Hunting for Ransomware

blog.reversinglabs.com/blog/hunting-for-ransomware

Security Operations | January 24, 2020

1/13

https://blog.reversinglabs.com/blog/hunting-for-ransomware
https://blog.reversinglabs.com/blog/tag/security-operations

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

2/13

https://blog.reversinglabs.com/blog/author/robert-simmons

November Update:

Here’s your opportunity to hear directly from Rob Simmons, Threat Researcher involved in
#Ryuk ransomware research.

Join us to learn:

e The current state of Ransomware and how it is becoming more targeted

e How to use the A1000 to hunt for threats using YARA

e How to bring new visibility about file risks into your SOC process

» How to apply this new intelligence on Ryuk to actively update your defenses

Register for our November 17 webinar here:
https://reversinglabs.zoom.us/webinar/register/6215881027977/WWN_ X6tAd0-
NTeSRIlyjtEQSOg

Many ransomware families have changed their tactics and victim-targeting in recent years.
Rather than indiscriminate attacks against anyone they’re able to infect, they have moved to
a process called “big game hunting”. The motivation underlying this change of tactics is to
increase the potential payout by targeting an organization rather than an individual. The
adversary performs extensive reconnaissance on the target to determine what they may be
able to pay. Rather than small ransom demands in thousands of dollars, by targeting
businesses, they are aiming for payouts in the hundreds of thousands to millions of dollars.

One malware family in particular, Ryuk (11, has been attributed to the GRIM SPIDER @ threat
actor group. According to malpedia.io, this group has been operating the Ryuk ransomware

3/13

https://reversinglabs.zoom.us/webinar/register/6215881027977/WN_X6tAd0-NTeSRllyjtEQS0g

since August of 2018 [2l. In recent months, a staged attack dubbed “triple threat” [4! has
emerged with the initial access to the network achieved by the Emotet [2] malware family.
Once initial access is achieved, the next stage, TrickBot [8, delivered inside the target
organization. TrickBot has capabilities to steal credentials and to move laterally within the
organization’s network. The third stage of the attack is to execute Ryuk ransomware on as
many workstations and servers as possible via the lateral movement of TrickBot.

To hunt for and identify Ryuk samples, many YARA [Z] rules search for strings that are hard-
coded in the sample. However, this type of strings-based rule may be prone to false
positives. An excellent conference talk that includes this topic given by Lauren Pierce at
ShmooCon 2017 should be watched for more information about this concept. [l Rather than
hunting for these hard-coded strings, one should be hunting for code patterns in the sample.
Rules of this type do more damage to the adversary’s intrusion set according to David
Bianco’s Pyramid of Pain. [2] More painful code changes are needed to avoid detection by
this paradigm of YARA rule. Here, we examine a single algorithm that Ryuk uses in the latest
64bit variant to generate a random string. This string is part of the filename that Ryuk uses
when dropping a copy of itself during the installation phase of intrusion.

Looking at the execution of the Ryuk sample 1% in x64dbg, 1! we see that the first step
taken is to gather entropy from the tick count of the victim’s computer. In Figure 1, we see the
library function call to GetTickCount to gather this randomness.

= P [* A%} R P YEMMes &l S Sl
4C:896424 58 mov qword ptr ss:firsp+58),ri2
4C:896424 60 mov qword ptr ss:firsp+e0f§,ri2
4C:896424 68 mov qgword ptr ss:frsp+68],ri2
44:896424 70 mov dword ptr ss:|firsp+708,rizd
6644:896424 74 (oowword pre 2o frep o] cdon
FF15 DE460100 €all qword ptr ds:[<&6etTickCount>]|
8BCS MOV cox.oax
E8 97610000 call <ryuk.srand>
49: 88BDC mov rbx,ri2
E8 63610000 call <ryuk.rand>
8BFO mov esi,eax
R NANE?21N mnv S2ay 1NRZ4ANN32

Figure 1: Entropy Input From Tick Count

According to Microsoft's documentation, GetTickCount returns “the number of milliseconds
that have elapsed since the system was started.” [12] The function called immediately after is
a C library function, srand. This function takes a seed value and initializes the random
number generator. The srand and rand functions’ identities were detected using Ghidra’s [12]
function signatures during its code analysis process.

