
1/39

MMD-0066-2020 - Linux/Mirai-Fbot - A re-emerged IoT
threat

blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html

Chapters: [TelnetLoader] [EchoLoader] [Propagation] [NewActor] [Epilogue]

Prologue

A month ago I wrote about IoT malware for Linux operating system, a Mirai botnet's client
variant dubbed as FBOT. The writing [link] was about reverse engineering Linux ELF ARM
32bit to dissect the new encryption that has been used by their January's bot binaries,

The threat had been on vacuum state for almost one month after my post, until now it comes
back again, strongly, with several technical updates in their binary and infection scheme, a
re-emerging botnet that I detected its first come-back activities starting from on February 9,
2020.

This post is writing several significant updates of new Mirai FBOT variant with strong
spreading propagation and contains important details that have been observed. The obvious
Mirai variant capabilities and some leak codes' adapted known techniques (mostly from other
Mirai variants) will not be covered.

This is snippet log of FBOT infection we recorded, as a re-emerging "PoC" of the threat:

The changes in infection activity

https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html
https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html
https://lh3.googleusercontent.com/l5qLHC02vbwPebZeO5-NS8TFOTzgKnNY_ToqOI31ZmAPA83Axy92b4rTvHJGXhgcU8EMKtgYjnvXXXdE1XJeF-CuIW57dgD-zwN4MdXdI3-3k2-9SjYymNfU8y6QtzFMQMfm2HI_3iA=w1607-h695-no

2/39

Infection method of FBOT has been changed to be as per shown below, taken from log of
the recent FBOT infection session:

As you can see, there are "hexstrings" blobs pushed into the compromised IoT on a telnet
CLI connection. That hexstrings is actually a small ELF binary adjusted to the architecture
of the infected device (FBOT has a rich binary factory to infect various Linux IOT supported
CPU), to be saved as a file named "retrieve". This method is significantly new for Mirai
FBOT infection, and other infection methods (in their scanner funcion) is more or less similar
to their older ones. Mirai FBOT seems not to drop the legacy infection methods they use too,
and the adversary is adding "hexstring push" way now to increase the bot client's infection
probability. I will cover some more changes in the next section.

The binary analysis

In this part we will analyze two binaries of the recent FBOT. One is the pushed hextstrings
one with the ELF format is in ARM v5 32bit little-endian. And for the other ELF, in this post I
am picking up the Intel 64bit binary, since my recent blogs and image-posts are all covering
enough ARM or MIPS.

1. ARM 32bit ELF downloader (the "telnet" loader) in pipes

The pushed-hexstrings is saved as file called "retrieve" which is actually a downloader for
the Mirai FBOT bot client binary. It was not the smallest downloader I've seen in ELF
samples all of these years but it does the job well. The binary is having this information:

https://lh3.googleusercontent.com/PcMhMj8Cf2Ovib4HnfZMNkkodbrhi6QzWT-A5JP-wN_S-Q_wll76gjwKG548qoKNgjMmszory65csU1_usd1GgsRl3_i6X9KFmCVHwsoIhvdr8v5dK9Um5iUAVprK_S9B9Q4xLrh95E=w1400-h891-no

3/39

retrieve: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV),
 statically linked, stripped
MD5 (retrieve) = d0a7194be28ce86fd68f1cc4fb9f5d42
SHA1 (retrieve) = c98c28944dc8e65d781c8809af3fab56893efeef
1448 Feb 23 03:04 retrieve

Small enough to put all strings in binary in a small picture :)

The binary is a plain and straight ELF file, with normal headers intact, without any packing
and so on, it contains the main execution part which is started at virtual address 0x838c and
it will right away call to 0x81e8 where the main activity are coded:

/ 388: entry0 ();
| | ; var int32_t var_14h @ sp+0x84
| | ; var int32_t var_12h @ sp+0x86
| | ; var int32_t var_10h @ sp+0x88
| `=< 0x0000838c 95ffffea b 0x81e8

- - - - - - - - - -

[0x000081e8]> pd
| ; CODE XREF from entry0 @ 0x838c
| 0x000081e8 f0412de9 push {r4, r5, r6, r7, r8, lr}
| 0x000081ec 74319fe5 ldr r3, [aav.aav.0x000083fd]
| 0x000081f0 98d04de2 sub sp, sp, 0x98
| 0x000081f4 0080a0e3 mov r8, 0
: 0x000081f8 000000ea b 0x8200
 : :

The other part is the data, where all values of variables are stored. it is located from virtual
address 0x83f4 at section..rodata (0x83fc), as per shown below:

https://lh3.googleusercontent.com/yWeqflT7K_Po9l8-IpExtZxZjERxVXg2qsPZd_lMCAPukADVMhishvsZQFct55Dkx85yqePcAcxkzYkoBLVfwW5UGYqOlatvbQZMf41sR4NOUe8xvtUKyszWYDMxPcbZ_49ltunWgX0=w938-h524-no

4/39

To call the saved data the ELF is using below loader scheme that has been arranged by the
compiler:

To be noted that this scheme is unrelated to the malicious code itself.

Next, the malware is stripped, so in radare2 you will see the name like "fcn.00008xxx", for
every function names, from the original function coded by the mal-coder, the used Linux calls
and the system calls. So, at first, we have to put the right naming to the right function if we
can (Please check out my previous blog about Linux/AirDrop [link] for this howto reference).
In my case, I restored its naming to the correct location, as per shown in the table like this:

https://lh3.googleusercontent.com/6baU8u9ZTWTQ1Oo7A6tQ4OQCJyAFxXsajvr2RH3zh7FWpeVLiYzAOXLGINKejWC3mDEbU4aH-xPcIaz1NYwavb8f5INZrpC_UQ0Z3wD4PkJA8VPp_uuh0JLfPl3Hr1t2bhQCGuM7s98=w975-h473-no
https://lh3.googleusercontent.com/IuyHsc2UwNfbvgO6u2LKp0c-kyhtexT-vcPImzc6s8v16v2IzZ4NFsbsojVyQn7gOSw4eVxC_wrJcov_CNIlLDovC7Bv9mlqM9e92_7Lom-UyYONMCbNha5egXFybDahka73vjW4P2E=w1150-h634-no
https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html

5/39

Now we can start to read the code better, the next thing to do is writing the close-to-original
C-code by adjusting several ARM assembly to form the code. Remember to be careful if you
use the decompilers, you still have to recognize several parts that can not be processed
automatically, in example, in DFIR distro Tsurugi Linux which is having radare2 precompiled
with three versions of decompiler plugins, you will see a cool result like this from r2ghidra-
dec, r2dec and pdc.

I will demonstrate this Linux distribution in the FIRST annual conference 2020 at the lighting
talk, so please stay tune.

After you put your naming to each functions, and try to form the original code by the
guidance of your decompiler, then try to re-check again to your binary flow. This binary is
quite small but it has several error trapping checks in the step of execution, please make
sure you don't miss them.

