a-9f9c-
55dfc3f45853}, event, execution mode (from the configuration), and the command line are
checked, then the operating threads are started.

https://github.com/troydhanson/uthash
https://github.com/ARMmbed/mbedtls

5/25

The module has an embedded configuration with the following structure:

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_6.png

6/25

struct cfg_c2_block
{
 int type;
 char field_4[20];
 char addr[256];
}
struct cfg_proxy_data
{
 DWORD dw;
 char str[256];
 char proxy_server[256];
 char username[64];
 char password[32];
 char unk[128];
};
struct builtin_config
{
 int exec_mode;
 char url_C2_req[100];
 char hash_id[20];
 char string[64];
 char field_BC;
 cfg_c2_block srv_1;
 cfg_c2_block srv_2;
 cfg_c2_block srv_3;
 cfg_c2_block srv_4;
 cfg_proxy_data proxy_1;
 cfg_proxy_data proxy_1;
 cfg_proxy_data proxy_1;
 cfg_proxy_data proxy_1;
 int CA_cert_len;
 char CA_cert[cert_len];
};

The hash field contains a value that can be an identifier. This value is used when
communicating with the C&C server and can be represented as a
b2e4936936c910319fb3d210bfa55b18765db9cc string, which is the same length as the
SHA1 hashes.

The string field contains a single character string: 1.

CA_cert is a certificate of the certificate authority in the DER format. It is used to establish a
connection to the C&C server over the TLS 1.2 protocol.

7/25

Certificate information can be found in the notes to this description.

The DllMain function enables for the creation of multiple operating threads depending on a
number of conditions.

Main thread — thread_1_main
New server request thread — thread_2_get_new_C2_start_communication
Encrypted module execution thread — thread_4_execute_encrypted_module

For execution, the value of the builtin_config.exec_mode parameter must be non-zero.

if the builtin_config.exec_mode value is 1 or 2, and the process command line contains
the -k netsvcs substring, the main thread and the thread for getting the new C&C
server address are started;
If builtin_config.exec_mode is equal to 2, a thread that decrypts and runs the module
stored in the system is started;
If the value is 3, the main thread and the thread for getting the new C&C server
address are started.

In the examined sample, the value of the exec_mode parameter is 3.

The main thread

First, the backdoor checks the OS version then prepares a structure for initializing functions
and a structure for storing a certain configuration fields. The procedure looks artificially
complicated.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_7.png

8/25

3 pointers to functions are inserted to the funcs_struc structure of the funcs_1 type that will
be called in turn inside the init_global_funcs_and_allocated_cfg function.

In the set_global_funcs_by_callbacks function, each initializer function is called in turn.

The general order of structure forming is as follows:

1. Two structures are passed to each function: the first contains pointers to some
functions; the second is empty.

2. Each function transfers function pointers from one structure to another.
3. After calling the initializer function, the function pointers are moved from the local

structure to the global array of structures at a certain index.

As a result, after all the unusual transformations, a certain number of global structures that
are combined into a single array remain.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_8.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_9.png

9/25

Ultimately, the function call can be represented as follows.

The use of complex transformations like copying local structures with functions and
transferring them to global structures is probably intended to complicate the analysis of a
malicious sample.

The backdoor then uses the UT hash library to generate a hash table of service structures
responsible for storing the network connection context, connection parameters, etc.

Below is the fragment of the hash table generation code.

It is worth noting that the hash table contains a signature value that allows one to determine
the library used: g_p_struc_10->hh.tbl->signature = 0xA0111FE1;.

The backdoor in question is characterized by the distribution of relevant fields and data
across several structures created specifically for this purpose. This feature makes it difficult
to create meaningful names for structures during analysis.

After the preparatory steps, the backdoor proceeds to initialize the connection to the C&C
server.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_10.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_11.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_12.png

10/25

Initializing the connection to the C&C server

It is noteworthy that the program code associated with the network connection contains its
own error codes, in addition to the codes from the mbedtls library.

