
1/22

VB2019 paper: Rich Headers: leveraging this mysterious artifact of the
PE format

virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/

Michal Poslušný & Peter Kálnai

ESET, Czech Republic

Table of contents

Abstract
 Introduction

 The structure
 XOR key (checksum)

 Behaviour
 Statistics

 Use cases
 Levels of similarity

 Identical Rich Headers
 Identical XOR keys

 Identical ProdIDs + builds (unsorted)
 Identical ProdIDs + builds (sorted)

 Specific values query/conjunction of various ProdIDs
 Anomalies

 Invalid Rich Header values
 Duplicate Rich Header values

 Invalid XOR key checksum
 Rich Header offset

 PE Optional Header linker information mismatch
 Imports

Resources
 APT malware

 Win32/Industroyer & Win32/Exaramel
 Win{32,64}/NukeSped

 Crimeware
Win32/Kasidet

 Win{32,64}/Dridex
 Win{32,64}/Dridex v1, v2 & v3 (2014 – 2015)

 Win{32,64}/Dridex v3 (2016)
 Win{32,64}/Dridex v4 (2017 – 2018)

 Win{32,64}/Dridex v5(v2) (2018 – 2019)
 Win{32,64}/Sathurbot

 Malware packers
 Rich Headers & YARA

 Conclusion
 References

Abstract

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-rich-headers-leveraging-mysterious-artifact-pe-format/

2/22

Ever since the release of Visual Studio 97 SP3, Microsoft has placed an undocumented chunk of data between the
DOS and PE headers of every native Portable Executable (PE) binary produced by its linker without any possibility
to opt out. The data contains information about the build environment and the scale of the project, stored in a simple
yet effective way using blocks of the following values: a product identifier, its build number, and the number of times
it was used during the build process. Several research papers on this topic have been released over the years,
coming up with the name ‘Rich Header’ and shedding some light on its purpose and structure, but we feel that it has
never been used to its full potential by the security industry.

When an analyst encounters a rare custom malware sample involved in, say, an APT, and is clutching at straws to
draw conclusions about the case, this mysterious structure could provide some reasonable clues. Not only does it
reveal the type of components involved in the project behind the malware and the build tools used, but, forming an
abounding set of variations, it also helps with locating similar samples. We introduce a hierarchy of similarity levels,
together with real-world examples where they have successfully been applied.

For various crimeware kits, which are (re)distributed on a daily basis, the header could indicate whether their source
code is available more widely or under the control of a single actor. Moreover, the headers from their encapsulating
malware packers often manifest their own anomalies and could cluster a larger set of samples of the same nature.
These inconsistencies could easily be identified and turned into heuristics based on the situation, such as: an
unusual offset or the size of the header, an invalid identifier or its combination with the build version, the image size
not corresponding to the magnitude of the project, etc.

We will also showcase our in-house designed database infrastructure and the tooling we’ve built around it: similarity
lookup, a rule-based notification system for malware hunting and the detection of anomalies. The database currently
holds the Rich Header information for tens of millions of executables and continuously processes a live feed of new,
incoming files. It is currently growing by ~180,000 unique records per day.

Introduction

PE ‘Rich Headers’ were introduced with the release of Visual Studio 97 SP3. Microsoft didn’t announce that it had
implemented such a feature or give a reason for its introduction, and never released any kind of documentation for it,
so we cannot really be sure about its original purpose, but it seems that Microsoft simply wanted to have some sort
of development environment fingerprint stored in the executables, or perhaps to help with diagnostics and
debugging. Regardless of the original intent, the Rich Header has proved to be a very valuable block of data for
malware researchers, where a few hundred bytes, when interpreted correctly, can be used as a very strong factor for
attribution and detection.

Figure 1: PE binary with Rich Headers highlighted.

The structure

3/22

The meaning of the ‘header’ is actually quite straightforward. In Figure 2 we can see the structure of the header, as
described by Microsoft in the Windows 2000 source code leak [1]. The data is inserted after the
IMAGE_DOS_HEADER and its stub and before the beginning of the PE header (IMAGE_NT_HEADERS structure).

Its end is marked by the Rich keyword (0x68636952) followed by an XOR key DWORD, which was used to encrypt
the rest of the header. The beginning of the plaintext header is marked by the DanS keyword (0x536E6144),
followed by padding of three null DWORDs.

Figure 2: Rich Headers

definition in Microsoft Windows 2000 source code leak.

As we can see in Figure 2, the data is an array of simple 64-bit PRODITEM structures that consist of two 32-bit
fields: dwProdid and dwCount. The dwProdid field is a combination of a product identifier (ProdID) and its
corresponding Build number and can be considered as two separate 16-bit values.

ProdID represents a product from the Visual Studio development toolchain – these include objects like linkers,
C/C++ compilers, MASM, resources, imports, implibs, etc. One is assigned to every object file upon creation and
eventually all ProdIDs from every object file used in a project are collected and written into the resulting binary, by
the linker, during the linking process.

Since ProdIDs are an enumeration of numerical values, it is quite hard to identify their meaning on their own. Luckily,
we can find the values and their corresponding names in the Visual Studio installation directory in one of the
msobj.lib binaries. For example, Figure 3 shows the msobj140-msvcrt.lib file, which can be found in Visual Studio
2015 – 2019, and which contains a list of all ProdID values followed by their names.

4/22

Figure 3: ProdID names as

found in the msobj.lib binary.

The easiest way to find the Rich Header is to look for the Rich DWORD between the DOS and PE header (which
marks the end of the Rich Header), extract the following XOR key DWORD and go backwards, XORing the data
until the decrypted DanS DWORD is reached.

 Figure 4: The

unencrypted Rich Headers structure.

XOR key (checksum)

The XOR key used for encryption of the Rich Header is a unique four-byte value generated for every executable
built by a Microsoft compiler (linker). The value is a checksum of the DOS header, the DOS stub and plaintext Rich
Header data. The checksum calculation algorithm can be found in the IMAGE::CbBuildProdidBlock function in Visual
Studio’s link.exe binary. A code snippet is shown in Figure 5.

5/22

 Figure 5: XOR key generation in

Microsoft’s Visual Studio 2019 linker executable.