In my case I reversed the source code to be something like this:

https://lh3.googleusercontent.com/TI8GD7eTIRuEHvzdkuPGWnUSfFwjbWviGsnTfyGFRItL8ayu_pYSFILzVL48XpYocDQA9E1hZRCzNqBT_FS8OB8YaX2l_mtU54qOYw2pk90sb6KsFOcXWdcisZkxa0AWmLbxKuRVg5c=w771-h299-no
https://lh3.googleusercontent.com/9SN-gQd3_fC_j8MulWIuRKF5EIX9ecUT07YQsoSW2_pOR4w71XtEAbjuLAym86GEqUEWw7JfYCfoq5GWB5mGOl8Wad-kmsdSHPMhj-rgO0nTCSZ1hu6u8KaSPMoABF9J4Z8z5d9O8zc=w1390-h722-no

6/39

At this moment we can understand how it works, after firstly confirming the binary is for
ARM5, it wrote "MIRAI" and creating socket for TCP connection to remote IP
194(.)180(.)224(.)13 to fetch the download URL of the bot binary payload. And it open the
".t" file with the specific file executable permissions, then saved the received data into that
file. Upon socket creation error, or C2 connection error, or file creation error, or also data
retrieving error, this program will just quit after writing "NIF", and upon a success effort it will
write "FIN", close its working sockets and quit. A neat downloader is it? Simple, small and
can support many scripting effort too, along with merit to hide its payload source, why Mirai
botnet original author was using this type of binary loaders in the first place.

The code I reversed won't work if used, since it is a pseudo code, compiler won't process it,
but it is enough to explain how this binary operates, and also explains where is the origin of
this program too. I know this by experience since I have been dissecting and following Mirai
from the day one [0][1][2][3][4], but this downloader is based on Mirai downloader that has
been modified by a certain actor, again a leaked code is proven recycling.

For the practical purpose to fast extracting the payload URL in this type of FBOT loader, I
made a very practical reversing crash course in 4 minutes for the purpose as per embedded
below:

(pause the video by pressing space or click the video screen)

2. x86-64 ELF bot client, what's new?

https://lh3.googleusercontent.com/rTwNVYKOY90Q53NcZMp6QQedol2a0hSetHHhHXl96aI2EJrJv4Q6xclKRrDXTf9w8QpIX57dF_zM1kkCgOpn1mgHBJ-dGzrGpqqMID83DyZf0X78-FymhNb3WAInj5mwU4O6di8vR7c=w981-h702-no
https://en.wikipedia.org/wiki/Mirai_(malware)
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://imgur.com/a/53f29O9
https://old.reddit.com/r/LinuxMalware/comments/7p00i3/quick_notes_for_okiru_satori_variant_of_mirai/
https://old.reddit.com/r/LinuxMalware/comments/7qe8wf/first_arc_riscbase_core_targeted_elf_malware_was/

7/39

Now we are done with the first binary, so it is the turn of the next binary. In the download
server at the path of payloads resides several architecture of binaries too. That's where I
picked the ELF x86_64 one for the next reversing topic. The detail is as follows:

bot.x86_64: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
 statically linked, stripped
MD5 (bot.x86_64) = ae975a5cdd9fb816a1e286e1a24d9144
SHA1 (bot.x86_64) = a56595c303a1dd391c834f0a788f4cf1a9857c1e
31244 Feb 23 20:09 bot.x86_64*

Let's check it out..
The header and entry0 (and entropy values if you check further) of the binary is showing the
sign of packed binary design.

8/39

Program Headers:

Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
 0x000000000000790c 0x000000000000790c R E 200000
LOAD 0x0000000000000e98 0x000000000060fe98 0x000000000060fe98
 0x0000000000000000 0x0000000000000000 RW 1000
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
 0x0000000000000000 0x0000000000000000 RW 8

[Entrypoints]
vaddr=0x004067d0 paddr=0x000067d0 haddr=0x00000018 hvaddr=0x00400018 type=program

/ 2701: entry0 (int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4, int64_t
arg_10h);
| ===> 0x004067d0 e8cb0b0000 call 0x4073a0 <===to unpacking
| 0x004067d5 55 push rbp
| 0x004067d6 53 push rbx
| 0x004067d7 51 push rcx
| 0x004067d8 52 push rdx
| 0x004067d9 4801fe add rsi, rdi
| 0x004067dc 56 push rsi
| 0x004067dd 4180f80e cmp r8b, 0xe
| ,=< 0x004067e1 0f85650a0000 jne 0x40724c
: : 0x004067e7 55 push rbp
 : :
-

/ 34: fcn.004073a0 (); <== unpacking function
| ; var int64_t var_9h @ rbp-0x9
| 0x004073a0 5d pop rbp
| 0x004073a1 488d45f7 lea rax, [var_9h]
| 0x004073a5 448b38 mov r15d, dword [rax]
| 0x004073a8 4c29f8 sub rax, r15
| 0x004073ab 0fb75038 movzx edx, word [rax + 0x38]
| 0x004073af 6bd238 imul edx, edx, 0x38
| 0x004073b2 83c258 add edx, 0x58 ; 88
| 0x004073b5 4129d7 sub r15d, edx
| 0x004073b8 488d0c10 lea rcx, [rax + rdx]
| 0x004073bc e874ffffff call fcn.00407335
: : : :

9/39

The binary snippet code:

The unpacking process will load the packed data in 0x004073c2 for further unpacking
process. You can check my talk in the R2CON 2018 [link] about many tricks I shared on
unpacking ELF binaries for more reference to handle this binary.

After unpacking you will get a new binary with characteristic similar to this:

fbot2-depacked: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
 statically linked, stripped
MD5 (fbot2-depacked) = bf161c87d10ecb4e5d9b3e1c95dd35da
SHA1 (fbot2-depacked) = 3aecd1ae638a81d65969c2e0553cfacc639f32a6
58557 Feb 23 13:03 fbot2-depacked

https://lh3.googleusercontent.com/qjAN218asTPrxSPxj45fuqk1sxBRgveGU1dBTwwe9qwRQ4-YQt7XEI_dELgWkmdbgoLtNELwFP6c1d2Ffh68ryt4enwlzqQQTtSCQ0fJUTsdZ0nChN-2ucJAbz25hDj5IQsW1v7Tb2M=w1636-h840-no
https://blog.malwaremustdie.org/p/new-video-of-this-talk-has-just-been.html

10/39

If you will see these strings that means you un-packed (or de-pakced) successfully.

In the string above you can see the matched data with the infection log, which is telling us
that this binary is actually infecting and attacking another IoT device for the next infection.
You can see that hardcoded in teh binary in this virtual address:

The binary is working similar to older Mirai variants like Satori, Okiru or others, and having
several ELF downloaders embedded in the bot client to be pushed during the infection
process to the targeted devices. It is hard coded as per seen in this data:

https://lh3.googleusercontent.com/OtxlgR7dY1UnhMqh0Ogp505l7lShA-lxrLsf09oTXBfnwI1ZnoF4gMGXCIgra9PegYsLRDyAY7Gpr-O9R5ZiMT_QmvS75FeGRKRoaJ_nbnG3WPOCiWdHgps3kV97YakgBE41x1hQFz0=w1331-h944-no
https://lh3.googleusercontent.com/aYyDDs5EXrj2kdQTcJ0DxLi8BrWHvbfPusexBPkZG4f8S1LyrEoYbZJCUOYw7LDhr2hnFgfcyHLH-kd7cjW0bhwa39CW7bKxkmN1uyVJT8kJVFDnnCWusXfEgLI6dJnsK1XYZOJSndo=w1248-h634-no

11/39

https://lh3.googleusercontent.com/PARlv0MgHUItevVHE7y0PYd3JBtX4uqDNyAJOoAxwWOSeoZTU5V2gRdhtni25KRBhT9xIpLUQQexXa-OlJ55RDFGHcmVxa5uPg-gOFekMfR001UiQoo_mZupwFMW42zoOZtJQGkij0A=w1229-h874-no

12/39

The encrypted data part can be seen in this virtual address of the unpacked ELF:

This is where the pain coming isn't it? :) Don't worry, I will explain:

