Revealing the Trick | A Deep Dive into TrickLoader
Obfuscation

Jason Reaves

Sentinel

Revealing the Trick
A Deep Dive into
TrickLQader Obfuscation

By Jason ieaves

READ BLOG

Within the TrickBot framework, there has historically been a loader component. This loader
has had continued development over the years since TrickBot’s first release where the ECS
key and bot binary were stored in the resource section of the loader [1]. However, the
function obfuscation has received relatively little treatment until now.

Executive Summary

» TrickBot developers have continued to be active over the years.

o Loader used by TrickBot has had continued development related to obfuscation for
anti-analysis.

o The TrickLoader leverages ‘minilzo’ compression, which comes from the LZO library
and its usage by these developers dates back to Dyre/Upatre timeframe.

» The goal is to detail the loader and aid additional automation efforts to process the
TrickLoader.

Research Insight

TrickLoader obfuscation development timeline:

1/9

https://labs.sentinelone.com/revealing-the-trick-a-deep-dive-into-trickloader-obfuscation/

2017 — Started obfuscating the resource section name
2017 — Custom base64 of strings

2018 — Adds user account control (UAC) bypass [5], Heaven’s Gate [2], function obfuscation

and further hiding the configuration

Most of these have been reported on in detail with the exception of the function obfuscation,

which has been mentioned but not really detailed. Researchers who write scripts for config
retrieval have stopped putting them out as frequently as in the past, possibly due to the
increased focus by TrickBot to obfuscate and hide the data.

Let’s dive into the obfuscation. The function offsets are stored in a table. The first thing the
loader does is execute a call over that table that will push the address of the table onto the
stack for the next block of code to use.

PUULIL SLdFL

start:
push ebp
mov ebp, esp
call loc_ 481878 ; ret address holds offset table
test dword ptr [eax], 2CBOB6DH
push esp
add ah, ah
add [eax], ah
db @
B+ dd 1BE86386h, 5080848h, OA4B8A3Bh, S48074h, BE481768h, BB4A184h
B+ dd 1BCEG1CBh, BA4B118h, BEBGBOD4h, 7CO830Bh, 70004Ch, BBOGGACH
B+ dd 88881Ch, 224802Ch, OFFFAOBEBh, BFFF188CL4Kh, 48008B4h
B+ dd 68085640, S5882D8h, 308048h, 1CLOA272h, 1D4BAYChH, BCEAB3Ch
B+ dd ?008858h, 448048h, SCAB3Ch, 21CA8ECh, 2683A78h, 3008706h
B+ dd 5888F4h, 1Ch
loc_481898: ; CODE XREF: .text:@8e481083Tp
pop eax ; ret address holds offset table
mou edi, eax

The next section will then process the word values from the table in sequence by adding
them to a value which is initially the start address of the table and then being pushed onto
the stack.

2/9

o ey e

mow eax, edi
add eax, Z2ASFCh
push BFFF1h ; negative is a flag
pop ecx
mouy [ebp+4], eax
moy edx, edi
mowv esi, edi
dec BCX
c_4818B6: ; CODE SREF: .text:084818D8}]
moy eax, ecx
lodsw ; load a word from table
test eax, eax
jz short loc_4818DA
cmp eax, eCcx
jb short loc_4816D5 ; If >= BxFffO then:
sub Pax, ecx
shl eax, 2
push BCX
mov ecx, edi
add BCX, PaxX ; add to original offset of table
add ecx, Z2B708Bh ; add to that
mowv eax, [ecx] ; get dword to add
pop ecx
c_4818D5: ; CODE XREF: _text:oeso1ecefj
add edx, eax ; add to accumulating offset from previous start of offset table
push edx ; push address onto stack
jmp short loc_40816B6
c_4818DA: ; CODE XREF: _text:004018BCTj
mowv [ebp+8BCh], eax
mowv eax, ebp
mou ecx, 9
shl ecx, 2
sub fax, ecx
mouy eax, [eax]
mowv [ebp+8], eax
push 33h
moy ed®, eax
pop ecx
call edx ; b@1a¥c
mowv [eax+2], ebp
nuch arh

Figure 2: Overview of rebuilding addresses from table
Reconstructing this process into Python code allows us to create the same table as long as
we can recover certain values from the binary.