Since the checksum algorithm consists of a simple addition and 32-bit rotate left, it can produce collisions. We have
identified a few cases where the collision happens for one of two specific reasons.

The first case is when two projects contain identical PRODITEM entries, but in a different order. This is not
necessarily unwanted behaviour and might even be intended by its designer. Both samples in Table 1 have the XOR
key 0xAEB29219 [2].

kb.dll (2010-12-6 13:36:13) phpF746.exe (2017-11-19 7:7:58)

prodidMasm614 | b8444 | 1
prodidLinker512 | b8078 | 9

prodidLinker512 | b8078 | 9
prodidMasm614 | b8444 | 1

 Table 1: XOR key collision example – order of PRODITEMs.

Another common case is due to the 32-bit rotation used in the algorithm (ProdID + build is rotated by its count). If
two projects have identical ProdID and build but different counts whose delta is a multiple of 32, the resulting
checksum will be identical. Table 2 is another example of two samples that also have the XOR key 0xAEB29219.

moar.exe (2017-5-9 10:24:58) phpF746.exe (2017-11-19 7:7:58)

prodidLinker512 | b8078 | 41
prodidMasm614 | b8444 | 1

prodidLinker512 | b8078 | 9
prodidMasm614 | b8444 | 1

 Table 2: XOR key collision example – counts delta.

Behaviour

Rich Headers reflect the nature and scale of the project and simply by looking at the ProdID names, we can see the
various features used in the project like imports, resources, or whether the project was written in Assembly, C, C++
or (pre .NET) Visual Basic, and approximately how large the project is, based on the product counts.

Rich Headers tend to change over time in an actively developed project – new ProdIDs may appear and their counts
often increase as new source files and other resources are added to the project, and with regular updates to Visual
Studio the build numbers can change too. When changing a development environment completely (e.g. upgrading
from VS2010 to VS2015) ProdIDs will also change for the equivalent in the new version.

Statistics

6/22

The most important question when talking about how useful Rich Headers may be is ‘How often do they actually
appear in executables?’ If Rich Headers appeared only in a small portion of files, they would not be a very useful
feature. Luckily, this is not the case: when looking at our large malicious dataset consisting of roughly one million
unique malicious Win32 and Win64 native binaries (no .NET), we found that 73.20% of the PEs contain a Rich
Header.

Of the 26.80% of files that do not contain a Rich Header, many are produced by other compilers (Turbo C++, MinGW
GCC, Clang, etc.), or are developed in a completely different environment such as Delphi or Go. When such files are
discarded, the percentage of PEs containing Rich Headers rises to 83.30%. At this point, the absence of a Rich
Header is caused by explicit removal by malware authors or custom packers, etc. For our clean dataset of 120,000
samples, the representation goes as high as 94.20% and 98.50% when taking out other compilers.

 Figure 6: Representation of

Rich Headers in our malicious dataset.

We expect this number to decrease slowly over time, as malware authors become more aware of this feature and
will try to obfuscate or remove the header completely. A more rapid shift would happen if Microsoft decided to drop
this feature completely in some subsequent version of Visual Studio, but as of the recent release of Visual Studio
2019, Rich Headers are still generated by the linker.

Use cases

Levels of similarity

Identical Rich Headers

This is the strongest link between two files in terms of Rich Header similarity. Considering how often the Rich
Headers may change in an actively developed project, it is not the best method of long-term detection of future
samples from a given project (a good analogy is hash-based detection of malicious files). That being said, it can still
be very handy in various cases.

The most common case is the simple matching of the Rich Headers of an unknown file to those of some known
malware to quickly identify if the file is malicious (rather like looking up a hash on VirusTotal). Rich Headers can
remain unchanged for weeks or even months in the development cycle of a specific project, so a complete match
with older or even newer versions of the project can still happen if the sample set is good enough.

Another useful case is possible thanks to the fact that commercial protectors like Enigma Protector, Themida and
VMProtect preserve the Rich Headers of the original file. This means that when we get our hands on, say, a
Themida-protected file, we could potentially look up the original, non-packed payload by searching for identical Rich
Headers and vice versa. This is especially valuable considering that most of these protectors change the nature of

7/22

the file completely and there are no links preserved between the code or data of the original payload. Malware
authors sometimes use multiple commercial packers to pack their payloads – we were able to identify the protected
samples of a family called Predator Stealer [3] (Win32/Spy.Agent.{PQC,PQK}) and to attribute several custom
Lazarus tools in [4] (Win64.NukeSped.{AA,AB}).

A similar strategy can also be applied to less advanced malware packers that also tend either to preserve the
original Rich Header of the payload or to supplement the resulting packed file with their own.

Sometimes the Rich Header might intentionally be misplaced – there is a well-known case reported by Kaspersky [5]
(and also presented at Virus Bulletin [6]), where a component of Olympic Destroyer contained a copy of the
complete Rich Headers from a file previously attributed to the Lazarus toolset. This is widely considered to have
been a false flag implemented by the attackers to place the blame on a different actor. On the other hand, it might
very well have been an Easter egg, testing the attention of malware researchers. In the past there have also been
cases of malware packers that copied the header from a legitimate explorer.exe.

For a quick matching, it is best to calculate and store a hash of the Rich Header. In our project we use an indexed
CRC64 for a blazingly fast lookup.

Identical XOR keys

Matching XOR keys have very similar use cases to matching Rich Headers. The advantage of using the XOR key
instead of a custom hash is in it being more widely used and being supported by widespread community tools like
YARA, and integrated into VirusTotal hunting rules. The disadvantages lie in the fact that the value might
artificially/explicitly be changed and in the potential key collisions that we explained in the previous section.

Knowing that the XOR keys are basically a checksum of the DOS header, DOS stub and Rich Header, we can
quickly establish that, as a malware project evolves, the key value may change fairly often (with even a single
incremental change in the Rich Header count), so it is not a very useful feature when trying to track a project over a
longer period of time.

On the other hand, as stated above, a malware packer is a specific project and, in many cases, shares an identical
Rich Header across many packed samples. We have found several values that covered reasonable clusters, e.g.
0x8F44CEBF, 0xAEB29219, 0x8A17753B, 0xD4F1AE19, 0x887F83A7 (with the CRC64 hash varying within each
key!).