The decryption flow is not changing much, however the logic for encryption is changing. It
seems the mal-coders doesn't get their weakness yet and tried fixing a wrong part of the
codes to prevent our reversing. Taking this advantage, you can use my introduced decryption
dissection method explained in the previous post about Linux Mirai/FBOT [link] to dissect this
one too. It works for me, should work for you as well.

https://lh3.googleusercontent.com/d6NhPk6CRnRtmmFwpWQVYUKqQnCyhKilLeWNC-xWWJg7H3MbhP-gRQGFEY4lqZkUKd-T3P1EXFKq01eFkQkgmmyPw7ABup6DmWul3Wz7h9JLXsST1dLKtvXH993Ivi72gxcuuGRksUM=w976-h896-no
https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html

13/39

Below is my decryption result for encrypted configuration:

The binary will operate as per commonly known Mirai variant bots, it will listen to TCP/3467
and callback to C2 at 194(.)36(.)188(.)157 on TCP/4321 for the botnet communication
purpose, and as per other Mirai variants the persistence factor is in the botnet
communication. There are some parts taken from Satori and Okiru for embedding
downloaders to be used in victim's IoT. The unique feature is the writing for
"9xsspnvgc8aj5pi7m28p\n" strings upon execution. This bot client is enriched with more
scanner functions (i.e. hardcoded SSDP request function to scan for plug-and-play devices
that can be utilized as DDoS amplification, in Mirai this attack will use spoofed IP address of
the victims to launch attack).

For getting more idea of what this binary does, the strings from the unpacked binary I
dumped it here in a safe pastebin source file. Combine the strings that I dumped from
unpacked binary with the packed one under different sub_rules, and use the hardcoded
unpacking functions opcodes for your Yara rules to detect this packer, hashes and IP from
this post are useful also for IOC/Yara detection. VirusTotal can help to guide you more
OSINT for the similar ones.

I think that will be all for FBOT new binary updates. So let's move on to the much more
important topic..reversing the botnet instance itself, how is the speed, spreads and how big,
to understand how to stop them.

The "worrisome" infection speed, evasion tricks and detection ratio
problem

1. Infection and propagation rates of new FBOT

https://lh3.googleusercontent.com/ZJ8quuNqH19u3OUbs0vR-_aWp2VVO4G0O1U2wl2N4G4-5c1ldlzy7Mo24VpMXQjaJwJJBG2eLYZZ8ba1HF6irRQbP_XMEgIwJikuH6fXuXf2VWxe_i-BEN-milla66ETzpELl7JbYls=w1439-h900-no
https://pastebin.com/qDdkEGFH

14/39

The new wave of infection of the new version is monitored rapidly, and the sign is not so
good.

Since the firstly detected until this post was started to be written (Feb 22), FBOT was having
almost 600 infection IP addresses, and due to low scale network monitoring we have, we
can expect that the actual value of up to triple to what we have mentioned. Based on our
monitoring the FBOT has been initially spread in the weaker security of IoT infrastructure
networks in the countries sorted as per below table:

In the geographical map, the spotted infection as per February 22, 2020 is shown like this:

The IP addresses that are currently active propagating Linux Mirai FBOT infection up to
February 22, 2020 can be viewed as a list in this safe pastebin link, or as full table with
network information.

https://lh3.googleusercontent.com/w0SeIr8VGuYkkVPUDBCoeylbs-MjSrpYnmRRrh3iJhASkJ8JSy4fOTQTvMDvmXrsi0sdy3ZsWG1W8y_n40Rfsu2lFKrxdL4XXAr57M-TxoYdsAEb8n_ioQqULQvN54jt1DWyYpdvRFI=w563-h553-no
https://lh3.googleusercontent.com/V4Misw5yceVdoouUmakMRCMV7eiF7fRdzu79zoX1qa9DImNcaHtKrzztHL42dIJ9-fwv2Qi0LTTvWw-pg41vTPtGAFp2dnzVpUQnvqmh2TWkI6Wa7Qf8MUaaBf8vOAgkgFtKLrso0SM=w924-h527-no
https://pastebin.com/8n9G964c
https://gist.github.com/unixfreaxjp/0511f4cac942413b7c0225dc4a19e0ff

15/39

The IP counts is growing steadily, please check and search whether your network's IoT
devices are affected and currently became a part of Mirai FBOT DDoS botnet. The total
infection started from around +/- 590 nodes, and it is increasing rapidly to +/- 930 nodes
within less than 48 hours afterwards from my point of monitoring. I will try to upgrade the
data update more regularly.

2. Update information on FBOT propagation speed (Feb 24, 2020)

I just confirmed the infection nodes of FBOT is growing rapidly from February 22 to February
24, 2020. Within less than 48 hours the total infected nodes is raising from +/- 590 nodes to
+/- 930 nodes. In the mid February 25 the total infection is 977 nodes. After the botnet
growth disclosure the speed of infection has dropped from average 100 nodes new infection
to 20 devices per day, concluded the total botnet of infected IP on March 2, 2020 is +/- 1,410
devices.

The speed of infection is varied in affected networks (or countries), and that is because the
affected device topology is different. I managed to record the growth of the nodes from my
point of monitoring under the table shown below from top 15 infection rank, we will try the
best to update this table.

https://lh3.googleusercontent.com/x6BKNIzta2p8WZQMm94yDDrVRyDQz6Dwp0Mppkw7uF3kvmQhIHYRPO5faf7_jOs_2FcVSO1EqarhROg5G3JtMPfP0D7o3o8RpXsd9dN--yHrurfl6dvsQbgEFbXjcrgW-BjZW0enUCw=w1408-h759-no

16/39

Mirai FBOT Infection growth,
From Feb 22 to Feb 25, 2020 JST

Country Feb22 Feb24 Feb25 Feb25
 (day) (night)
 (582) (932) (977) (1086)

Taiwan 190 => 284 => 302 => 340
HongKong 107 => 132 => 132 => 140
Vietnam 109 => 134 => 135 => 139
Korea 6 => 74 => 84 => 104
China 40 => 74 => 79 => 93
Russia 14 => 29 => 31 => 35
Brazil 19 => 27 => 28 => 30
Sweden 13 => 26 => 26 => 27
India 7 => 21 => 22 => 24
USA 15 => 17 => 17 => 20
Ukraine 4 => 14 => 15 => 15
Poland 7 => 10 => 10 => 10
Turkey 0 => 4 => 6 => 9
Romania 4 => 6 => 7 => 7
Italy 3 => 6 => 6 => 6
Canada 4 => 5 => 5 => 6
Norway 3 => 5 => 5 => 6
Singapore 3 => 5 => 5 => 6
Colombia 1 => 4 => 4 => 6
France 2 => 4 => 5 => 5
--
Average spread speed = +/- 100 nodes/day-
as per Feb 25, 2020 - malwaremustdie,org

The February 24, 2020 Mirai FBOT infection information update (mostly are IoT's nodes), in
a list of unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

The February 25 (daylight/JST), 2020 Mirai FBOT infection information update, in a list of
unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

The February 25 (midnight/JST), 2020 Mirai FBOT infection information update, in a list of
unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

On February 26, 2020 Mirai FBOT botnet has gained new 128 nodes of additional IOT IP, I
listed those in ==>[here]

On February 27, 2020 Mirai FBOT botnet has gained new 74 nodes of additional IOT IP, I
listed those in ==>[here]

https://pastebin.com/vvdtvwsD
https://gist.github.com/unixfreaxjp/0b3e44a58dce33a3a41855da521a8128
https://pastebin.com/r5pxcBay
https://gist.github.com/unixfreaxjp/be7fde13bcc43bc6d3e7fa9c8ea96f96
https://pastebin.com/BR274XZ9
https://gist.github.com/unixfreaxjp/cf5a7845baa47579b6d0736b9c7a20d4
https://gist.github.com/unixfreaxjp/557273ec855d90ea92913865f79946e1
https://gist.github.com/unixfreaxjp/c1e2549842ba7523f8c5b860b3b7d181

17/39

On March 2, 2020 Mirai FBOT botnet has infected 1,410 nodes of IoT devices all over the
globe. I listed those networks in here ==>[here] for the incident handling purpose, if we
breakdown the data per country it will look as per info below:

Last status of #Mirai #Fbot infection:
Hit cycle total = 5177
Actual alive IP = 1404
Rank:
Taiwan: 432
Vietnam: 186
S.Korea: 155
HongKong: 149
PRC/China: 126
Russia: 50
India: 39
Brazil: 36
Sweden: 31
United States: 27
Ukraine: 17
Turkey: 10
Poland: 10
Japan: 10#MalwaremustDie

— ☩MalwareMustDie (@malwaremustd1e) March 2, 2020

In the above data you see the "hit cycle" values, which is a value explaining the frequency of
the botnet infected IoT in trying to infect other devices and recorded.