A list of error codes found in the sample.

enum ERROR_CODES
{
 ERROR_CODE_1392 = 0x1392,
 ERROR_BAD_ARGS = 0x5208,
 ERROR_CODE_520B = 0x520B,
 ERROR_CODE_520D = 0x520D,
 ERROR_CODE_59D8 = 0x59D8,
 ERROR_CODE_59DB = 0x59DB,
 ERROR_CODE_59DC = 0x59DC,
 ERROR_INVALID_ARGUMENT = 0x59DE,
 ERROR_CODE_59DF = 0x59DF,
 ERROR_CODE_61A8 = 0x61A8,
 ERROR_BAD_ALLOCATION = 0x61A9,
 ERROR_BAD_PACKET_SIGNATURE = 0x61AA,
 ERROR_CODE_61AB = 0x61AB,
 ERROR_CODE_61AC = 0x61AC,
 ERROR_CODE_61AD = 0x61AD,
 ERROR_CODE_61AF = 0x61AF,
 ERROR_CODE_61B0 = 0x61B0,
 ERROR_CODE_61B1 = 0x61B1,
 ERROR_BUFFER_NOT_EMPTY = 0x61B2,
 ERROR_CODE_6590 = 0x6590,
 ERROR_CODE_6592 = 0x6592,
 ERROR_BAD_ALLOC = 0x6593,
};

After a series of preparatory actions, the backdoor resolves the address of the C&C server
stored in the configuration and retrieves the port. Addresses in the configuration are stored
as strings: koran.junlper[.]com:80 and koran.junlper[.]com:443. Next, the program creates a
TCP socket for the connection. After that, it creates a context for the secure connection and
performs a TLS handshake.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_13.png

11/25

After establishing secure connection, the backdoor expects a packet with a command from
the C&C server. The program works with two packet formats:

The packet received after processing the TLS protocol is a "transport" packet.
The packet received after processing the transport packet is a "data" packet. It contains
the command ID and additional data.

The transport packet header is represented by the following structure.

struct transport_packet_header
{
 DWORD signature;
 WORD compressed_len;
 WORD uncompressed_len;
};

The data is placed after the header and packed by the LZ4 algorithm. The backdoor checks
the value of the signature field. It must be equal to 0x573F0A68.

After unpacking, the resulting data packet has a header in the following format.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_14.png

12/25

struct data_packet_header
{
 WORD tag;
 WORD id;
 WORD unk_0;
 BYTE update_data;
 BYTE id_part;
 DWORD unk_1;
 DWORD unk_2;
 DWORD len;
};

The tag and id fields together define the backdoor action, which means they denote the
command ID.

These header structures are used in both directions of interaction.

The order of processing server commands:

Client verification
Sending the information about the infected system
Processing commands by IDs

There is a variable that stores the state of the dialog in the structure responsible for
communicating with the C&C server. Therefore, before directly executing commands,
performing the first two steps is required, which can be considered as a second handshake.

A verification step

To perform the verification step, the values of the tag and id fields in the primary packet
received from the C&C server must be equal to 1.

The verification process is as follows:

1. The backdoor forms a buffer from an 8-byte array that follows the packet header and
the hash_id field taken from the configuration. The result can be represented as the
structure:

struct buff
{
 BYTE packet_data[8];
 BYTE hash_id[20];
}

2. The SHA1 hash of the data in the resulting buffer is calculated. The result is placed in
the packet (after the header) and sent to the server.

Sending system information

13/25

The next packet received from the C&C server must have the tag value equal to 5 and id
value equal to 3. The system data is formed as a sysinfo_packet_data structure.

struct session_info
{
 DWORD id;
 DWORD State;
 DWORD ClientBuildNumber;
 BYTE user_name[64];
 BYTE client_IPv4[20];
 BYTE WinStationName[32];
 BYTE domain_name[64];
};

struct sysinfo_block_2
{
 WORD field_0;
 WORD field_2;
 WORD field_4;
 WORD system_def_lang_id;
 WORD user_def_lang_id;
 DWORD timezone_bias;
 DWORD process_SessionID;
 BYTE user_name[128];
 BYTE domain_name[128];
 DWORD number_of_sessions;
 session_info sessions[number_of_sessions];
};