There are several XOR keys associated with well-known formats, as listed in Table 3. They can be found in clean as
well as malicious datasets and might be useful for a quick identification of the format.

Visual Basic 6.0 0x886973F3, 0x8869808D, 0x88AA42CF, 0x88AA2A9D, 0x89A99A19, 0x88CECC0B,
0x8897EBCB, 0xAC72CCFA, 0x1AAAA993, 0xD05FECFB, 0x183A2CFD, 0xACCF9994,
0xC757AD0B, 0xA7EEAD02, 0xD1197995, 0x83CDAD4, 0x8917A389, 0x88CEA841,
0x8917DE83, 0x89AA0373, 0x8ACD8739, 0x8D156179, 0x8ACE4D53, 0x8897FE31,
0x91A515F9, 0xD1983193, 0x8D16E113, 0x9AC47EF9, 0x91A80893, 0xAD0350F9,
0xD180F4F9, 0xAD0EF593, 0x9ACA5793, 0x9ACA5793

NSIS 0xD28650E9, 0x38BF1A05, 0x6A2AD175, 0xD246D0E9, 0x371742A2, 0xAB930178,
0x69EAD975, 0x69EB1175, 0xFB2414A1, 0xFB240DA1

MASM 6.14
 build 8444

0x88737619, 0x89A56EF9

WinRar SFX 0xC47CACAA, 0xFDAFBB1F, 0xD3254748, 0x557B8C97, 0x8DEFA739, 0x723F06DE,
0x16614BC7

Autoit 0xBEAFE369, 0xC1FC1252, 0xCDA605B9, 0xA9CBC717, 0x8FEDAD28, 0x273B0B7D,
0xECFA7F86

8/22

Microsoft
Cabinet File

0x43FACBB6

NTkernelPacker 0x377824C3

Thinstall 0x8B6DF331

MoleBox Ultra
v4

0x8CABE24D

Table 3: Various XOR keys associated with known formats.

Identical ProdIDs + builds (unsorted)

Disregarding the counts and matching only the files with identical ProdIDs and build numbers also turned out to be a
very effective way of looking up similar files. The bigger the project, the more effective this method is, and it should
be considered for samples with at least five Rich Header records.

In the case of the KillDisk-ed casino in Central America [7] we found a 64-bit executable with the internal name
res.dll. Another file was later acquired, with all metadata pointing to the same threat actor. Despite being Themida-
protected and statically completely different (except for the agreement of PE timestamps), the set of ProdIDs
together with builds were identical and did not match any clean files – see Table 4 (both detected as
Win64/NukeSped.Z). This inspired us to index the sequence of pairs (ProdID, build) as they are located in the
header, omitting the counts. The CRC64 checksum of unsorted sequences of these pairs reliably identified several
clusters of related malicious projects: not only when the single count of prodidImports0 varied (Win64/CoinMiner.DN,
0x105E60A5B349F444), but also when multiple counts did (Win32/Pterodo, 0x745E73E5045EE80E or
Win32/Kryptik.GTXI, 0x613D0D87DAF1658F).

rds.dll (2016-10-24 8:32:11) res.dll (2016-10-24 8:32:11)

prodidUtc1600_LTCG_CPP| b40219 | 9
 prodidUtc1600_CPP | b40219 | 27

 prodidUtc1600_C | b40219 | 100
 prodidMasm1000 | b40219 | 15
 prodidLinker1000 | b40219 | 1

 prodidExport1000 | b40219 | 1
 prodidImplib900 | b30729 | 9

prodidImport0 | b0 | 130

prodidUtc1600_LTCG_CPP| b40219 | 9
 prodidUtc1600_CPP | b40219 | 27

 prodidUtc1600_C | b40219 | 94
 prodidMasm1000 | b40219 | 9
 prodidLinker1000 | b40219 | 1

 prodidExport1000 | b40219 | 1
 prodidImplib900 | b30729 | 9

prodidImport0 | b0 | 131

 Table 4: Similar metadata from two Themida-protected 64-bit Lazarus backdoors.

Identical ProdIDs + builds (sorted)

The situation gets more complicated when searching for files from the same project that have different architectures.
Rich Headers tend to be almost identical between 32-bit and 64-bit equivalents of an application, but sometimes the
ProdIDs are in a slightly different order. This led us to a new similarity level, namely the CRC64 checksum of the
sequence of ProdIDs and their builds sorted by the ProdID values to compare the Rich Header regardless of the
order. Again, the counts were omitted.

This turned out to be useful in many cases, for example when we encountered several almost identical samples of
Win/GreyEnergy [8], each for a different architecture, having the same ProdIDs, but in a slightly different order.

zlib_x86.dll, zlibwapi_x86.dll zlib_x64.dll, zlibwapi_x64.dll

9/22

prodidAliasObj1000 | b20115 | 5

prodidUtc1600_CPP | b40219 | 25

prodidMasm1000 | b40219 | 17

prodidUtc1600_C | b40219 | 110

prodidImplib900 | b30729 | 3

prodidImport0 | b0 |[87-88]

prodidUtc1600_LTCG_CPP| b40219 | 22

prodidExport1000 | b40219 | 1

prodidLinker1000 | b40219 | 1

prodidAliasObj1000 | b20115 | 5
 prodidUtc1600_CPP | b40219 | 25

 prodidUtc1600_C | b40219 | 107

prodidMasm1000 | b40219 | 9

ProdidImplib900 | b30729 | 3
 prodidImport0 | b0 | [88-89]

prodidUtc1600_LTCG_CPP | b40219 | [22-23]

prodidExport1000 | b40219 | 1

prodidLinker1000 | b40219 | 1

 Table 5: Similar metadata from Win32/GreyEnergy payloads for both platforms.