3/9

off = 0x401008
start = 0x401008
orig = 0x401008
guard = Oxfffo0
val = Word(off)
vals = []
while val != O:
if val >= guard:
val -= guard
val <<= 2
temp = orig + val + 0x2b70b
val = Dword(temp)

Figure

start += val
vals.append(start)
off += 2

val = Word(off)

3: Python code to demonstrate rebuilding the table manually
After the function table is rebuilt, a call is made to one of the functions that is responsible for
decoding out the other functions and data blobs.

4/9

mow
shl
sub
mow
mow
push
mow
pop
call

Tany TUpP
ecx, 9

ecx, 2

eax, ecx
eax, [eax]
[ebp+8&], eax
33h

decode_ 481A7C

loc_ 481AAR9:

The function decodes the next function. The key is the last value in the rebuilt table address
with 0x18 added to it, and the length of the key is 0x327 bytes. Using this we should be able

edx, eax

BCX

edx
proc near
push ebp
shl eC¥,
pop eax
shl eCX,
push ebx
push edi
push esi
sub eax,
push eax
mouy eax,
pop BCX
mow edi,
dec ecx
dec ecx
dec eCx
dec ecx:
mouy eax,
sub eax,
push eax
mouy ecx,
cld
push edi
push 327h
mouy eax,
add eax,
pop ehx
mow esi,
push ebx
push eCx
mouy ecx,
mouy eax,
b4l eax,
mou [edi
inc esi
inc edi
dec ebx
pop eax

; 4la¥c

1

1

eCx
[eax]

eax

[ecx]
edi

eax

[ebp+s]
18h

eax

[edi]
[esi]
ecx

1. al

Figure 4: Decode function after rebuilding table

Figure 5: Decode function

to decode out all the addresses in the rebuilt table.

5/9

I S| Ll
m gl " p .
n amlm
e b § eyl En o e m w0
1 (SR ey olem ¥ &
Bl RN T =l 1 =l 5 R NE F A
= B Tl 1 =l mat

Figure 6: Decode all the objects from the table
After decoding all the objects, we can check the sizes of each by printing out the size of
every element of the decoded_data list.

>>> [x[1] for x in decoded_data]

(109,712, 84,228, 32,768,432, 64, 80, 56, 164, 116, 84, 368, 228, 260, 180, 448, 444, 280, 164,212,224, 48,
124,76,112,28, 176,28, 136,44, 548, 224, 72104, 196, 70620, 180, 72, 100, 96, 728, 88, 64,48, 632, 452,
156, 468, 60, 200, 88,512, 72, 68, 60, 92, 2236, 540, 14968, 616, 112, 48, 244, 88, 28]

Figure 7: Check decoded object sizes
Most of them look normal; however, there are a few that seem larger than what you would
normally observe in the size of a single function.

>>> [x[1] for x in decoded_data].index(72104)

34

>>> decoded_data[34][2][:100]

bytearray(b' A\xe8\xcb\x f4\x00\x00 A VVW SH\x 8 1\xec\x 0 8\x06\x 00\x 00\x 8b\x fa H\x 8b\xf 1 H\x 8d\\

$X3\xd2 A\xb8\xb0\x05\x00\x00H\x8b\xcb\xe85\x01\x00\xc 7D$(\x00A\x00HA\x01]

\x00\x00\x03\x 08 E3\xcO\x04\x07\x0c\xceL\x 8b\xc3\xe8\xf46\x 00\x 00\x 85\x c0\x 0N\x 84\x 84\x 02 A\x04\x 8b\x 02
\x08XHu\x01vi\x01\x04\x 8dt$h\xc7\x06")

>>> decoded_data[36][2][:100]

bytearray(b"\x 1 a\x00\x00\x 80\x00\x 0 1\x 00\x00\x 00\x 04 N\x 00\x f\x f\x 0e\x 00\x b8\x 00\xa2\x 00 @\x 00

x01\x0 1\x00hLAX00\x00\x01\x0e\x 1 f\xba\x0e\x 00\xb4\t\xcd \xb8\x01L\xcd ! This H\x00\x00\ra PE
executable\r\n$PE\x00\x00L\x0 1\x03\x00\xe0\x f7\xb7]\x00\xc 1 \x 00\x e 0\x 04 \x 0 \x 04\x 0 1 \x0b\x 0 1 \n\x 00\x 001 E
\x10"

Figure 8: Compressed objects

These larger decoded objects are actually compressed data. It turns out there are at least 3
compressed objects: a 32 bit TrickBot binary, a large blob of 64-bit bytecode which is the 64
bit TrickBot binary, and a smaller 64-bit EXE file which is a loader for the 64-bit bytecode
blob.