struct sysinfo_block_1
{
 DWORD unk_0; //0
 DWORD bot_id_created;
 DWORD dw_const_0; //0x101
 DWORD os_version;
 WORD dw_const_2; //0x200
 BYTE cpu_arch;
 BYTE field_13;
 DWORD main_interface_IP;
 BYTE MAC_address[20];
 BYTE bot_id[48];
 WCHAR computer_name[128];
 BYTE cfg_string[64];
 WORD w_const; //2
 WORD sessions_size;
};

struct sysinfo_packet_data
{
 DWORD id;
 sysinfo_block_1 block_1;
 sysinfo_block_2 block_2;
};

14/25

The sysinfo_packet_data.id field contains a 0x19C0001 constant.

Thesysinfo_packet_data.block_1.bot_id value is extracted from the registry. The backdoor
locates it in the instance parameter of the SOFTWARE\Clients\Mail\Hotmail\backup key,
which, in turn, depending on the privileges, can be located in the HKLM or HKCU sections.

If the value is missing, a random GUID is generated using UuidCreate, then formatted as a
XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXX string and saved. If the ID already existed,
the sysinfo_packet_data.block_1.bot_id_created parameter is assigned the 1 value. If the ID
was created, the parameter is assigned the 2 value.

The sysinfo_packet_data.block_1.cpu_arch parameter value:

1 — x86
2 — x64

The process of determining the MAC address and IP address values by the backdoor is
noteworthy. First, the program searches for the network interface through which the largest
number of packets passed, then gets its MAC address and searches for the IP address of
this interface.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_15.png

15/25

The OS version is encoded with a value from 1 to 13 (0 if an error occurs, starting with 5.0
and then ascending the version.

The sysinfo_packet_data.block_1.cfg_string field contains the string value from the backdoor
configuration, which is equal to the character 1.

Processing commands

After the verification step and sending the system information, BackDoor.Spyder.1 begins
processing the main commands. Unlike most backdoors, whose commands are quite
specific (pick up a file, create a process, etc.), in this instance, they are more of a service
nature and represent instructions for storing and structuring the received data. In fact, all
these service commands are aimed at loading new modules in PE format, storing them, and
calling certain exported functions. It is worth noting that the modules and their information
are stored in memory in the form of hash tables using UT-hash.

tag id Description

6 1 Send the number of
received modules to the
server.

2 Save the parameters of the received module in memory.

3 Save the body of the module in the memory.

4 Load a previously saved module. The search is performed
in the hash table by the ID obtained from the packet with
the command. The module is loaded into memory, its
entry point is called, then the addresses of the 4 exported
functions are obtained, which are stored in the structure
for further call. Call the exported function No.1.

5 Call the exported function No.4 of one of the loaded
modules, then unload it.

6 Send in response a packet consisting only of the
data_packet_header header, in which the unk_2 field is
0xFFFFFFFF.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_16.png

16/25

7 Call the exported function No.2 of one of the loaded
modules.

8 Call the exported function No.3 of one of the loaded
modules.

5 2 Send information about
the current connection
parameters to the
server.

4 - Presumably, the
exported function No.1
can return a table of
pointers to functions,
and the program calls
one of these functions
at this command.

After processing each packet received from the server, the backdoor checks the difference
between the two values of the GetTickCount result. If the value exceeds the specified
reference value, it sends the 0x573F0A68 signature value to the server without any
additional data and transformations.

New server request thread

BackDoor.Spyder.1 can request the address of the new C&C server if the url_C2_req URL
is provided in the configuration. To request this URL, the program can use both the system
proxy and the HTTP proxy provided in the configuration. The request is made using the

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_17.png

17/25

InternetOpenUrlA WinHTTP API.

The response must be a Base64-encoded string between two markers: DZKS and DZJS. It
should be noted that a similar algorithm and markers were used in the PlugX family
(BackDoor.PlugX.28 and BackDoor.PlugX.38).

The decoded string is decompressed using the RtlDecompressBuffer function, resulting in
the address of the new C&C server and the port to connect to.