Specific values query/conjunction of various ProdIDs

While matching identical Rich Headers is nice and can be useful in many cases, for a more robust lookup we need
some variability. This can be achieved by searching for combinations of specific ProdIDs combined with builds and a
range of counts based on a value from the underlying sample. If such a query is constructed in a smart way, it can
easily yield many older and/or newer samples from the same project with slightly different Rich Headers as
development progressed. For example, given a file that contains prodidUtc1600_CPP build 40219 with a count of
48, we might search for all files with prodidUtc1600_CPP build 40219 and a count between 42 and 54. So far we
have not found a generic approach for how best to construct these queries and instead use our ‘instincts’ that we
have acquired over time while working with Rich Headers.

For example, there were cases of a two-stage threat when the dropper and the payload were projects of very similar
size, e.g. Win32/Exaramel [9]. Both files were 32-bit, so the order of ProdIDs was identical and counts very similar,
with the exception of one additional ProdID in the payload, as seen in Table 6.

xml.exe (2018-4-13 08:36:04) wsmprovav.exe (2018-4-13 08:35:52)

prodidUtc1900_CPP | b24215 | 3
 prodidUtc1900_CPP | b24123 | 33

 prodidUtc1900_C | b24215 | 7
 prodidUtc1900_C | b24123 | 17

 prodidMasm1400 | b24123 | 18
 prodidLinker1400 | b24215 | 1

 prodidCvtres1400 | b24210 | 1
 prodidUtc1810_CPP | b40116 | 121

 prodidUtc1810_C | b40116 | 24
 prodidMasm1210 | b40116 | 9

 prodidResource | b0 | 1
 prodidImplib900 | b30729 | 9

 prodidImport0 | b0 | 109

prodidUtc1900_CPP | b24215 | 1
 prodidUtc1900_CPP | b24123 | 29
 prodidUtc1900_C | b24215 | 11

 prodidUtc1900_C | b24123 | 17
 prodidMasm1400 | b24123 | 17
 prodidLinker1400 | b24215 | 1

 prodidCvtres1400 | b24210 | 1
 prodidUtc1810_CPP | b40116 | 120

 prodidUtc1810_C | b40116 | 24
 prodidMasm1210 | b40116 | 9
 prodidResource | b0 | 1

 prodidImplib900 | b30729 | 25
 prodidUtc1500_C | b30729 | 4
 prodidImport0 | b0 |200

Table 6: Similar metadata for the dropper and the payload of Win32/Exaramel.

One should always try to keep the number of items in the query to a bare minimum to distinguish different projects,
but at the same time leave some space for potential changes. Generally, ProdIDs containing ‘_CPP’ or ‘_C’ should
be prioritized in the search as they tend to have the biggest count variability and the count distance could be around
+/- 10%.

10/22

Anomalies

Basing detection on Rich Header similarity or adding it as a feature to existing detection systems is a great thing.
Another potential use case is heuristic detection based on anomalies and inconsistencies that suggest the file has
been tampered with, or that there is something wrong with it, and that should generally be brought to the attention of
a researcher. Such an anomaly obviously does not instantly mean a given file is malicious, but it might be useful to
flag files worthy of closer examination by an analyst. Anomalies are especially common in relation to various packers
and other obfuscation strategies commonly found in malware, as they are usually the result of tampering with the
original file.

In the following subsections we look at the most common anomalies we have observed in the wild.

Invalid Rich Header values

This is the most obvious anomaly – since the range of valid ProdIDs is known, we can easily identify files that have
non-existent values (at the moment, with the release of Visual Studio 2019, all values larger than 0x010e
(prodidUtc1900_POGO_O_CPP) can be considered invalid). This could be applied to the build number as well, as
each ProdID has only a specific range of valid build numbers, although this would require quite a lot of work due to
having to gather all possible build numbers for each ProdID. Finally, we could also check for suspicious count
values, as for valid projects they are generally in the tens or hundreds and very rarely in the thousands, so finding a
valid ProdID with a count greater than a million could be an indicator too.

Duplicate Rich Header values

Every file with a Rich Header can only have a single, unique combination of ProdID and a build number. This is
obvious, as the number of those records is represented by the count field instead, so duplicate records are invalid
behaviour. Around 1.19% of files in our malicious dataset contain duplicate records. There is not a single one in the
clean dataset.

Invalid XOR key checksum

Since we know how the checksum is calculated, the supplied XOR key can easily be verified. If the value is
incorrect, we can assume that there is potentially something wrong. In our malicious dataset 9.06% files have an
invalid XOR key value, while in the clean dataset only around 0.95% do.

Rich Header offset

The Rich Header offset is the position in the PE at which the header begins. It is based on the size of the DOS stub,
as it begins right after that, so its value varies with the DOS stub. Since most files nowadays do not use the DOS
part of the PE at all, they have the widely known default ‘This program cannot be run in DOS mode’ stub generated
by the compiler, and thanks to that, in most files the Rich Header starts at file offset 0x80. While the mentioned
starting position is present in ~99% of cases, there are many, even valid, cases where the offset differs, so it is not a
good idea to look for Rich Headers based on this offset (like YARA does [10]). Out of 120,000 real-world clean
applications with Rich Headers in our clean dataset, only 0.06% do not match the offset 0x80. The distribution for
our malicious dataset can be seen in Figure 7.

11/22

 Figure

7: Distribution of Rich Header offsets in our malicious dataset.

There are a few relatively common offsets that can be found even in clean, legitimate projects like some kernel
drivers (probably caused by an alignment issue, because even the default stub is aligned to 512 bytes). On the other
hand, there are also several offsets that are used by a specific malware family or software project (those we have
identified are listed in Table 7), which could be one of the ways to identify new samples or at least used as an
indicator.

Offset Example Comment

0x40 Various The null DOS stub

0x48 Various The minimal valid DOS stub

0x60 Win32/Adware.WintionalityChecker

0x68 Win32/TrojanDownloader.Waski

0x8C Win32/Adware.Virtumonde

0xE0 Win32/TrojanDropper.Agent.NJV

0x100 ESET modules Clean

0x200 Various Some kernel drivers

0x2A8 PKSFX Self Extract Utility by PKWARE Inc. Clean

0x600 Win32/Adware.Trymedia

Table 7: Various types of Rich Header offsets.