The latest renewed data we extracted is on March 4, 2020, where Mirai FBOT botnet has
infected 1,430 nodes of IoT devices. I listed their IP addresses in here ==>[link] with the
network info is in here ==>[link]. This is our last direct update for the public feeds since the
process is taking too much resources, and the next of data can only be accessed at IOC
sites.

If you would like to know what kind of IOT devices are infected by Mirai Fbot malware, a nice
howto in extracting those device information is shared by Msr. Patrice Auffret (thank you!)
of ONYPHE (Internet SIEM) in his blog post ==>[link].

The maximum nodes of Mirai FBOT botnet in the past was around five thousands nodes,
we predicted this number (or more) is what the adversaries are aiming now in this newly
released campaign's variant. However, after the awareness and analysis post has been

https://gist.github.com/unixfreaxjp/7a7c546274b6ff9c7d529d9411db0b6d
https://twitter.com/hashtag/Mirai?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Fbot?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/MalwaremustDie?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/malwaremustd1e/status/1234306694416494592?ref_src=twsrc%5Etfw
https://pastebin.com/SyceY8JF
https://gist.github.com/unixfreaxjp/97f8d74088a2255c417717cb8fe508ef
https://www.onyphe.io/blog/analyzing-mirai-fbot-infected-devices-found-by-malwaremustdie/

18/39

published the growth ratio of the new Fbot botnet is starting to drop. The overall volume and
growth for this new Mirai Fbot variant can be viewed as per below graph:

In order to reduce the threat from escalation process, it would be hard to block the whole
scope of the infected IoT networks, but one suggested effective way to mitigate this threat is
making efforts to clean them up first from the infection, and then control the IoT infrastructure
into always be into recent secure state along with replacing their firmware, or even their
hardware if needed. If you don't take them under your control, sooner or later the adversaries
will come and they will do that in their botnet.

3. About the C2 nodes

The C2 hosts, which are mostly serving the Mirai FBOT payloads and panels, are highly
advisable for the blocking and further legal investigation. The C2 IP address data, their
activity and network information that has been detected from our point is listed in a
chronological activity time line as per below detail:

https://lh3.googleusercontent.com/IH9FxENGm31pWpfiH4lCuWvZJA_vDVbciT6TMW7SXd2PCoCJfBvMkBeZHuZR0mGPC5HofvAmT-xnTzAnaTNiGbq-EgXIJPnsbSIN9Qxo5F6ZSFDGY6Az79xFV7tyvYV2XGz-k97Mn8I=w934-h575-no
https://lh3.googleusercontent.com/xkbAMzn34VxNKMbkK5qHU8ssigLc9_pK6q-0tBUVSdzCD4AIVstAyn6mQ4yM6XCbqSpM-JIJXBQfi4uK-WE9LEsmJ9G1MqDijr7LCj3F5ilRG_OXUKRWfr1OndcaL_gVkXoQIkFYFKs=w1010-h317-no

19/39

A month ago, when I wrote about the new encryption of Mirai Fbot [link], the C2 nodes were
spotted in the different locations as per listed in the below table, and even now you can also
still see the older version of Mirai Fbot malware running on infected IoT too, that has not
been updated to new variant are having traffic to these older C2:

This information is shared for the incident and response follow up and IoT threat awareness
purpose to support mitigation process at every affected sides. At this moment we saved the
timestamp information privately due to large data, to be shared through ISP/Network
CSIRT's routes.

4. The detection ratio, evasion methods, IOC & what efforts we can do

The detection ratio of the packed binary of new Linux Mirai FBOT is not high, and contains
misinformation. This is caused by the usage of packer and the encryption used by the
malware itself. The current detection ratio and malware names can be viewed in [this URL]
or as per screenshot below:

https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html
https://lh3.googleusercontent.com/2ThM1eiiZKnbEbRhsApB8_gUtZMz1umOmHlhX8RDi0O9b7dEN_JHMYgN6ps0F7zD9O9BUX4eaPvJlY_bB9qNhjXw4gxPBGOpXqvkTZHc6MbwsNtVGtFsqkqG_kY6Qw12hglfoCeLU90=w1367-h167-no
https://www.virustotal.com/gui/file/07bf82f007ccb4b8bf455c67837606c738b8d9f4ec0ab85f36793470967900c0/community
https://lh3.googleusercontent.com/Yq6k1WrQa6NXrriZoLgn9Vuv8egkN4aoANB_91tLraPaYJigiRtRHhOVIcEPlhbaObUTdGGMOhNDt-2uUTNk_tp4v_jdnkYciqQFpqwb7ZS6DBUn3hHBW7t2Mobi-6haFkulufK7x4A=w1180-h653-no

20/39

In the non-intel architecture the detection ratio can be as bad as this one:

So, the detection ratio is not very good and it is getting lower for the newly built binaries for
IoT platform. The usage of packer is successfully evading anti virus scanning perimeter. But
you can actually help all of us to raise detection ratio by sending samples for this related
threat to the VirusTotal and if you see unusual samples and you want me to analyze that,
please send it to me through ==> [this interface]. Including myself, there are many good folks
joining hands in investigating and marking which binaries are the Linux/Mirai FBOT ones,
that will bring improvement to the naming thus detection ratio of this variant's Linux malware.

The signature and network traffic scanning's evasion tricks of new Mirai Fbot binaries is not
only by utilizing "hexstring-push" method, but the usage of packer, embedded loaders in
packed binary & stronger encryption in config data that is actually contains some block-
able HTTP request headers. By leveraging these aspects these Mirai FBOT now has
successfully evaded current setup perimeters and is doing a high-speed infection under our
radars. This is the evasion tricks used by the adversaries that our community should concern
more in the future, it will be repeated again and maybe in a better state, since it is proven
works.

The IOC for this threat contains more than 1,000 attributes and is having sensitive
information, it is shared in MISP project (and also at the OTX) with the summary as per
below. The threat is on-going, the threat actors are watching, please share with OPSEC
intact:

https://lh3.googleusercontent.com/m4a1dw9fnBlht_3FVlEQ_JfAsly0OUrieGnXQNPKnaCtQ9koQwrXFgWj0qQgt6lKayiOmKwIZUOlvyusmPnNOPj9ajHMWz4cEDPDIMfBGPNbEioGtG-gKOSBuIDsIj6TgTntg4Pjgtc=w2386-h1186-no
https://blog.malwaremustdie.org/p/send-sample.html

21/39

In our monitoring effort up to (March 3, 2020) the botnet IP addresses has volume about +/-
1,424. You can use the data posted in MISP event to re-map them into your new object
templates for IOT threat classification & correlation, to follow the threat infection progress
and its C2 activity better, to combine with your or other other monitoring resources
data/feeds.