Encrypted module execution thread

If the exec_mode configuration parameter is set to 2 and the command line contains -k
netsvcs, the backdoor creates a separate thread to execute the module stored in the file.

To do this, the backdoor searches for the C:\Windows\System32\1.update file at first. If such
a file exists, the program reads it and decrypts it.

https://vms.drweb.com/search/?q=BackDoor.PlugX.28&lng=en
https://vms.drweb.com/search/?q=BackDoor.PlugX.38&lng=en
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_18.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_19.png

18/25

This file contains the path to an encrypted file containing a DLL module that the backdoor
reads, decrypts, and loads.

Features of the x86 version

The version of the backdoor designed to run on 32-bit Microsoft Windows operating systems
is detected by Dr.Web as a BackDoor.Spyder.3
(83e47dbe20882513dfd1453c4fcfd99d3bcecc3d). The main difference of this modification is
the presence of debug messages.

Messages are recorded on the log file located in the %WINDIR%\temp\deskcpl.ttf directory.
Depending on the initialization parameters, they can be output using OutputDebufStringA or
encrypted using a simple XOR operation with byte 0x62.

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_20.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_21.png

19/25

Messages related to communication with the C&C server and command processing are
output using the OutputDebugStringA function. It is noteworthy that for such messages, the
[Spyder] prefix is used.

Notes

Below is the information about the CA_cert certificate for establishing a connection with the
C&C server:

https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_22.png
https://st.drweb.com/static/new-www/news/2021/march/backdoor.spyder_23.png

20/25

SHA1 Fingerprint=BF:46:40:E4:AF:56:DB:E0:D0:86:6E:16:B0:3F:C7:23:77:26:14:31
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN = SecureTrust CA, O = SecureTrust Corporation, C = US
 Validity
 Not Before: Jan 1 00:00:00 2011 GMT
 Not After : Dec 31 23:59:59 2025 GMT
 Subject: CN = SecureTrust CA, O = SecureTrust Corporation, C = US
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:bd:c3:26:8b:e1:37:7f:f0:fa:0a:0d:83:a7:dd:
 22:31:14:83:08:d7:74:3b:31:08:84:ef:25:cf:2d:
 44:fc:2d:54:77:0b:17:e2:70:4d:be:2f:c1:fc:ed:
 d9:6b:9e:db:60:28:27:c4:1e:6d:15:3d:dd:b9:43:
 64:37:58:b4:bd:48:85:fa:d1:d6:f7:5a:33:eb:ec:
 b7:86:62:92:1f:89:d7:a4:bd:d3:1f:f3:18:9d:a4:
 15:27:16:7b:26:9f:5c:53:87:bd:40:22:d2:5e:cd:
 ab:d5:6f:1d:ac:c3:0d:f1:d9:d5:f5:6a:d3:16:76:
 58:df:f7:0b:20:0d:ed:7b:97:ae:66:0a:e6:cc:9f:
 73:50:fb:ce:16:a6:dc:45:d0:2f:70:3e:c8:c8:59:
 4d:c4:62:ec:b0:e9:01:9c:57:92:e4:78:83:4f:a6:
 ab:1b:94:45:ff:15:ed:dc:59:95:f3:71:22:9c:06:
 38:bb:e6:0f:b3:ec:af:5b:bd:1a:2f:b1:7f:ce:c8:
 4d:32:9f:8f:44:9b:ae:fc:e5:72:24:b4:3a:3b:f3:
 d0:79:30:79:a2:0e:bd:55:e9:cd:c0:4d:7e:07:fc:
 37:b5:7f:69:be:d6:e3:37:ce:9e:ff:d2:05:e4:3c:
 59:7e:f0:d4:ab:01:e4:7b:07:f6:a4:f0:e3:c3:7e:
 58:07:2d:e8:96:9c:ac:8b:e6:dc:49:6a:51:9a:b3:
 b0:62:cf:3c:b4:4a:f9:89:ae:2c:73:17:01:43:63:
 ec:e8:2b:7b:1c:3c:81:41:fa:db:93:45:3a:21:1f:
 2a:3a:8f:30:d4:52:59:91:03:03:11:b8:18:ca:39:
 4c:9a:e2:57:33:e6:bc:c5:4a:8e:76:79:50:fd:bd:
 32:78:9c:79:58:4f:b9:d3:bb:05:eb:39:43:db:3e:
 b5:2d:51:18:ed:ee:9d:31:3a:2e:6b:37:37:34:28:
 4a:89:cb:65:b4:7d:bf:be:a1:67:cb:5c:71:9c:be:
 c3:3b:f7:a7:df:37:4d:0f:c7:57:f5:5b:d2:db:54:
 2c:91:5b:3b:7f:ec:1f:45:e4:7b:a5:0d:a1:c2:1f:
 64:af:51:cd:32:3a:83:25:9c:90:ac:77:66:4d:12:
 23:f5:5b:3c:90:b5:41:1b:54:55:a4:24:66:e6:e9:
 65:46:95:ff:ef:67:f5:a6:80:f6:d5:e6:3f:2f:c2:
 7b:25:d8:b3:b4:4d:f4:b8:7c:38:cc:de:3e:4f:43:
 9a:ca:be:c1:66:95:2d:2c:16:a9:56:9b:68:5d:8c:
 78:90:84:d4:86:51:10:f1:9b:14:23:43:bb:91:1e:
 02:01:ee:11:63:c4:f2:81:7f:83:68:5e:86:bd:8a:
 88:7c:2d
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:TRUE, pathlen:0
 X509v3 Subject Key Identifier:

21/25

 E0:63:19:89:FA:AD:19:5D:E3:B3:A5:E2:85:D2:2F:87:B1:55:76:1B
 X509v3 Authority Key Identifier:
 keyid:E0:63:19:89:FA:AD:19:5D:E3:B3:A5:E2:85:D2:2F:87:B1:55:76:1B
 X509v3 Key Usage: critical
 Digital Signature, Key Agreement, Certificate Sign, CRL Sign
 Netscape Cert Type:
 SSL Client, SSL Server, Object Signing, SSL CA, Object Signing CA
 Signature Algorithm: sha256WithRSAEncryption
 08:33:53:e4:be:95:0a:1b:d7:6e:44:6b:2d:42:2a:45:7f:8b:
 89:fd:fb:d0:cf:5f:8f:83:77:5d:3b:2c:11:46:9f:44:3b:69:
 f2:e2:e7:fe:4e:c9:43:5c:89:5f:e2:e2:5a:5e:4c:4d:39:ed:
 ce:2d:63:d4:a1:93:ff:ff:3f:b0:77:86:e8:f1:5e:a3:4d:d3:
 ba:eb:41:0f:85:0c:04:fb:6c:42:19:bc:2b:d1:db:c6:51:e3:
 97:cd:5b:e5:d5:b4:1f:43:e7:7c:eb:86:08:16:86:0b:46:23:
 9d:f4:e9:18:b6:ce:e5:f4:96:7b:ee:5f:f5:8d:ff:dd:65:29:
 b9:12:94:f7:da:d3:c0:64:53:e6:2b:36:ec:6f:d3:26:3c:c2:
 ab:ba:10:cd:d8:39:43:8b:21:fe:68:ab:48:25:34:07:a6:cc:
 cc:b5:70:60:c4:ae:91:73:19:ff:9d:ff:82:ca:4a:9c:8e:70:
 94:96:5f:7c:b3:e8:f7:e4:3e:cc:af:41:7e:24:47:fe:ad:d5:
 a7:80:32:80:9c:7f:0c:00:3b:92:4c:ec:8e:ef:93:fb:8a:1f:
 ff:be:f0:ab:33:c7:4b:2b:5d:fc:31:e6:bf:f4:1d:c0:e3:d0:
 c5:94:a9:21:b1:8c:26:4b:c2:82:51:cf:1b:63:09:b1:ec:45:
 31:49:ba:51:42:22:7a:41:90:2f:28:0e:40:76:91:3c:33:34:
 84:66:b9:7e:0e:68:5a:37:38:01:b1:92:64:a5:a8:9c:34:84:
 6a:c6:01:d0:30:f8:d5:52:0f:6e:3e:40:06:a2:b8:4c:b1:69:
 4d:16:8f:d0:c4:72:b6:0e:09:57:6c:5e:cd:bc:ab:e3:ce:80:
 ae:a7:6c:3d:3c:01:a5:a3:4f:4d:e0:52:36:12:cc:7a:e2:5e:
 f3:d7:22:a7:6c:7c:60:d4:fd:f4:37:94:70:dd:4c:9b:00:cd:
 7d:9d:42:f7:e7:b2:25:f6:63:06:1e:4d:dc:4b:ef:5c:45:5d:
 a7:b9:b7:33:21:4e:91:40:ba:ca:ec:70:d0:a5:f7:0c:0a:ea:
 97:11:fa:47:8b:dd:24:b0:c2:98:ff:94:4f:f6:c8:0f:e9:a5:
 2d:bf:b6:7c:f4:45:f3:cb:5a:fd:a0:38:ce:ca:60:24:34:74:
 77:ea:91:bc:dc:68:90:53:5f:0a:f4:40:13:69:68:2e:31:f9:
 df:7d:07:05:53:42:8a:8b:e0:49:75:ee:04:94:9e:87:1a:25:
 9e:82:16:87:a2:69:dd:eb:44:21:4c:98:1d:72:8b:46:74:5c:
 33:24:5c:c2:ab:7b:1f:c4:d4:d5:9a:40:77:15:73:d3:53:62:
 60:da:5d:7c:2a:9e:12:25
-----BEGIN CERTIFICATE-----
MIIFgTCCA2mgAwIBAgIBATANBgkqhkiG9w0BAQsFADBIMRcwFQYDVQQDEw5TZWN1
cmVUcnVzdCBDQTEgMB4GA1UEChMXU2VjdXJlVHJ1c3QgQ29ycG9yYXRpb24xCzAJ
BgNVBAYTAlVTMB4XDTExMDEwMTAwMDAwMFoXDTI1MTIzMTIzNTk1OVowSDEXMBUG
A1UEAxMOU2VjdXJlVHJ1c3QgQ0ExIDAeBgNVBAoTF1NlY3VyZVRydXN0IENvcnBv
cmF0aW9uMQswCQYDVQQGEwJVUzCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoC
ggIBAL3DJovhN3/w+goNg6fdIjEUgwjXdDsxCITvJc8tRPwtVHcLF+JwTb4vwfzt
2Wue22AoJ8QebRU93blDZDdYtL1IhfrR1vdaM+vst4Zikh+J16S90x/zGJ2kFScW
eyafXFOHvUAi0l7Nq9VvHazDDfHZ1fVq0xZ2WN/3CyAN7XuXrmYK5syfc1D7zham
3EXQL3A+yMhZTcRi7LDpAZxXkuR4g0+mqxuURf8V7dxZlfNxIpwGOLvmD7Psr1u9
Gi+xf87ITTKfj0SbrvzlciS0Ojvz0HkweaIOvVXpzcBNfgf8N7V/ab7W4zfOnv/S
BeQ8WX7w1KsB5HsH9qTw48N+WAct6JacrIvm3ElqUZqzsGLPPLRK+YmuLHMXAUNj
7Ogrexw8gUH625NFOiEfKjqPMNRSWZEDAxG4GMo5TJriVzPmvMVKjnZ5UP29Mnic
eVhPudO7Bes5Q9s+tS1RGO3unTE6Lms3NzQoSonLZbR9v76hZ8tccZy+wzv3p983
TQ/HV/Vb0ttULJFbO3/sH0Xke6UNocIfZK9RzTI6gyWckKx3Zk0SI/VbPJC1QRtU
VaQkZubpZUaV/+9n9aaA9tXmPy/CeyXYs7RN9Lh8OMzePk9Dmsq+wWaVLSwWqVab
aF2MeJCE1IZREPGbFCNDu5EeAgHuEWPE8oF/g2hehr2KiHwtAgMBAAGjdjB0MA8G
A1UdEwQIMAYBAf8CAQAwHQYDVR0OBBYEFOBjGYn6rRld47Ol4oXSL4exVXYbMB8G