PE Optional Header linker information mismatch

The version of a linker used for building the file is also stored in the MajorLinkerVersion and MinorLinkerVersion
fields inside the PE Optional Header. Comparing this version to the linker version found in Rich Headers (i.e.
prodidLinker800 should have Optional Header linker version set to 8.0) is also a good way to find inconsistencies,
packed files, tampered Rich Headers and so on.

12/22

There are a few such anomalies caused by known packers – for example, the Armadillo packer changes the
Optional Header linker version to 83.82, but does not alter the Rich Header.

Imports

The prodidImport0 identifier is related to the number of functions in the PE import directory. The values are not
always equal but correlate highly and tend to be very close together. A large difference between the number of
imports and the count of prodidImport0, or its complete absence in the Rich Header when imports are present, and
vice versa, could be a sign of a packed file or a faked Rich Header.

Resources

When an executable contains a resource directory populated with resources, it should always be reflected in the
Rich Header by containing prodidCvtresXXXX, where XXXX is the version of Visual Studio used. The count should
always be 1, regardless of the number of resources the file has. For example, when building a project that has any
kind of resource included in Visual Studio 2015 (14.0), the resulting binary should always contain prodidCvtres1400
= 1 (in our malicious dataset, 4.12% of files have a prodidCvtresXXXX count other than 1; in our clean dataset this
applies to only 0.01% of files).

There are multiple ideas for potential heuristics:

1. Files with prodidCvtresXXXX having a count not equal to 1
2. Files with resources not containing the Cvtres identifier and vice versa
3. The version of prodidCvtresXXXX not corresponding with the linker version/other ProdIDs, i.e. the file having

prodidCvtres1400 and prodidLinker1200.

APT malware

In this section we provide some examples where Rich Header metadata has provided interesting information and
extended our overall knowledge about executables from APT toolsets. This is not the first attempt to look at Rich
Headers and their usability in APT research [11].

Win32/Industroyer & Win32/Exaramel

The article [9] uncovered strong code similarities between the Win32/Industroyer main backdoor (introduced to the
world in [12]) and one of the backdoors (Win32/Exaramel) used by TeleBots, the group behind the massive NotPetya
(Win32/Diskcoder.C) ransomware outbreak. Taking an additional look at the Rich Headers metadata, it turns out that
there is additional similarity at the project development and build level – see Table 8.

prodidMasm1210 b40116 = 9
 prodidUtc1810_CPP b40116 = 120

 prodidUtc1810_C b40116 = 24
 prodidMasm1400 b24123 = 17
 prodidUtc1900_CPP b24123 = 29
 prodidUtc1900_C b24123 = 17

 prodidImplib900 b30729 = [15-25]
 prodidImport0 b0 = [140-200]

 prodidCvtres1400 b24210 = 1
 prodidLinker1400 b24215 = 1

Table 8: Rule based on the Rich Header values common to Industroyer and Exaramel.

Win{32,64}/NukeSped

This is ESET’s detection name for samples from the Lazarus toolset. It is well known that the toolset is large,
heterogeneous from various points of view, and all the sources are kept close. In [4] we tried to group executables
based on their Rich Header characteristics and the version of the Microsoft linker used. As a result, two main
Lazarus tool subgroups were identified, namely the first one using VS 98 for 32-bit compilations and VS 2010 for 64-

13/22

bit, and the second one using VS 2010 for both. However, several anomalous combinations were discovered too,
e.g. one typical malicious project compiled as a 32-bit binary in VS 98 and as a 64-bit binary in VS 2013. In Table 9
there are two examples of queries that successfully identified malicious clusters without causing an uncomfortable
level of noise.

prodidUtc1600_C b40219 = [50-300]
prodidImports b0 = [227-228]
prodidImplib900 b30729 = 23
prodidAliasObj1000 b20115 = 7

prodidUtc1500_C b30729 = 8
prodidExport1000 b40219 = 1
prodidUtc1600_C b40219 = [142-145]
prodidUtc1600_CPP b40219 = [61-62]

Table 9: Win{32,64}/NukeSped detection rule.

Win32/CrisisHT

This is ESET’s detection name for samples from the spyware kit operated and sold by the infamous Italian software
company Hacking Team. In [13] many aspects of the threat are considered, e.g. the clustering of the toolset based
on the attached code-signing certificates. In Table 10 we illustrate clustering based on the Rich Header values. The
‘SPC’ version looks like a testing concept built by an unrelated team – a consequence of the source code leaks in
July 2015.

Certificate PE
Timestamp

prodidUtcXXXX_CPP and build
values

Import0

1600_CPP
b40219

1600_CPP
b30319

1700_CPP
b50929

1800_CPP
b21005

1900_CPP
b24123

Raffaele
Carnacina

16.9.2015 38 170

Raffaele
Carnacina

19.10.2015 64 247

Raffaele
Carnacina

19.10.2015 38 169

Raffaele
Carnacina

5.11.2015 38 168

Raffaele
Carnacina

17.11.2015 64 247

SPC 5.1.2016 49 163

Raffaele
Carnacina

18.1.2016 38 170

Raffaele
Carnacina

24.3.2016 64 247

Raffaele
Carnacina

24.3.2016 38 169

ADD Audit 17.6.2016 70 251

ADD Audit 1.9.2016 70 250

14/22

ADD Audit 19.12.2016 44 177

ADD Audit 28.4.2017 38 170

ADD Audit 28.4.2017 64 259

Ziber Ltd 28.6.2017 57 293

Media Lid 28.6.2017 40 184

Ziber Ltd 9.10.2017 40 190

Ziber Ltd 18.10.2017 57 299

Table 10: CrisisHT samples clustered by C++ compiler version Rich Header data.

Crimeware

Win32/Kasidet

Kasidet (a.k.a. Neutrino bot) is a crime kit with many capabilities which is sold on underground forums and is popular
for its relatively cheap price. The crime kit is distributed via a special builder containing the compiled stub of Neutrino
bot. In Table 11 we showcase the evolution of four ProdIDs that represent the projects. Each colour band represents
a unique stub that was distributed by various cybercriminal groups [14].