[UPDATE] In our latest monitoring up to (April 17, 2020) this botnet has volume about +/-
1,546 IP addresses [-1-] [-2-].

[NEW] Another FBOT "hexstring" downloader, the "echo" type

There is FBOT pushed hexstring that is smaller in size. If you see the infection log there is a
slight difference after hextrings pushed at "./retrieve; ./.t telnet;" and "./retrieve; ./.t echo",
the token of "telnet" [link] and "echo" is the difference, both token are coming from different
built versions of FBOT scanner/spreader functions.

https://lh3.googleusercontent.com/EMTAcpHfXI3zGTwX3qgymxbueDWQAu42ixG7q6A-gvhkrrDMRYQ5j9T01o9e3ovyZKJsQV6yywyY5tChkNeVfm1jdV2-uj2tkFiDJng_xdmvroEWgvo4GPsgThcQdDXPEdG8QaoKRzs=w1067-h692-no
https://gist.github.com/unixfreaxjp/5f73a5c89a81935c552d5613b6086959
https://pastebin.com/Sw8rNU7s
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html#telnetloader

22/39

We have covered the "telnet" one in the beginning of this post [link], now let's learn together
on how the "echo" loader's one works in this additional chapter. It is important for people
who struggle to mitigate IoT new infection to understand this analysis method, in order to
extract C2 information automatically from a specific offset address in the pushed binary of
specific pushed "hexstring" types. In my case I am using a simple python script to
automatically extracting C2 data from several formats of hexstring attacks, and it works well.

The pushed binary in the "echo" version is smaller, it's about 1180 bytes [link] and working
(and coded) in slightly different way. But how different is it? Why is it different? Where is it
coming from? We need to reverse it to answer these questions. Let's start with seeing what it
looks like.

The saved blob of the binary looks like this, I marked the part of where IP address of the
payload server is actually coded:

https://lh3.googleusercontent.com/Nr7fHlWSnDBCCgw7pPznsYXJ3dDPmOnm4NlUfjdxOPSQRaD7lg34loAwoZop_ivfU8IKOV2oHzuL3cXCnucCx63hkf-LaY2eco58K_ddJ1u9WWcR0zFVAmdWZQraQQk0dbJF4TXJcY4=w1771-h840-no
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html#telnetloaderdissect
https://lh3.googleusercontent.com/AQYvJMDCb56JJ7BHwI7n5SYOQGQGUFzCFr6UNjKQsggWkeZaMi_DEVrROtvzXSdfaoHAhM2BISmowSxpwPAA5Ngvq2g5GAhZuce69cJJGvg73u_gWgdTO4mivf-4unt3JxrRdNloPFE=w881-h500-no
https://pastebin.com/raw/ESeYP7bK

23/39

Now let's start dissecting it. But beforehand, since I've been still asked questions on
reversing ARM stripped binaries, so I will make this additional chapter explanation clearer, in
steps, for you. All you have to do is downloading and using Tsurugi DFIR Linux SECCON
version [link] that I use for this, then fire the pre-installed radare2 to load the binary of this
example (again, it is ARM Embedded ABI arch made by ARM ltd [link], a default port in
Linux Debian for ARM architecture, the blob of binary is a little endian binary in ELF [link]
32bits, hence many are calling this architecture as "armel"), and our reverse engineering
result should be the same :)

Another embedded Linux binary reversing guidance I wrote (in a different architecture),
which is about analyzing a MIPS big endian ELF, that is also talking about a different and
more complex process on a new IoT malware, you can read it on another post in here ==>
[link], as the next step after you get through this exercise.

If you want to practice more reversing on small size ELF sample, for the ARM architecture I
have this sample written at this sub-section for you==>[link]. And for Intel x86 architecture
32bits I have two other reversing posts that you can use to practice during corona virus

https://lh3.googleusercontent.com/CnsOAx3547kwz8v13mDWDRHfznjhe75NtZSv_j8dybc1EQrOcxiCgPqBh_nFPV5NxsBcd7ZNWu4RCw3xU2b9J2jzyNTisI4ORajZx-eUwiQ7oCeUeuBkQ1B-p_GnuK-pbvYAAE1xYFg=w901-h866-no
https://blog.0day.jp/p/20191218.html
https://developer.arm.com/docs/ihi0036/c/application-binary-interface-for-the-arm-architecture-the-base-standard-abi-2018q4-documentation
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html
https://blog.malwaremustdie.org/2016/10/mmd-0058-2016-elf-linuxnyadrop.html#s

24/39

isolation time, they are in here==>[link1] and [link2]. Please hang in there!

The attribute (file information) of this binary, if you save it correctly, is like this:

MD5 (retrieve2) = d2cb8e7c1f93917c621f55ed24362358
retrieve2.bin: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV),
 statically linked, stripped
strings: GET /fbot.arm7 HTTP/1.0
1180 Mar 14 21:50 retrieve2.bin*

You can start with going to this virtual address at 819c (it's 0x0000819c in your radare2
interface) and print the disassembly in the function with "pdf" after analyzing the whole
binary and the entry0 (this) function (af). In order to get you to a specific address in a binary
you can use command "s {address}" (s means seek), in this example type: s 0x0000819c.

This is the main operational function of the loader, but the symbol of this ELF has been
"stripped" made function names are not shown, so we don't know much of its operation. We
can start to check how many functions are they. Here's a trick command in radare2 to check
how many functions are used or called from this main operational routine:

https://blog.malwaremustdie.org/2014/09/linux-elf-bash-0day-fun-has-only-just.html
https://blog.malwaremustdie.org/2016/02/mmd-0051-2016-debungking-tiny-elf.html
https://lh3.googleusercontent.com/US45XFWheJGONYV3v3y5ky1RLzB9fVIhPQeMu-XEAaFjC6Y33M_i8Ta3_qCnGweHNUcsU7VDxJFVlJMI_I0xPcfoj56O0PimFXpQJST1rajRG6IRARBcPclnckzI9LPl1DVlfgY9hR4=w1157-h940-no

25/39

:> af
:> pdsf~fcn
0x000081c4 bl fcn.00008168 fcn.00008168
0x000081d4 fcn.000080c0 fcn.000080c0
0x000081e4 bl fcn.000080e0 fcn.000080e0
0x000081f0 fcn.000080c0 fcn.000080c0
0x00008200 bl fcn.00008110 fcn.00008110
0x0000820c fcn.000080c0 fcn.000080c0
0x00008228 bl fcn.0000813c fcn.0000813c
0x00008234 fcn.000080c0 fcn.000080c0
0x00008258 bl fcn.0000813c fcn.0000813c
0x00008274 bl fcn.00008110 fcn.00008110
0x00008280 bl fcn.000080c0 fcn.000080c0
:> aflt
.--.
| addr | size | name | nbbs | xref | calls | cc |
)--(
0x0000829c	264	entry0	7	5	5	3
0x000082a0	88	fcn.000082a0	2	7	1	1
0x00008300	44	fcn.00008300	1	3	0	1
0x00008168	44	fcn.00008168	1	1	1	1
0x000080c0	32	fcn.000080c0	1	5	1	1
0x000080e0	44	fcn.000080e0	1	1	1	1
0x00008110	44	fcn.00008110	1	2	1	1
0x0000813c	44	fcn.0000813c	1	2	1	1
`--'