22/25

A1UdIwQYMBaAFOBjGYn6rRld47Ol4oXSL4exVXYbMA4GA1UdDwEB/wQEAwIBjjAR
BglghkgBhvhCAQEEBAMCANUwDQYJKoZIhvcNAQELBQADggIBAAgzU+S+lQob125E
ay1CKkV/i4n9+9DPX4+Dd107LBFGn0Q7afLi5/5OyUNciV/i4lpeTE057c4tY9Sh
k///P7B3hujxXqNN07rrQQ+FDAT7bEIZvCvR28ZR45fNW+XVtB9D53zrhggWhgtG
I5306Ri2zuX0lnvuX/WN/91lKbkSlPfa08BkU+YrNuxv0yY8wqu6EM3YOUOLIf5o
q0glNAemzMy1cGDErpFzGf+d/4LKSpyOcJSWX3yz6PfkPsyvQX4kR/6t1aeAMoCc
fwwAO5JM7I7vk/uKH/++8Kszx0srXfwx5r/0HcDj0MWUqSGxjCZLwoJRzxtjCbHs
RTFJulFCInpBkC8oDkB2kTwzNIRmuX4OaFo3OAGxkmSlqJw0hGrGAdAw+NVSD24+
QAaiuEyxaU0Wj9DEcrYOCVdsXs28q+POgK6nbD08AaWjT03gUjYSzHriXvPXIqds
fGDU/fQ3lHDdTJsAzX2dQvfnsiX2YwYeTdxL71xFXae5tzMhTpFAusrscNCl9wwK
6pcR+keL3SSwwpj/lE/2yA/ppS2/tnz0RfPLWv2gOM7KYCQ0dHfqkbzcaJBTXwr0
QBNpaC4x+d99BwVTQoqL4El17gSUnocaJZ6CFoeiad3rRCFMmB1yi0Z0XDMkXMKr
ex/E1NWaQHcVc9NTYmDaXXwqnhIl
-----END CERTIFICATE-----

List of 32-bit modification debug messages:

23/25

[work]cmdline:%s
[work]dwDataLen=%d buf_temp=%d
[work]%s no exist
[work]get work err5
[aut]begin tid=%d.
[update_thread]begin tid=%d.
[update_thread]work=%s
[update_thread]get_work ret=%d
[update_thread]wait for work thread exit...
[update_thread]work thread exit ok
[update_thread]load work failed
[pt]proxy_thread begin tid=%d.
[]dwMajorVersion=%d dwMinorVersion=%d
[]rtlVer.dwMinorVersion=%d
[work]DllMain
[work] DLL
[work] VBR/SRV
[wk]RtlGetCurrentUserToken ok
[wk]ImpersonateLoggedOnUser ok
[wk]OpenURL %s Ret=%d
[wk]Err1
[wk]Err4
[wk]GetConfigStrFromURL err
[wk]DecodeStrBuffer err
[wk]DecodeLen err
[wk]RevertToSelf
[]IsProxyEnable Ret=%d
[aut]GetConfigStrFromURL PROXY_NO Ret=%d
[aut]GetConfigStrFromURL PROXY_USER Ret=%d
[aut]JmpAddClientConfig %s with address: %s.
[aut]GetRandom=%d
[aut]szWebURL Not Set
[aut]address_update_thread Exit.
[update_thread]get_work_path ret=%d
[pt]Using IE proxy setting.
[pt]IE proxy NOT setup.
[pt]SmpGetRegProxy Counts=%d
[pt]IE proxy type = %u NOT support, address: %s.
[pt]IE proxy type = %u, address: %s found.
[pt]Add proxy config %s, address=%s.
[work_thread]begin tid=%d
[wt]JmpAddClientConfig %s with address: %s.
[wt]JmpAddProxyConfig %s.
[wt]Proxy:%s
[wt]start Jumper error = %u.
[wt]Jumper start success!
[wt]JmpShutdown
[wt]JmpShutdown=%d
[wt]JmpTeardown=%d
[wt]tid=%d Exit
[Spyder] client module init error = %d.
[Spyder] register mod %d error = %u.
[spyder] alloc mem for ca cert failed.
[spyder] server address already exists in conf list.
[Spyder] alloc client error = %d.