The random number generator initialized by srand is subsequently used by rand function
calls to generate random data. The goal of generating this data is to produce a random
string. However, not all the bytes of randomness generated can be used in a filename, so a
subsequent function checks the output to verify that the generated byte is an alphabet
character and therefore valid for a filename. This function has been labelled as “isalpha” in

4/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_01.jpg

Figure 2

UUUUUULDIN . JLMD L

TT. 00U

WUV 1 WAl LS

@ | 000000013FC91A54 E8 632610000 call <ryuk.rand>
@ || 000000013FC91A59 8BFO mov esi,eax
¢ | 000000013FC91A5E B8 D34D6210 mov eax,10624DD3
[} Duaoﬁuoiz'calAﬁD F7E6 mul esi
el 000 C1lEA 04 shr edx,4
L] 0 69CA O6FFFFFF imul ecx,edx,FFFFFFDG ecx:L"mZVjvCcrR"
. w)\JGGDDl 03F1 add esi,ecx ecx:L"mzZVvjvCcrR"
¢ | 00000001 8BCE oL ecx:L"mZVjvCcrR"
¢ || 00000001 E8 08680000 call <ryuk.isa1pha>|
@ || 00000001 85C0 1 3
e || ooooo001 ~ 74 DC je ryuk.13FC91A54
¢ | 000000013 66:89745C 58 mov word ptr ss:|[rsp+rbx=2+58J,si
@ (| 000000013FC91A7 48:FFC3 inc rbx
¢ || 000000013FC91A80 48:83FB 07 cmp rbx,7
@ | 000000013FC91A84 ~ 7C CE j1 ryuk.13FC91A54
e | 000000013FC91A86 48:804C24 58 1ea rcx,qword ptr ss:[rsp+5sj

RIP gy 1 49:28CD sub rcx,ris rex:L"mzvjvcr"
. 9:03CD add rcx,ris rex:L"mZvjver"
° 6644 3921 cmp worF ptr ds:[rcx],ri2w rcx: L"mzZvjiver™
* 1]

rax=1i

. Text:000000013FC91A1B ryuk.exe: $1A1B #E1B

¥ Dump 1 { &*s Dump 2 l @44 Dump 3 I 844 Dump 4 I @4 Dump 5 I & watch 1 l lx=| Locals I ‘j’Struct}

Address

ASCIT

0000000000264953[60 00 5A 00

56 00 6A 00

56 00 43 00

52 00 00 00

m.z.v.j.v.c.rRJ..

0000000000264968T00 DO U0 0O
0000000000264978| 00 00 00 0O

00U OO0 OU OO0
00 00 00 00

00U OO0 U0 OO
00 00 00 00

U0 U0 OO0 U0
00 00 00 00

Figure 2: Repeat Until String is Alphabet Characters

If the byte fails this test, execution jumps back to the rand function and a new random byte is
generated. This loop continues until all the characters are alphabet characters, and the
generated string is therefore usable as a filename.

To write an effective YARA rule for detecting this algorithm, first we examine the srand
function and find a hexadecimal string that can be used to match the function. Figure 3
shows the srand functlon |n the debugger’s disassembler.

UL S T DD i RIS

O0007FFGBATF7 BES 40 53 push rbx srand
00007FF66A7F7BEA 48:83EC 20 sub rsp,20

00007FFE66A7F7BEE 8BD9 mov ebx,ecx

00007FF66A7F7BFO ES8 C73E0000 €all <ryuk.__acrt_getptd-
00007FF66A7F7BFS 8958 28 mov dword ptr ds:[rax+28],ebx

0001 FGGA7F7BFS8 48:83C4 20 add rsp,20

00 FEEBA7F7BFC 5B pop rbx

O0D007FF66A7F7BFD C3 ret

i b TECECSLCATETDEE -~ ant2

Figure 3: Disassembled srand Function

The goal is to identify enough bytes from this function to differentiate it from other functions
in the sample, but still allow enough wiggle room for slight changes due to the compiler.