These are the all used functions, not so much, so please try to dissect this with static
analysis only, you don't need to execute any sample, yet, please do this under virtual
machine to follow below guidance to do so.
Now, let's use my howto reference ==>[link] to put the syscall function name and guess-able
function name if any into the places. After you figured the function, run the script below in
your radare2 shell to register your chosen naming to those virtual addresses where the
functions are started:

:> s 0x0000813c ; afn ____sys_read
:> s 0x00008110 ; afn ____sys_write
:> s 0x000080e0 ; afn ____sys_connect
:> s 0x000080c0 ; afn ____sys_exit
:> s 0x00008168 ; afn ____sys_socket
:> s 0x000082a0 ; afn ____svc_0

So you will find the nice table result looks like this:

https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html#syscallnaming

26/39

:> aflt
.--.
| addr | size | name | nbbs | xref | calls | cc |
)---(
0x0000829c	264	entry0	7	5	5	3
0x000082a0	88	svc_0	2	7	1	1
0x00008300	44	to_0xFFFF0FE0	1	3	0	1
0x00008168	44	____sys_socket	1	1	1	1
0x000080c0	32	____sys_exit	1	5	1	1
0x000080e0	44	____sys_connect	1	1	1	1
0x00008110	44	____sys_write	1	2	1	1
0x0000813c	44	____sys_read	1	2	1	1
`--'

In figuring a correct system call (in short = syscall) name in this binary, you should find a
number of which syscall is actually going to be called (known as syscall_number), and for
that svc_0 is the function/service to translate the requests to pass it (alongside with its
arguments) to the designated syscall. This is why I listed the functions in 82a0 and 8300,
which are the svc_0 and its component, and they both are used for syscall translation
purpose.

The functions in addresses of: 80c0, 80e0, 8110, 813c and 8168 are the "syscall_wrapper"
functions [link] that needs a help from svc_0 to perform their desired system call operations
(to trap to kernel mode to invoke a system call). In our case, one of the argument in the
syscall wrapper function will define a specific syscall_number when the wrapper
functions are called from this main routine. The svc_0 is processing that passed argument to
point into a right system call function translated in the syscall table, and then to pass
additional argument(s)needed for the operation of the designated syscall afterward, that's
how it works in this binary.

So in the simple logic, the syscall_wrapper looks like this:

@ SOME_ADDRES_SYSCALL_WRAPPER
int ____sys_SOME_SYSCALL(int arg)
{
 return svc_0(SYSCALL_NUMBER, arg);
}

The above code can be further applied better in every wrapper functions as per below:

http://man7.org/linux/man-pages/man2/intro.2.html

27/39

@ 0x00080c0
int ____sys_exit(int arg)
{ return svc_0(1, arg); }

@ 0x00080e0
int ____sys_connect(int arg)
{ return svc_0(283, arg); }

@ 0x0008110
int ____sys_write(int arg)
{ return svc_0(4, arg); }

@ 0x000813c
int ____sys_read(int arg)
{ return svc_0(3, arg); }

@ 0x0008168
int ____sys_socket(int arg)
{ return svc_0(281, arg); }

Those numbers of "1", "3", "4", "281" and "283" are all the syscall numbers that the
designated Linux OS will translate them to the correct system call according to the kernel's
provided syscall table in the file:

/usr/include/{YOUR_ARCH}/asm/unistd_{YOUR_BIT}.h

I hope up to this point you can understand how to figure the syscalls used in this stripped
ARM ELF binary, a little bit different than the MIPS one but the concept is the same, there is
a syscall_wrapper functions, there is the syscall translator service, the number and a table to
translate them, and voila! You know what the syscall name is, and you're good to go to the
next step!
..just remember that we are still at virtual address 0x00008198 that's referred form entry0
with b ARM assembly command. Go back to the entry0 and after analysis you can print
again the assembly, and under it (scroll down if you need), you should see the renamed
functions are referring to the syscall wrapper (svc_0) in the result now.

28/39

And then you can go to address 0x0000819c again and print out the disassembly result,
which is now it is showing the function namings :) yay!

For reverser veterans maybe up to this step is enough to read how this binary works, but for
beginners that is not yet familiar with non-Intel architecture maybe you will need to follow
these next steps too.

Let's now fire the r2Ghidra-dec (or r2dec) to disassembly the function, use the additional
command option "o" in the end of "pdg" to see the offset (You can use pdda for r2dec).

https://lh3.googleusercontent.com/wHewBqTfRRnN2cfYpkh-GYyZQE91MHSPucnbBjKOjnVzESnqfxyn9MLYNQLL6jJBZc00d7A_Rm-wIG_bxcsECgHtNv908Oc6u-WW8A0BrG-H7NLSnj-0WtN8c0Oh8t5mt6XH3V_iZLQ=w991-h625-no
https://lh3.googleusercontent.com/2sd8gn5xGSKmMfxq_Vo9UJpbD_mU0qga0NgTYM8J4vO3ywQihLHxGxvhRcrfwZDOO5v-3zIJY6NGlu-2hJJP_TDwJ0v7NatapI2bzo_H9PPkxh9RyHbxUP2LbB_Ej9OmOOliz8XH1mc=w1515-h945-no

29/39

(Pardon to my poorly chosen naming on variables that may confuse you, like,
connect_length which is more to string_length used for write(), etc)

You may want to know a way my reading IP address in hex fast by radare2:

You should see that your reversed function names should be appeared in the result, along
with the commented part on the radare2 shell console too. You can change the variable
namings too if you want but first let's simplify this result, the next paragraph will explain a
further reason for that.

Ghidra decompiler by default will show values as variables for those that are pushed into the
stacks by registers. You should trace them well, because these bytes pushed are important
values as per marked in the printed disassembly pictures above, yes, they are arguements
for the called functions, and having important meanings. After understanding those, at this
point you can try to simplify and reform the ghidra decompiling result into a simpler C codes.
Minor syntax mistakes are okay..I do that a lot too, try to make it as simple as you can
without losing those arguments.

r2dec de-compiles the ARM opcodes very well too, the pdda command's result includes the
new function names and comments intact to the pseudo C generated, that can be traced to
its offset. r2dec in ARM decompiling is reserving the register names as variables, referring to
its assembly operation due to script parsing algorithm logic is currently designed that

https://lh3.googleusercontent.com/GMR1ov38kYl3YYX-AAgGRbIyaR0Zj6I2TaM1lu332Ylcu6rvL1LC0clKFukzp_WmbFfmP20vn6BH-GD0TF2aEh03cdVqxoo-CdQlcctlpHuCZtKrAaQTyuA_dMxFEUYLoFPIEbd1yIo=w1828-h813-no
https://lh3.googleusercontent.com/beqWti8ge3MTAIxLXiUo-CbXH8ZtD4kAAR5nhUl-CIdvu3bxA6WTAEj5B3Zm24zwW5T6d1Ap5YTC0oskZ9fm7kJAamBcFItTjAGdBHoL4orvuSg1GwzS_otasKv__9DnP47FkZ9UFbI=w898-h377-no

30/39

way.This is useful for you to elaborate which register that is actually used as argument for
what function, a bit lower level than r2ghidra, yet this will help you to learn how the ARM
assembly is actually working. However in some shell terminals (like I am, using VT100 basis)
maybe you can not see good syntax highlight coloring, but you can copy them into any
syntax highlight supported editor, to find it easier to read, as per following screenshot:

Another decompiler in radare2 that works fine for the case after you renamed the functions,
and can give you some hints in more simplify, in lower level syntax that is still highly
influenced by the assembly code, it is called as "pdc".