 PE
Timestamp

prodidUtc1500_C prodidImplib900 prodidImport0 prodidUtc1600_CPP

MiningRats 04 25.07.2017 1 25 175 44

LethicGuys 08 21.10.2017 1 29 179 46

Redirectors 01 25.10.2017 1 29 179 46

LethicGuys 09 31.10.2017 1 29 179 47

LethicGuys 10 07.11.2017 4 31 185 49

Redirectors 03 07.11.2017 4 31 185 49

LethicGuys 11 16.11.2017 4 31 185 49

Redirectors 04 16.11.2017 4 31 185 49

Redirectors 05 17.11.2017 4 31 185 49

MiningRats 07 05.01.2018 4 31 185 49

MiningRats 08 08.01.2018 4 31 185 49

MiningRats 09 12.01.2018 3 31 196 50

LethicGuys 13 13.01.2018 3 31 196 50

LethicGuys 14 15.01.2018 3 31 196 50

ProxyGuys 01 16.01.2018 3 31 196 50

MiningRats 10 20.01.2018 3 31 196 50

LethicGuys 15 21.01.2018 3 31 196 50

15/22

LethicGuys 16 21.01.2018 3 31 196 50

MiningRats 11 30.01.2018 3 29 193 49

ProxyGuys 02 04.02.2018 3 29 193 49

TinukeFareit
01

09.02.2018 3 29 193 49

LethicGuys 17 16.02.2018 3 29 193 49

LethicGuys 18 22.02.2018 3 29 193 49

LethicGuys 19 25.02.2018 3 29 193 49

LethicGuys 20 26.02.2018 3 29 193 49

Redirectors 06 16.03.2018 3 29 193 49

Redirectors 07 19.03.2018 3 29 193 49

LethicGuys 21 22.03.2018 3 29 193 49

LethicGuys
22

22.03.2018 3 29 193 49

LethicGuys
23

02.04.2018 3 29 194 49

ProxyGuys 03 02.04.2018 3 29 194 49

LethicGuys
24

05.04.2018 3 29 194 49

TinukeFareit
02

08.04.2018 3 29 194 49

TinukeFareit
03

23.04.2018 3 29 194 49

TinukeFareit
04

02.05.2018 3 29 194 49

Arsonists 01 07.05.2018 3 29 194 49

TinukeFareit
05

19.05.2018 3 27 192 49

Arsonists 021 21.05.2018 3 27 192 49

TinukeFareit
061

21.05.2018 3 27 192 49

LethicGuys
25

23.05.2018 3 27 192 49

ProxyGuys 04 06.06.2018 3 29 223 54

Arsonists 022 10.06.2018 3 29 223 49

LethicGuys
26

14.06.2018 3 29 224 54

TinukeFareit
062

19.06.2018 3 29 224 55

16/22

TinukeFareit
07

05.07.2018 3 29 224 55

MiningRats
12

26.08.2018 3 29 241 56

LethicGuys
27

03.09.2018 3 29 241 56

Arsonists 03 18.09.2018 3 29 241 56

LethicGuys
28

18.09.2018 3 29 241 56

ProxyGuys 05 18.09.2018 3 29 241 56

TinukeFareit
08

20.09.2018 3 29 241 56

MiningRats
13

11.10.2018 3 29 241 56

Table 11: The evolution of the Win32/Kasidet project.

Table 12 lists the Rich Header search rules we use to cover the prevalent Neutrino bot version 5.4.

prodidUtc1500_C b30729 = [1-4]

prodidUtc1500_CPP b30729 = 1

prodidImplib900 b30729 = [25-31]

prodidimport0 b0 = [175-241]

prodidUtc1600_C b40219 = 5

prodidUtc1600_CPP b40219 = [44-56]

Table 12: Win32/Kasidet version 5.4 detection rule.

Win{32,64}/Dridex

It seems that, at any given time, this infamous banking trojan is actively being developed by a single entity, as all the
samples from a given time period/campaign have the same Rich Headers. The development environment has
changed at least four times. This could mean that the authors updated their tools or that the source code has
changed hands and has either been sold or passed to someone else. The detection rules for various versions can
be found in Table 13.

Win{32,64}/Dridex v1, v2 & v3 (2014 – 2015)

The initial versions of the Dridex banking trojan were developed in Visual Studio 2010. The rule should cover all
samples from version 1.100 all the way until 3.102, which is over a year-long period between July 2014 and
September 2015. We have collected 75 unique builds based on this search and, based on the gaps in the versions
of samples we were missing, it could potentially cover over 270 unique versions.

Win{32,64}/Dridex v3 (2016)

After version 3.102 the development environment changed slightly for the rest of the v3 development cycle and both
32-bit and 64-bit versions between v3.145 (November 2015) and v3.258 (September 2016) can be covered by the
rule.

17/22

Win{32,64}/Dridex v4 (2017 – 2018)

Dridex version 4 introduced a few major changes including the infamous Atom bombing technique that made the
headlines back in 2017 as well as a major development environment towards Visual Studio 2015. The rule covers
the versions between v4.43 and v4.87 and reliably covers both 32-bit and 64-bit samples.

Win{32,64}/Dridex v5(v2) (2018 – 2019)

Another shift in the development environment of this malware. This time there has been an interesting shift in the
versioning as well – instead of an expected version 5 it has been set back to version 2. This could indicate a change
in the ownership of the source code or a change of the developer responsible for the malware. The rule should cover
the most recent versions (v2.68 and newer).

Versions 1, 2 and 3 (2014 - 2015) prodidUtc1500_CPP b30729 = 1
prodidMasm1000 b40219 = [23-26]
prodidUtc1600_C b40219 = [99-143]
prodidUtc1600_CPP b40219 = [32-48]
prodidUnknown b0 = 1

Version 3 (2016) prodidImplib900 b30729 = [3-5]
prodidImport0 b0 = [1-2]
prodidUtc1500_C b30729 = 1
prodidExport1000 b40219 = 1
prodidUnknown b0 = 1

Version 4 (2017 – 2018) prodidUtc1900_C b24215 = [22-23]
prodidUtc1900_CPP b24215 = [58-60]
prodidLinker1400 b24215 = 1

Version 5 (v2) (2018 – 2019) prodidUtc1500_C b30729 = 4
prodidImplib900 b30729 = 5
prodidImport0 b0 = 6
prodidLinker1400 b24215 = 1
prodidUnknown b0 = 90

Table 13: Win{32,64}/Dridex detection rules.