$srand = { 40 53 48 83 ?? 20 8B ?? E8 [4] 89 }

The hexadecimal string seen above identifies the srand function, but leaves room for the
destination registers to change and still match the function. [14! These wildcards are
represented as “?7?”. The four byte jump “[4]” allows for the address of the “ _acrt_getptd”
function to change locations.

5/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_02.jpg
https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_03.jpg

Next we repeat the same process by examining the rand function in the debugger.

00007FF66A7F7BBC

nTmm
MM

=

DD

L.

48:83EC 28

ES8 F73E0000

6948 28 FD430300
81C1 C39E2600
8948 28

C1lE9 10

81E1 FF7F0000
8BC1

48:83C4 28

C3

-r

Figure 4: Disassembled rand Function

(RN]

sub rsp,28

€all <ryuk.__acrt_getptd>
imul ecx,dword ptr ds:[rax+28],343FD

add ecx,269EC3
mov
shr
and
mov
add

ret

S nard

ecx,10
ecx,7FFF
€ax,ecx
rsp;28

dword ptr ds

: [rax+28],ecx

rand

For this function the following hexadecimal string identifies it and differentiates it from other
similar functions in the sample.

$rand = { 48 83 ?? 28 E8 [4] 69 }

Again, wildcards are used to allow for changes in destination registers as well as a four byte
jump that allows for the location of the called function to change.

Next we analyze the “isalpha” function that is called to check if the random byte is an
alphabet character. This function is not a library function. It is adversary written code and a

6/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_04.jpg

control flow graph of the function is seen in Figure 5.

00007FFG66A7F827C <ryuk.isalpha>
push rbx

sub rsp,40

movsxd rbx,ecx

mov eax,dword ptr ds:[7FF66A822554]
test eu eax

je ryuk.?FFGGA?Faan

ryuk.00007FF66A7F82DD ryuk.00007FF66A7F828F

mov rax,qword ptr ds:[7FF66A812150] xor edx,edx

movzx edx,word ptr ds:[rax+rbx=2] lea rcx,qword ptr ss:jfirsp+20f

and edx,103 €all <ryuk._Localeupdate>
mov rax,qword ptr ss: Irsp+28l
cmp dword ptr ds:[rax+8],1
jle ryuk.7FF66A7F82BB

ryuk. 00007 FF66A7F82BB ryuk.00007FF66A7F82A6
mov rax,qword ptr ds:[rax] ea r8,qword ptr ss:[rsp+2sj
movzx edx,word ptr ds:[rax+rbx*2] mov edx,103
and edx,103 mov_ecx,ebx
ayul:._isctype_b
mov edx,eax
jmp ryuk.?FFSGA?Fszcs

ryuk 00007FFG6A7FS82CS
byte ptr ss:[irsp+38j,0
je ryuk.7FF66A7F82EE

ryuk.00007FF66ATF82CF

mov rax,qword ptr ss:|[irsp+20f

and dword ptr ds: [rax+3A8] FFFFFFFD
jmp ryuk.7FFE66ATFE2EE

ryuk.00007FF66A7FS2EE
mov eax,edx
add rsp,40

ﬁi rbx

Figure 5: Control Flow Graph of the isalpha Function

To develop a signature that detects this function, we look more closely at the very first code
block.

WU T eemd rocr e T B niea

O0007FFGEATF827C 40:53 push rbx isalpha
00007FF66A7F827E 48:83EC 40 sub rsp,40

O0007FF66ATF8282 48:63D9 movsxd rbx,ecx

OD0D07FF66ATFS8285 8BO5 C9A20200 |mov eax,dword ptr ds:[7FF66A822554]
D0D007FFGEA7F828B 85C0 test eax,eax

O0D007FF66A7F828D| v 74 4E je ryuk.7FF66A7F82DD

AMANTEECCATES> O 22N wvnar ardv adw

Figure 6: First Code Block of isalpha Function

Following the same methodology to write a signature as above, destination registers except
for the opcode “movsxd” are replaced with wildcards. Then the location of the pointer from
the “mov” instruction is replaced with a four byte jump. The resulting hexadecimal string is as
follows:

7/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_05.jpg
https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_06.jpg

$isalpha = {40 53 48 83 EC ?? 48 63 D9 8B 05 [4] 85 C0 74 4E }

Armed with the locations of the three functions, we return to analyzing the code that is used
to call them. This code can be split into two separate opcode signatures. This will allow for
variation in the code between these two code snippets thereby still identifying this adversary
code even if it changes slightly as the ransomware code is developed for new variants of
Ryuk.