I refer to pdc when dealing with a complex binaries with many loops or branched-flow of
logic, to guide me tracing a flow faster than reading only the assembly code, pdc is a very
useful for that purpose since pdc can recognize and handle cascade loops very well, I am
using it a lot in reading a decoder or de-obfuscation assisting the simple emulation operation
(ESIL), or in the systems where r2ghidra or r2dec have not enough space to be built. But
today we are not going to discuss this de-compiler further to avoid confusion.

Just for the reference, the pdc's de-compiling result is shown as per below, as a comparative
purpose:

https://lh3.googleusercontent.com/Un832iF5j5KpD2lFQShvC9mjdl5F0qPccqd40Z52sH3DxAB4Civa50HwKZBzeGkunJ2dk-vVH_Fs6eLXEAkiPxY_sE4RJfndUDOw9K6a60zTpK4568klfJhEXG3wsCKFczovXP01LxU=w1041-h940-no

31/39

In my work desktop I reformed the simplification result of radare2's auto-pseudo-generated
codes of this binary, into this following C codes, after re-shaping it to the close-to-original
one, Consider this as an example and not on the very final C form yet, but more or less all of
the argument values and logic work flow are all in there. Try to do it yourself before seeing
this last code, use what r2dec and r2ghidra gave you as reference.

https://lh3.googleusercontent.com/0Oy0OoZd3ia64bqdQai9-kKgQDNA-ebhWz5aJgvYKPfknWaYcWt0UnKJouH47y6-COBbgQaFRqKDMeA4cv9wjeHWJE59XKCOlJxyqerHB6O0r3fB4D7K1q9Gc9Ju4Lf2LxQDPon9jNM=w1122-h702-no

32/39

So now you know about the extraction URL payload for "echo" loader hexstring. Don't worry
If there is other slight change in way that ELF loader preserving download IP or URL data.
You can always dissect it again easily by the same method, and in practical it is not
necessary to reverse the whole loader binary but just aim the download IP and its URL (and
or port number), depends on your flavor.

Below is the video tutorial for faster process and practical way to adjust the changes on
download IP/URL. This concept can be appied for FBot variants with a pushed-hexstring
loaders especially the ones that are using Mirai basis loader design. Noted that: this
extraction concept is also worked to Hajime, LuaBot, and other Mirai variants with a minor
adjustments. For honeypot users, you can use this method to automate the payload URL
extraction for each hexstring entries without even downloading the payload.

(pause the video by pressing space or click the video screen)

The conclusion of this chapter:

Unlike the "telnet" one, the difference on how this "echo" type of pushed hextring works, can
be described as follows, tagged with "minor" and "major" differences:

1. (Major?) It does not confirming the architecture, frankly, that doesn't matter anyway.

https://lh3.googleusercontent.com/Mn0v9tfpH1BY2MQ0KBdVJrpHfun9Wzi4gKL_zxVRhb6LoI9EQ8O8Kgd9x_EGoQjOuYTAVBGmr_1niHNU-o-IqDlbtKcxo9o4fOkFe8_IW5mkr50SkPJ-LEYDMHtJWwVdekXcnyWrChI=w1192-h953-no

33/39

2. (Major) It doesn't save the read downloaded data into file, like ".t" file that open() in
"telnet" version, so this "echo" version is just printout the download result to stdout, this
explaining the piping handling, hard coded in the FBOT spreader function is a must to
save the payload into affected devices. This reduce big I/O operational steps.

3. (Minor) It doesn't bother to close the connection after the writing is done, and just exit
the program.

4. (Minor) It isn't using IP reforming step, just using a hardcoded hexadecimal form of IP
address.

This explains how the "echo" type is smaller in size compares to the "telnet" type. And in
addition, the both of "telnet" (previously explained) and "echo" (now explained) pushed ELF
loaders are all "inspired" from Mirai's Okiru and Satori ELF loaders.

I hope you like this additional part too, thank you for contacting and asking questions, happy
RE practise!

For the folks who have to get recovered or isolated due to corona virus pandemic, this
chapter I dedicated to them. Please try to spend your time at home in brushing your reverse
engineering skill on Linux binaries with practising this example or sample.

You can download the Tsurugi DFIR Linux distro's ISO from the official side [link], or use the
SECCON special edition I use [link], Tsurugi can be used in Live mode in several virtual
machines (wmware, vbox, kvm) or USB bootable, or you can install it into your unused old
PC. With a build effort, you can also install radare2 [link] with r2ghidra [link] and r2dec [link]
from the github sites. These are all open source tools, it is free and good folks are working
hard in maintaining & improving them, please support them if you think they're useful!

New actor, old version [Update for April 24, 2020]

We have spotted the new spark of what looks like the FBOT activity, started from April 24th,
2020. as per recorded in the following log screenshot below, this seems like the Mirai FBOT
is downgraded to earlier era's version, which I found it strange so I just need to look it further:

https://pastebin.com/raw/ESeYP7bK
https://tsurugi-linux.org/
https://blog.0day.jp/p/20191218.html
https://github.com/radareorg/radare2
https://github.com/radareorg/r2ghidra-dec
https://github.com/radareorg/r2dec-js

34/39

To make sure the payload is actually served, some testing and record to check them has
been also conducted as per recorded too in the screenshot below:

The bot binaries are all packed, but with the older ways, at this point it raises more suspicion:

https://lh3.googleusercontent.com/dnvGmKx_eI5F6OuYAWgmjRXOdyHT6K_Fn-z3atREa8GCKxxVbDivUlwWEZ8dCZwU0bql6NAhdum2GGEU1uJAga0RpMsla8YtASmABRrgJrtAm4eT9GMhzD0I--_-c7joxh6tfeLmIlE=w1580-h766-no
https://lh3.googleusercontent.com/H_LSiKneZYPJo8fdtBlS4J9aVU85lBNNin_hqwAoGTBlumcFaZuvSJZJqePW48bBTfjqjlJBu_p18aNq971nF04mECi3Jz0w8ZHVJ0RmHBljoAlcpvysToUFZZzEQJVsxtdtqA09b5w=w950-h553-no

35/39

After the unpacking I found that the "CTF like" encryption that I was blogged in this post and
previous post wasn't there, took me like 5 minutes to decrypt this one, but I bet by now you
all can do the unpacking and decrypting this way much faster yes? After all of the exercises
you took in previous chapter above. :D

Back to this version's the scanner's atacker source IP as per shown in the picture above, I
sorted all of the infection effort the per this list ==>[link], and sort the source IP as per this list
==>[link]. to then compared to what has been recorded so far as Mirai FBOT's scanner IP

https://lh3.googleusercontent.com/YUyKhq5Wja_3VF0XP5xIT6AQEZ4_58h4Q2ciI0YSn5hXmtQJ1aXljpj7eN91Sh8Eq_HFu9H-BJEWNaYP_acgJ3BueQihHZq9jvZNRA9KDLlucWLybSQajHatfnqWiJB1ZJiJZbxMl5g=w580-h829-no
https://lh3.googleusercontent.com/KIjLWVjIACo9UTVCOadHH9XmUuk4IsWSh15T4gl35bZLGKsQdtnIft7wffPy3DtStLViKLllFyohLbxYxfoDNpf1eRG0O61S_Eex0tW8UVCGz2wcTlDEpYCn_MaiyJi-vTGPc0ivpM8=w1730-h853-no
https://gist.github.com/unixfreaxjp/64dd1beb347990c972daf89b015910e6
https://gist.github.com/unixfreaxjp/a204645266c5283fe1e32c0398c0b1f5

36/39

(read: IoT infected with Mirai FBOT) written in several links in previous chapters.

The result is none of them is matched. It seems that there is another botnet is propagating
infection using either the copycat version or museum version of the FBOT with the very low
quality on its core's code and just being added with some new scanning interface.