Win{32,64}/Sathurbot

This name represents botnets spreading via password attacks on WordPress sites [15]. The malware is a large
project which is compiled for both 32- and 64-bit Windows platforms. Table 14 shows the evolution of the build
environment (internal DLL name, PE Timestamp and ProdIDs representing the source files).

 prodidUtcXXXX_CPP

PE TS 1600_CPP
b40219

1600_CPP b30319 1600_LTCG_CPP
b30319

1700_CPP
b50929

1800_CPP
b20806

PerformanceMonitor.dll 22.4.2015 59

PerformanceMonitor.dll 27.4.2015 60

PerformanceMonitor.dll 59

PerformanceMonitor.dll 14.5.2015 60

PerformanceMonitor.dll 59

PerformanceMonitor.dll 21.6.2015 92

PerformanceMonitor.dll 91

PerformanceMonitor.dll 8.7.2015 92

18/22

PerformanceMonitor.dll 30.7.2015 91

PerformanceMonitor.dll 4.8.2015 91

PerformanceMonitor.dll 18.8.2015 89

PerformanceMonitor.dll 88

PerformanceMonitor.dll 27.8.2015 88

PerformanceMonitor.dll 15.9.2015 89

PerformanceMonitor.dll 8.2.2016 89

PerformanceMonitor.dll 18.2.2016 89

performanceMonitor_64.dll 31.3.2016 84

performanceMonitor_32.dll 29.06.2016 83

performanceMonitor_64.dll 84

performanceMonitor_32.dll 31.8.2016 83

performanceMonitor_32.dll 24.10.2016 83

performanceMonitor_64.dll 29.12.2016 69 97

performanceMonitor_32.dll 13.1.2017 68 97

performanceMonitor_32.dll 16.2.2017 68 97

performanceMonitor_64.dll 69 97

performanceMonitor_64.dll 10.3.2017 69 97

performanceMonitor_64.dll 21.3.2017 69 97

performanceMonitor_64.dll 27.5.2017 79

performanceMonitor_64.dll 7.11.2017 79

Table 14: The evolution of Win{32,64}/Sathurbot.

It is not possible to conclude with high confidence that there is more than a single entity operating the source code.
However, the produced executables suggest that Visual Studio is switched regularly. The merged PE timestamp of
two samples into one cell with a single date means a consecutive compilation for both 32- and 64-bit platforms that
differed by just a few seconds. The order of this compilation varied as well.

Malware packers

The main purpose of malware packers is to provide a container for malware families with features like
polymorphism, anti-analysis and obfuscation. Because of these features, malware packers often display abnormal
static properties and their Rich Headers are no exception.

The first interesting case was a validly signed, highly polymorphic obfuscator detected as Win32/Kryptik.GSLI. In
May 2019, hundreds of unique samples were distributed in the wild, with Win32/TrojanDownloader.Zurgop.CY as the
protected payload. We discovered these campaigns because the prodidCvtres500 identifier contained anomalously
high counts. After collecting many related files, we found that the rules in Table 15 identified the cluster very well.

19/22

prodidMasm613 b7299 = [12-13]

prodidUtc12_C b9782 = 63

prodidLinker512 b8034 = 11

prodidUtc12_CPP b9782 = 2

Table 15: Detection query for Win32/Kryptik.GSLI.

Later, we identified another extremely polymorphic malware packer. The shared static properties include two
.version PE sections of 1,024 bytes each, a file version of 1.0.0.1 and legal copyright starting with Copyright (C)
2018. The rest of the features seem randomly generated. We described the cluster with the relatively simple rule
conjunction seen in Table 16.

prodidUtc1500_CPP b21022 = 37

prodidMasm900 b21022 = 17

prodidUtc1500_C b21022 = [112-120]

prodidUtc1500_LTCG_CPP b21022 = 1

prodidCvtres900 b21022 = 1

Table 16: Detection query for the malware packer shared across many malware families.

There were many malware families protected with this packer, including the following (for further examples see [01]):

Win32/PSW.Delf.OSF (aka Azorult)
Win/Spy.Kronosbot
Win32/TrojanDownloader.Zurgop.DA
Win32/Filecoder.Spora
Win32/Agent.TFY (a backdoor written in GoLang)
MSIL/Spy.Baldr
Win32/Ramnit.BV (a virus)
Win32/Spy.Ursnif.CY

Rich Headers & YARA

YARA is a great tool for malware researchers, incident responders and security engineers that has become an
industry standard for hunting malware and the classification of unknown samples. Hence, being able to write YARA
rules based on Rich Headers would be a great way to share our findings with the rest of the world.

Although YARA does support parsing of Rich Headers and the PE module has a few Rich Header-related fields, at
the time of writing (June 2019) there are a few critical drawbacks that greatly limit its usability [16].

First, as seen in its source code in Figure 8, YARA incorrectly assumes that the Rich Header always starts at the
common offset 0x80 [10] and will not work for any Rich Header at a different offset. This can easily be fixed and is
not that big an issue, since as stated above, over 99% of files with Rich Headers tend to have them at that offset.

20/22

 Figure 8: YARA’s implementation

of Rich Headers lookup.

The bigger problem is the YARA Rich Header-related API, which is very simple and insufficient for any effective Rich
Header-related rules. The version and toolid functions can only look whether a specific ProdID and build is present
in the Rich Header, but are unable to query its count values, which are the most crucial attribute in most useful
searches. The announcement of YARA’s toolid function can be seen in Figure 9.

Figure 9: YARA PE module Rich Headers API documentation.

The APIs would be much more useful if instead of the existence of a given ProdID, the toolid and version interfaces
returned the count (or null), which then could be compared against a ranged interval. This would greatly enhance
YARA’s Rich Header-related capabilities and would enable more complete leverage of the Rich Header format. We
hope to contribute to the YARA project and to help to improve the Rich Header-related functionality in the near
future.