OO I~ AT rFrria VE=OULUY EoRE Yywwi u pgul U e L
7FFE66A7F1A4A 8BCS mov ecCx,eax
7FF66A7F1A4C E8 97610000 call <ryuk.srand>
7FF66A7F1A51 49: 8BDC mov rbx,ri2
7FF66A7F1AS4 E8 63610000 call <ryuk.rand>
7FFG66A7F1A59 8BFO mov esi,eax
TEFARATFE1T1ACR RS NRANA21N mnwv a2ay _ 1TNR>24ANN=2

Figure 7: First Set of Instructions as Seen in Debugger

J - O AT D .M VvVOoOrrrrrr FANIRA 0 CI_A'CUA,".":‘:—"T"_.I‘:.‘
007 FFG66A7F1AGB 03F1 add esi,ecx
)JOO7FF66A7F1AGD 8BCE mov ecx,esi
)OO7FFE66A7F1AGF ES8 08680000 call <ryuk.isalpha>
JOOO7FFE6A7F1A7 4 85C0 test eax,eax
JYOOO7FFG66A7F1AT76 ~ 74 DC je ryuk.7FF66A7F1AS4

Figure 8: Second Set of Instructions as Seen in Debugger

By following the process of allowing for variation in destination registers as well as the
location of the called functions, the following two opcode signatures are developed:

$op1 = { E8 [4] 49 8B ?? E8 [4] 22 }
$op2 ={ 03 ?? 8B ?? E8 [4] 85 C0 74 ??}

Now that we have signatures for the functions that are called as well as signatures for the
code that calls them, we tie these together by comparing the bytes found in the opcode that
calls the function with the location of the called function. This is done by using YARA
condition statements to calculate the locations. This first condition statement verifies that the
first opcode calls the srand function:

uint32(@op1 + 1) + @op1 + 5 == @srand

This condition verifies that the first opcode then calls the rand function:
uint32(@op1 + 9) + @op1 + 13 == @rand

And this condition verifies that the second opcode calls the isalpha function:

uint32(@op2 + 5) + @op2 + 9 == @isalpha

8/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_07.jpg
https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_08.jpg

The last instruction seen in Figure 8 is a jump that leads back to the rand function to

generate a new byte of random data if the previous byte was not an alphabet character. The

following condition reflects this jump and allows for the landing address of the jump to

change based on differences at compile time or code changes between the two opcode
snippets.

@op2 + 5 + int8(@op2 + 12) == @op1

Now that we have a fully formed YARA rule, we can hunt for samples of Ryuk using the

Titanium Platform that are related to the one that we started with. The complete YARA rule is

provided at the bottom.

Hunting for Ryuk

By loading the YARA rule into the ReversingLabs A1000’s threat hunting system, we

discover that the rule is highly accurate and has matched nine other Ryuk 64bit samples that

are all related to the sample that we started with.

