
1/9

Jason Reaves

Revealing the Trick | A Deep Dive into TrickLoader
Obfuscation

labs.sentinelone.com/revealing-the-trick-a-deep-dive-into-trickloader-obfuscation/

Within the TrickBot framework, there has historically been a loader component. This loader
has had continued development over the years since TrickBot’s first release where the ECS
key and bot binary were stored in the resource section of the loader [1]. However, the
function obfuscation has received relatively little treatment until now.

Executive Summary

TrickBot developers have continued to be active over the years.
Loader used by TrickBot has had continued development related to obfuscation for
anti-analysis.
The TrickLoader leverages ‘minilzo’ compression, which comes from the LZO library
and its usage by these developers dates back to Dyre/Upatre timeframe.
The goal is to detail the loader and aid additional automation efforts to process the
TrickLoader.

Research Insight

TrickLoader obfuscation development timeline:

https://labs.sentinelone.com/revealing-the-trick-a-deep-dive-into-trickloader-obfuscation/


2/9

2017 – Started obfuscating the resource section name
2017 – Custom base64 of strings
2018 – Adds user account control (UAC) bypass [5], Heaven’s Gate [2], function obfuscation
and further hiding the configuration

Most of these have been reported on in detail with the exception of the function obfuscation,
which has been mentioned but not really detailed. Researchers who write scripts for config
retrieval have stopped putting them out as frequently as in the past, possibly due to the
increased focus by TrickBot to obfuscate and hide the data.

Let’s dive into the obfuscation. The function offsets are stored in a table. The first thing the
loader does is execute a call over that table that will push the address of the table onto the
stack for the next block of code to use.

Figure 1: Call over offset table
The next section will then process the word values from the table in sequence by adding
them to a value which is initially the start address of the table and then being pushed onto
the stack.



3/9

Figure 2: Overview of rebuilding addresses from table
Reconstructing this process into Python code allows us to create the same table as long as
we can recover certain values from the binary.



4/9

Figure

3: Python code to demonstrate rebuilding the table manually
After the function table is rebuilt, a call is made to one of the functions that is responsible for
decoding out the other functions and data blobs.



5/9

Figure 4: Decode function after rebuilding table

Figure 5: Decode function

The function decodes the next function. The key is the last value in the rebuilt table address
with 0x18 added to it, and the length of the key is 0x327 bytes. Using this we should be able
to decode out all the addresses in the rebuilt table.



6/9

Figure 6: Decode all the objects from the table
After decoding all the objects, we can check the sizes of each by printing out the size of
every element of the decoded_data list.

Figure 7: Check decoded object sizes
Most of them look normal; however, there are a few that seem larger than what you would
normally observe in the size of a single function.

Figure 8: Compressed objects
These larger decoded objects are actually compressed data. It turns out there are at least 3
compressed objects: a 32 bit TrickBot binary, a large blob of 64-bit bytecode which is the 64
bit TrickBot binary, and a smaller 64-bit EXE file which is a loader for the 64-bit bytecode
blob.

The compression is ‘minilzo’, which comes from the LZO library, and its usage by these
developers dates back to Dyre/Upatre timeframe. After decompressing the 32-bit binary and
fixing the missing ‘MZ’, we have the 32-bit TrickBot binary.



7/9

Now that we have the normal TrickBot binary, we can decode out the onboard configuration
data which is hidden and XOR encoded inside the bot now. Taking an existing decoder from
CAPE [4] and adjusting it a bit while adding in our deobfuscation works well!

Indicators of Compromise (IOCs)

SHA-256: ac27e0944ce794ebbb7e5fb8a851b9b0586b3b674dfa39e196a8cd47e9ee72b2



8/9

<mcconf> 

<ver>1000480</ver> 

<gtag>tot598</gtag> 

<servs> 

<srv>144.91.79.9:443</srv> 
<srv>172.245.97.148:443</srv> 
<srv>85.204.116.139:443</srv> 
<srv>185.62.188.117:443</srv> 
<srv>185.222.202.76:443</srv> 
<srv>144.91.79.12:443</srv> 
<srv>185.68.93.43:443</srv> 
<srv>195.123.238.191:443</srv> 
<srv>146.185.219.29:443</srv> 
<srv>195.133.196.151:443</srv> 
<srv>91.235.129.60:443</srv> 
<srv>23.227.206.170:443</srv> 
<srv>185.222.202.192:443</srv> 
<srv>190.154.203.218:449</srv> 
<srv>178.183.150.169:449</srv> 
<srv>200.116.199.10:449</srv> 
<srv>187.58.56.26:449</srv> 
<srv>177.103.240.149:449</srv> 
<srv>81.190.160.139:449</srv> 
<srv>200.21.51.38:449</srv> 
<srv>181.49.61.237:449</srv> 
<srv>46.174.235.36:449</srv> 
<srv>36.89.85.103:449</srv> 
<srv>170.233.120.53:449</srv> 
<srv>89.228.243.148:449</srv> 
<srv>31.214.138.207:449</srv> 
<srv>186.42.98.254:449</srv> 
<srv>195.93.223.100:449</srv> 
<srv>181.112.52.26:449</srv> 
<srv>190.13.160.19:449</srv> 
<srv>186.71.150.23:449</srv> 
<srv>190.152.4.98:449</srv> 
<srv>170.82.156.53:449</srv> 
<srv>131.161.253.190:449</srv> 
<srv>200.127.121.99:449</srv> 
<srv>45.235.213.126:449</srv> 
<srv>31.128.13.45:449</srv> 
<srv>181.10.207.234:449</srv> 
<srv>201.187.105.123:449</srv> 
<srv>201.210.120.239:449</srv> 
<srv>190.152.125.22:449</srv> 
<srv>103.69.216.86:449</srv> 
<srv>128.201.174.107:449</srv> 
<srv>101.108.92.111:449</srv> 
<srv>190.111.255.219:449</srv> 

</servs> 



9/9

<autorun> 

<module name="systeminfo" ctl="GetSystemInfo"/> 

<module name="pwgrab"/> 

</autorun> 

</mcconf>

References

1: https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
 2: http://www.hexacorn.com/blog/2015/10/26/heavens-gate-and-a-chameleon-code-x8664/

 3: http://www.oberhumer.com/opensource/lzo/
 4: https://github.com/ctxis/CAPE

 5: https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html

https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
http://www.hexacorn.com/blog/2015/10/26/heavens-gate-and-a-chameleon-code-x8664/
http://www.oberhumer.com/opensource/lzo/
https://github.com/ctxis/CAPE
https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html