Conclusion

We started our project with low expectations, thinking that there must be a reason the Rich Headers feature is
overlooked and not widely utilized. Over time, we became more and more impressed with how much could be
achieved by searching for feature clusters based on such a small part of an executable, and how powerful it can be

21/22

when leveraged correctly.

The space of Rich Header features has an extremely fast lookup and is ‘rich’ indeed, in the sense that the detection
queries for chosen parts of APT toolsets or crimeware kits identified the clusters well and with a low level of noise.
Because of the nature of the information, false positives may occur, however the erroneous verdicts seem to be
intuitive: clean projects of small magnitude, shared executable containers and, surprisingly, different malicious
families as well. We believe this kind of static feature may also be utilized in machine-learning algorithms, to assist in
deciding maliciousness, and this is the subject of future work.

Sharing publicly the various techniques malware researchers use to track cybercriminal actors usually causes an
obvious reaction: avoidance. In the case of the Rich Header that may be a Pyrrhic victory – any interference with this
delicate structure, such as wiping it or substituting it, will produce obvious, easily detectable anomalies just asking
for closer attention from our malware analysts.

Rich Headers are definitely not a silver bullet that will change the security industry, but they could be a nice and very
helpful addition to current detection and hunting methods and systems. We feel that this undocumented structure
deserves more attention than it currently receives across the field and imagine that, in the not too distant future, we
may see Rich Header YARA rules appearing in malware analysis IoC listings and the like.

References

[1] https://github.com/AyalaRs/win/blob/master/private/sdktools/vctools/langapi/include/prodids.h.

[2] ESET GitHub. SHA256 hashes of mentioned files. https://github.com/eset/malware-ioc/tree/master/rich_headers.

[3] GReAT. A predatory tale: Who’s afraid of the thief? Securelist.com. March 2019. https://securelist.com/a-
predatory-tale/89779/.

[4] Kálnai, P.; Poslušný, M. Lazarus Group: a mahjong game played with different sets of tiles, Virus Bulletin
International Conference 2018, Montreal. https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kalnai-
Poslusny.pdf.

[5] Kaspersky GReAT. The devil’s in the Rich header. March 2018. https://securelist.com/the-devils-in-the-rich-
header/84348/.

[6] Rascagnères, P.; Mercer, W. Who wasn’t responsible for Olympic Destroyer. Virus Bulletin International
Conference 2018, Montreal. https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Rascagneres-
Mercer.pdf.

[7] Kálnai, P.; Cherepanov, A. Lazarus KillDisks Central American casino. April 2018.
https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino/.

[8] Cherepanov, A. GREYENERGY: A successor to BlackEnergy. October 2018. https://www.welivesecurity.com/wp-
content/uploads/2018/10/ESET_GreyEnergy.pdf.

[9] Cherepanov, A.; Lipovský, R. New Telebots backdoor linking Industroyer and notPetya. WeLiveSecurity.com.
October 2018. https://www.welivesecurity.com/2018/10/11/new-telebots-backdoor-linking-industroyer-notpetya/.

[10] https://github.com/VirusTotal/yara/blob/master/libyara/modules/pe.c#L190.

[11] Webster, G.D.; Kolosnjaji, B.; von Pentz, Ch.; Kirsch, J.; Hanif, Z.D.; Zarras, A.; Eckert, C. Finding the Needle: A
Study of the PE32 Rich Header and Respective Malware Triage. In: Proceedings of the International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, pp. 119--138, 2017.
https://www.sec.in.tum.de/i20/publications/finding-the-needle-a-study-of-the-pe32-rich-header-and-respective-
malware-triage.

https://github.com/AyalaRs/win/blob/master/private/sdktools/vctools/langapi/include/prodids.h
https://github.com/eset/malware-ioc/tree/master/rich_headers
https://securelist.com/a-predatory-tale/89779/
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kalnai-Poslusny.pdf
https://securelist.com/the-devils-in-the-rich-header/84348/
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Rascagneres-Mercer.pdf
https://www.welivesecurity.com/2018/04/03/lazarus-killdisk-central-american-casino/
https://www.welivesecurity.com/wp-content/uploads/2018/10/ESET_GreyEnergy.pdf
https://www.welivesecurity.com/2018/10/11/new-telebots-backdoor-linking-industroyer-notpetya/
https://github.com/VirusTotal/yara/blob/master/libyara/modules/pe.c#L190
https://www.sec.in.tum.de/i20/publications/finding-the-needle-a-study-of-the-pe32-rich-header-and-respective-malware-triage

22/22

[12] Cherepanov, A. Win32/Industroyer a new threat to industrial control systems. WeLiveSecurity.com. June 2017.
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf.

[13] Kafka, F. From Hacking Team to Hacked Team to…? Virus Bulletin International Conference 2018, Montreal.
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kafka.pdf.

[14] Soucek, J.; Tomanek, J.; Kálnai, P. Collecting Malicious Particles from Neutrino botnets. The Journal on
Cybercrime & Digital Investigations, Botconf 2018 Conference proceedings,
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/22/24.

[15] ESET Research: Sathurbot: Distributed WordPress password attack. WeLiveSecurity.com. April 2017.
https://www.welivesecurity.com/2017/04/06/sathurbot-distributed-wordpress-password-attack/.

[16] YARA PE module documentation. https://yara.readthedocs.io/en/v3.7.0/modules/pe.html.

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order to infiltrate organizations’
dedicated environments and transform them into attack launchpads. In this article Aditya Sood presents a new
module introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to exfiltrate sensitive data
from end-user systems and store it in its C&C panels. In this article, researchers Aditya K Sood and Rohit
Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and from that moment onward,
was intrigued by the properties of these small pieces of self-replicating code. Joe Wells was an expert on computer
viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another language, which could
then easily be ‘run’ on any gateway, thus revealing a sample’s true nature in a safe manner. In this article he
explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware, discussing his team's
findings related to the C&C design and some security issues they identified during the research.

Bulletin Archive

https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Kafka.pdf
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/22/24
https://www.welivesecurity.com/2017/04/06/sathurbot-distributed-wordpress-password-attack/
https://yara.readthedocs.io/en/v3.7.0/modules/pe.html
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Kalnai-Poslusny.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