The compression is ‘minilzo’, which comes from the LZO library, and its usage by these
developers dates back to Dyre/Upatre timeframe. After decompressing the 32-bit binary and
fixing the missing ‘MZ’, we have the 32-bit TrickBot binary.

6/9

Now that we have the normal TrickBot binary, we can decode out the onboard configuration
data which is hidden and XOR encoded inside the bot now. Taking an existing decoder from
CAPE [4] and adjusting it a bit while adding in our deobfuscation works well!

Indicators of Compromise (I0Cs)

SHA-256: ac27e0944ce794ebbb7e5fb8a851b9b0586b3b674dfa39el196a8cd47e9ee72hb2

7/9

<mcconf>

<ver>1000480</ver>

<gtag>tot598</gtag>

<servs>

<srv>144,
<srv>172.

91.79.9:443</srv>
245.97.148:443</srv>

<srv>85.204.116.139:443</srv>

<srv>185.
<srv>185.
.91.79.12:443</srv>
<srv>185.
<srv>195.
<srv>146.
<srv>195.

<srv>144

62.188.117:443</srv>
222.202.76:443</srv>

68.93.43:443</srv>
123.238.191:443</srv>
185.219.29:443</srv>
133.196.151:443</srv>

<srv>91.235.129.60:443</srv>
<srv>23.227.206.170:443</srv>

<srv>185.
<srv>190.
<srv>178.
<sSrv>200.
<srv>187.
<srv>177.

222.202.192:443</srv>
154.203.218:449</srv>
183.150.169:449</srv>
116.199.10:449</srv>
58.56.26:449</srv>
103.240.149:449</srv>

<srv>81.190.160.139:449</srv>

<Srv>200.
<srv>181.

21.51.38:449</srv>
49.61.237:449</srv>

<Srv>46.174.235.36:449</srv>
<srv>36.89.85.103:449</srv>

<srv>170.

233.120.53:449</srv>

<sSrv>89.228.243.148:449</srv>
<srv>31.214.138.207:449</srv>

<srv>186.
<srv>195.
<srv>181.
<srv>190.
<srv>186.
<srv>190.
<srv>170.
<srv>131.
.127.121.99:449</srv>

<sSrv>200

42.98.254:449</srv>
93.223.100:449</srv>
112.52.26:449</srv>
13.160.19:449</srv>
71.150.23:449</srv>
152.4.98:449</srv>
82.156.53:449</srv>
161.253.190:449</srv>

<srv>45,235.213.126:449</srv>
<srv>31.128.13.45:449</srv>

<srv>181.
<srv>201.
<srv>201.
<srv>190.
<srv>103.
<srv>128.
<srv>101.
<srv>190.

</servs>

10.207.234:449</srv>
187.105.123:449</srv>
210.120.239:449</srv>
152.125.22:449</srv>
69.216.86:449</srv>
201.174.107:449</srv>
108.92.111:449</srv>
111.255.219:449</srv>

8/9

<autorun>

<module name="systeminfo" ctl="GetSystemInfo"/>

<module name="pwgrab"/>

</autorun>

</mcconf>

References

a b WON -

. https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/

: http://www.hexacorn.com/blog/2015/10/26/heavens-gate-and-a-chameleon-code-x8664/
. http://www.oberhumer.com/opensource/lzo/

: https://github.com/ctxis/ CAPE

: https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html

9/9

https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
http://www.hexacorn.com/blog/2015/10/26/heavens-gate-and-a-chameleon-code-x8664/
http://www.oberhumer.com/opensource/lzo/
https://github.com/ctxis/CAPE
https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html