To be more clear in the comparison betwen nea actor's FBOT and previous botnet's one.
Below is the botnet geographical map of the new actor's botnet, that's is showing an infection
focus on Hongkong and China, that's is different to the similar map made by infection of
previous FBOT which was focusing on Taiwan, Vietnam, then to Hongkong, the link is
here==[link]

Additionally, on April 25, 2020, this new actor was started to launch the pushed hexstrings to
infect new IoT via echo command, that the video ccan be seen in here==>[link]. In that case,
the used IP address can be grep easily in the hexstring itself, it's written like this:
\xa0\xe3\x12\x30\xa0\xe3\xce\x10\xa0\xe3\xe3\x20 and these hexs means the last three
digits IP address used to download the FBOT payload. You can adjust this string into a grep
command to your honeypot or IoT log, by adding escape sequence backslash before the
"\x" . The latest new actor infection log I shared in the GIST link above contains the nodes
that infects with this hexstrings from the same C2.

Let's go back to the binaries used of this FBOT version, if you can unpack it very well, you
will see the below details that can support the theory.

Some scanner strings used in this new actor's Mirai FBFOT version:

https://lh3.googleusercontent.com/pUgtY6wK8u0oH0W5gIYT12cj4W5eueHKFiRUF8EATtOm8-kU_-Wc0qmqpelnQA_Kr-t9yejPrEY16PP1YENRbUy64GJMhWvoxt_YyKr-Hhz8rGkiHFSKn6DYWiQx_Su-epuLskjWUHk=w1025-h634-no

37/39

These are the payload binaries name:

And this is the hardcoded Stupidly Simple DDoS Protocol(SSDP) headers used for
amplification flood reflection attack:

Again, about SSDP flood in simple words: It's a flood composed by UDP packets using
source port 1900. This port is used by the SSDP and is legitimately specified for UPnP
protocols. In UPnP there's "M-SEARCH frame" as main method for device discovery using
multicasting on 239.255.255.250:1900 (reserved for this purpose). The adversaries are
taking advantage from three weaknesses of UPnP protocol in (1) utilizing it for amplification
attack, or (2) reflection attack and while doing those it obviously can (3) spoof the source IP
address. The above picture is showing that Mirai FBOT is having this flood functionality.

What has been concluded in this additional (update) chapter is, there is more than one actor
is using Mirai FBOT, the one with the "CTF like" crypt function that looks like stopping its
activity and abandon the botnet under the scale volume of 1,600 to 1,700 nodes, and there is

https://lh3.googleusercontent.com/nLAj2QtIusLhyvaSPvwEZaaC2fb8y3KuWWVd3MQ1OqMiknaG3oY2XdRQ_6fvmhX2U0DILF-B25UasT-iavU6OnpiDvYsOEYtfpmerRWjMckmqOwm84YmDwFQKHD3klTSi_-zifmUrHc=w1606-h921-no
https://lh3.googleusercontent.com/dL79NoG7vdoQqt0SD1qHwpBYGGbCHrZvFzyvHTO4CDdraFa_yTQeab5d-lk5lho1vTxFVD9qNACwq2cBUPevTqTBCCwb8WeGtoOG19QLRHU3rImIpGlL3j7JVGoitosX984Q5Ut_wjs=w1400-h243-no
https://lh3.googleusercontent.com/1x9Ck_IVvHwSEz531Y9dc--hCYCE-eU2qT7ODtpWBYTc6jDMxJqqlVSnhVDFnTMQ9-LkOu7owcw6aikticZtdehR8uLrBV7E_J3Yag8ROiPyNwh32Y3LWYvEQfCeQ66hO6OiHduOzrA=w940-h188-no

38/39

a new one, using the older yet standard version, suspecting could be a older version
leaked/shared/re-used and now actively operated by another actor(s).

The IOC for this update chapter (new actor one):

C2: 5[.]206[.]227[.]18 (same FBOT port number for nodes & C2)
spf FQDN: darksdemon[.]gov
Payloads: 5.206.227.18/bot/bot.{ARCH}
Temporary filename: bot.{ARCH}.tmp
Payloads:
bot.arm4,5: dfa6b60d0999eb13e6e5613723250e62
bot.arm7: 924d74ee8bfca43b9a74046d9c15de92
bot.mips: 4b323cd2d5e68e7757b8b35e7505e8d9
bot.x86: 591ca99f1c262cd86390db960705ca4a
bot.x86_64: 697043785e484ef097bafa2a1e234aa0
Others payloads are not included: *.mipsel, *.superh

Updates on new actor's Mirai/FBOT:

Within ONE month new-actor of #Linux/#Mirai #FBOT has raised his #botnet from 299
nodes
(ref:https://t.co/vOjQ5nwDrY)

to 653(↑+354) nodes
(ref:https://t.co/u05uTVtFhf).

1. CN 165
2. TW 138
3. HK 125
*) SE 31, RU 26, US 20

IP is on @MISPProject for CERT process#MalwareMustDie
pic.twitter.com/mfErSSy0c1

— ☩MalwareMustDie (@malwaremustd1e) May 27, 2020

The epilogue

We hope this post can raise attention needed to handle the worrisome of this new FBOT
propagation wave in the internet. Also we wrote this post to help beginner threat analysts,
binary reversers, and incident response team, with hoping to learn together about Linux
malware in general and specifically on IoT botnet.

https://twitter.com/hashtag/Linux?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Mirai?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/FBOT?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/botnet?src=hash&ref_src=twsrc%5Etfw
https://t.co/vOjQ5nwDrY
https://t.co/u05uTVtFhf
https://twitter.com/MISPProject?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/MalwareMustDie?src=hash&ref_src=twsrc%5Etfw
https://t.co/mfErSSy0c1
https://twitter.com/malwaremustd1e/status/1265736192965791744?ref_src=twsrc%5Etfw

39/39

There is some more insight information about this threat that maybe can help you to
understand the threat better, including a how to mitigate this, it is in this article ==>[link]
(thank you for the interview!). Also if you successfully analyze and monitor similar threat,
please don't forget to inform your CERT/CC so they can help to coordinate the handling
further to the CSIRT on every related carriers and services, and also those escalation
records can be useful to be used during notification to the authority, for applying a better
policy for IoT structure in your region.

We are in the era where Linux or IoT malware is getting into their better form with
advantages, it is important to work together with threat intelligence and knowledge sharing,
to stop every new emerging activity before they become a big problem for all of us later on.

On behalf of the rest of our team, we thank all of the people who support our work, morally
and with their friendship. MMD understands that security information and knowledge sharing
is also very important to maintain the stability of internet to make our life easier. Thank you to
all tools/framework's vendors and services who are so many of them and who are so kind to
support our research and sharing works with their environments, also, to the media folks who
are helping us all of these yeas. I and the team will look forward to support more "securee-
tays" for 2020 and for more years to come.

I will try to update regularly the information posted in this article, please bear with recent
additional information and maybe changes, so stay tuned always.

This technical analysis and its contents is an original work and firstly published in the current
MalwareMustDie Blog post (this site), the analysis and writing is made by @unixfreaxjp.

The research contents is bound to our legal disclaimer guide line in sharing of
MalwareMustDie NPO research material.

Malware Must Die!

https://securityaffairs.co/wordpress/98479/malware/fbot-re-emerged.html?fbclid=IwAR1RwEZZfHvnLr7aiveVRyljUN3Pxpp06XkYtpxwQY2nJkMoN2jAjUgYs_I
https://blog.malwaremustdie.org/p/the-rule-to-share-malicious-codes-we.html