File size File type
I < LMB
sl I < 10MB
amples
10/10 4 <100V
I, <650MB
.| >=650MB
Filtered by: @ shared private local
LN Match Time Threat Name Rule
2018-10-05 i ; i
& 03:08 UTC Win64.Ransomware.Ryuk 1a49dfc4b5d04feeaBff437950649d3467956e29 Ryuk_RepeatUntil_Alpha
2019-10-05 ' o "
& 03:06 UTC Win&4.Trojan.Ryuk 7b9f5faa34f5bSdc83cacb2cbd82cdbBa9aalslb Ryuk_RepeatUntil_Alpha
P 2019-10-05 . " - e ” .
02556 UTC Win64.Trojan.Ryuk aa/bdBdfeldd3cd48f3ba754c29253653da37498 Ryuk_RepeatUntil_Alpha
-» 2019-10-05 4 e s y :
02:49 UTC Winb4.Trojan.Ryuk 81fal92b4439956f0d1aab5d66ff2d377a7d87f7 Ryuk_RepeatUntil_Alpha
& 2019-10-05 . qc - .
02:47UTC Win64.Trojan.Ryuk dd318ffdd4b1081733dccf95cddb4e000814e005 Ryuk_RepeatUntil_Alpha
2019-10-05 : y - st = = .
0313UTC Winb4.Trojan.Ryuk 6da5486c852630291168b539513d15bafb5b93a8 Ryuk_RepeatUntil_Alpha
2018-10-05 i ; - . - . .
03.09 UTC Winb4.Trojan.Ryuk 89%e08d48147c640ac7bB4893fb31e690a393a4e Ryuk_RepeatUntil_Alpha
2019-10-05 1 K X
03:01UTC Win64.Ransomware.Ryuk 7dle2bdc3cbb845826e7595354685b019ba88492 Ryuk_RepeatUntil_Alpha
2018-10-05 - .
0248 UTC WinB4.Trojan.Ryuk 133825d8bee06f0398e884faaf5afsbf4157f371 Ryuk_RepeatUntil_Alpha
2019-10-05 i i)
0238 UTC Win64,Trojan.Ryuk 63c80570e0c30473627532e93f67434daa7f1977 Ryuk_RepeatUntil_Alpha

1-10cf 10items

Figure 9: YARA Hunting Results

Elll

I Unknown

other formats...

local local-retro

Format

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Files

1

1

1

1

1

1

1

1

1

cloud cloud-retro

Size

197 KB

198.5KB

198.5KB

203KB

200KB

20

1]

Looking at each sample’s analysis results, we can additionally see that the ReversingLabs
Hash Algorithm 18] has associated these same files together as a cluster.

9/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_09.jpg

AEVERSING ‘AlUUO Dashboard MyUploads v Search Alerts Yara Tags Feeds Help, & .

ryuk_18faf.exe ©
E gy‘zg 200.0KB — @ Malicious A Local TiCloud
Type: PE+ / Exe
Format: - Time Threat Name Format Files Size
Threat: @ Win64.Trojan Ryuk
First seen: 2019-08-22 07:57 UTC & 2019-10-05 . . =
Last seen: 2019-10-05 20:48 UTC ?] c0agutc Winb4TrojanRyuk ryuk_fca03.exe PE+/Exe 1 1985KB =
User uploads: 3
B e 2;;,2;37% Win64.Ransomwa... ryuk_dd4bl.exe PE+/Exe Ak 197 KB =
Malicious Suspicious Known *
8 0 -10- 3 ;
B o | Tlaor wineaTrojanRyuk ryuk_f894fexe PE+/Exe 1 198K8 =
-10-05 i ;
A summary B o 050% wWingaTrojanRyuk ryuk ac3bOexe PE+/Exe 1 201KB =
2019-10-05 i s
.O TitaniumCore B o 20:48 UTC Win64.Trojan.Ryuk ryuk_dbade.exe PE+/Exe 1 1985KB =
v Info [] 2‘%2818%5 Win64.Trojan.Ryuk ryuk_18faf.exe PE+/Exe 1 200KB =
File
+ Hashes o [ZNIINTS WinbdTrojanRyuk ryuk_fB5d2.exe PE+/Exe 1 204KB =
~ Application (PE) g
 Capabilities 8 2S00 WinG4TrojanRyuk ryuk_f4D68.exe PE+/Exe 1 203KB =

+ DOS header
+ Rich header

Figure 10: ReversinglLabs Hash Algorithm Cluster
Next, we can see that the Titanum Platform has determined the threat name as

“Win64.Trojan.Ryuk” for each of the identified samples via the cloud classification system.

i= 1 Fileclassifications

File Threat Name

Archive @ Cloud Win64.Trojan.Ryuk
@ TiCloud Win64.Trojan.Ryuk
@ TitaniumCore TitaniumCore

Figure 11: Titanium Cloud Classification as Win64.Trojan.Ryuk

Finally, we can drill into the file’s indicators and see what has been extracted during analysis
by ReversinglLabs Titanium Platform. In Figure 12, we see some of the hallmarks of

ransomware: tampering with security products to disable them, disabling backups to prevent
data recovery, writing and deleting files during the encryption process, stopping services and

processes so that more data can be encrypted, and usage of cmd.exe to run CLI commands.