24/25

[Spyder] ALLOC client uid = %u.
[Spyder] set ca for client id=%u error=%d
[Spyder] proxy setting exists, srv=%s
[spyder] use proxy [%s] to connect [%s] res = %u.
[Spyder] direct connect to %s error = %u.
[Spyder] connect to %s result = %u, protcol=%u.
[jmp] big packet: recv new big pkt while previous one not handled, old=%u, new=%u.
[jmp] packet size exceed limit = %#X, id=%u.
[jmp] failed to realloc packet buffer, error = %u, pkt id=%u.
[jmp] big packet recv completed, id=%u, size=%u, ext id=%u.
[Spyder] PAUSE ext = %u Before.
[Spyder] PAUSE ext = %u After.
[Spyder] UNINIT ext = %u Before.
[Spyder] UNINIT ext = %u After.
duplicate session id for ext type id = %u.
[Spyder] can't find recv item for type id = %u.
[Spyder] ext type id = %u recved = %u, new recv = %u, but total size = %u
[Spyder] ext type id = %u recv completed, total size = %u.
[Spyder] find ext with same type id = %u while updating, free old ext.
[Spyder] alloc mem for completed ext error = %u.
[Spyder] ext recv %s, free tem buffer, type id = %u.
[Spyder] ext type = %u already loaded, unlaod now for updating.
[Spyder] failed to unload ext from memory.
[Spyder] load ext id = %u into memory error.
[Spyder] MOD LOAD AT %p, size=%u.
[Spyder] alloc mem for loaded item failed, unload ext type id = %u.
[Spyder] inint module type = %u begin.
[Spyder] inint module type = %u end.
[Spyder] alloc mem for mod_pfn error = %u.
[Spyder] unlaod ext id = %u error.
[Spyder] unload_and_free_all_exts.
[Spyder] UNLOAD ext = %u BEFORE.
[Spyder] UNLOAD ext = %u AFTER.
[Spyder] FREE ext = %u AFTER.
[Spyder] free ext cache = %u .
[Spyder] free ext mem = %u .
[Spyder] link setup Result=%d, local = %#X:%u, remote = %#X:%u, uid=%u.
[Spyder] connected callback at %02u:%02u:%02u, id = %u.
[Spyder] Link disconnected at %02u:%02u:%02u, id = %u.
[Spyder] recv data size = %u invalid, from uid=%u.
[Spyder] receive challenge = %I64X.
[Spyder] failed to get host info.
[Spyder] send host info error = %u.
[jmp] LOGIN SUCCESS, link id = %u.
[jmp] internal data process error.
[jmp] unknown state = %u.
[jmp] core process data error, close link = %u.
[Spyder] ext summary size error = %u.
[Spyder] ext recv prepare failed.
[Spyder] EXTENSION recv BEGIN, type = %u.
[Spyder] dll payload recv error.
[Spyder] ext active begin.
[Spyder] ext active result = %s.
[Spyder] ext free cmd not handled.
[Spyder] unhandled ext sub cmd = %u.

25/25

[Spyder] call ext failed = %d, sub=%u.
[spyder] unhandled subcmd=%u in tunnel cmd.
[Spyder] unhandled main cmd = %u, sub cmd = %u.
[Spyder] Can't get link id for ext data delevery.
[Spyder] SEND_DATA via link id=%u error = %d.
[Spyder] client link disconnect id = %u.
[Spyder] client send data error = %#X, id = %u.
[Spyder] enum session error = %u.
[Spyder] get Host info error.
[Spyder] save sn value error = %u.
[Spyder] gszUniqueSN=%s
[Spyder] create guid error = %d.
[jmp] Get adapter info error = %u.
[jmp] adapters info buf size=%u, count=%u.
Alloc buf for adapter info error = %u.
get adapter info with buf error = %u.
[jmp] IP=%s not match preset mac address, desc=%s.
[jmp] master adapter FOUND! IP = [%s], desc=%s.
[jmp] master adapter has more than one ip: %s.