10/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_10.jpg
https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_11.jpg

AEVERSING | A1000
LABS

ryuk_18faf.exe

Size: 200.0 KB
Type: PE+/ Exe
Format: --
Threat: @ Win64.Trojan.Ryuk
First seen: 2019-09-22 07:57 UTC
Last seen: 2019-10-05 20:48 UTC
User uploads: 3

©

ol

Malicious Suspicious Known

Em g 0 0

| n Summary

'() TitaniumCore

\ Info
« File
+ Hashes
\» Application (PE)
+ Capabilities
+ DOS header
+ Rich header
* File header
+ Optional header
+ Sections
* Imports
« Indicators
v Classification
* YARA
* Scanners
v Protection
+ Features
* Strings
* Tags

L]
& TitaniumCloud

E’ Extracted Files (0)

Indicators

EVASION

« Detects ESET related security products.

* Detects McAfee related security products.

» Detects TrendMicro related security products.

= Tampers with services related to ESET security products.

» Tampers with services related to McAfee security products.

Disable Security
Products

« Tampers with services related to TrendMicro security products.

» Uses anti-debugging methods.

PERMISSIONS

= Asks for permission to open other processes.

« Requests permission required to perform backup operations. | I] |sal] |e Baﬂkuns

« Tampers with user/account privileges.

FILE

« Deletes files in Windows system directories.
« Writes to files in Windows system directories.
» Creates/opens files in Windows system directories.

« Deletes files.
sl Encrypts Files and Deletes Original

« Copies afile.
« Creates/Opens afile,

« Writes to files.

EXECUTION

« Executes a file.

« Controls a service.
« Terminates a process/thread.

Stops Services and Processes
= Enumerates services.

« Might load additional DLLs and APIs.
|+ Contains reference to cmd.exe which is Windows Command Processor. | H Uns cm [I BXe
« Contains reference to csrss.exe which is Client Server Runtime Process.
« Contains reference to explorer.exe which is Windows Explorer.
» Contains reference to iphlpapi.dil which is IP Helper API.
« Contains reference to mscoree.dll which is Microsoft .NET Runtime Execution Engine.

Figure 12: Indicators Detected by Titanium Platform

As we have seen, by starting with one sample, and analyzing its code, a YARA signature can

be developed to identify more related samples. Furthermore, by leveraging the Titanium
Platform, these related files can be confirmed as being related. If further analysis is
warranted, static features analysis in the A1000 allows the researcher to delve deeper into
the capabilities of the ransomware and its related samples from a particular campaign.

YARA Rule

Ryuk64

11/13

https://cdn2.hubspot.net/hubfs/3375217/Blog/hunting_for_ransomware_12.jpg

rule RepeatUntil_Alpha : Ryuk64

{

meta:

author = "Malware Utkonos"

date = "2019-09-22"

exemplar = "18faf22d7b96bfdb5fd806d4fe6fd9124b665b571d89cb53975bc3e23dd75ff1"
description = "Repeat generation of random data until filename string is all alpha
characters™

strings:

$srand = {40 53 48 83 ?? 20 8B ?? E8 [4] 89 }

$rand = { 48 83 ?? 28 E8 [4] 69 }

$isalpha = {40 53 48 83 EC ?? 48 63 D9 8B 05 [4] 85 C0 74 4E }

$op1={E8[4] 49 8B ?? E8 [4] ??}

$op2={03?? 8B ?? E8[4] 85C074??}

condition:

WindowsPE and all of them and

uint32(@op1 + 1) + @op1 + 5 == @srand and // call srand

uint32(@op1 + 9) + @op1 + 13 == @rand and // call rand

uint32(@op2 + 5) + @op2 + 9 == @isalpha and // call isalpha

@op2 + 5 + int8(@op2 + 12) == @op1 // jump to rand call until all characters are alpha
}

(11 https://malpedia.caad.fkie.fraunhofer.de/details/win.ryuk
[2]
2 ibid.

[4] https://searchsecurity.techtarget.com/news/25246107 1/Triple-threat-malware-campaign-
combines-Emotet-TrickBot-and-Ryuk

[8]

6] https://malpedia.caad.fkie.fraunhofer.de/details/win.trickbot

[7]

[8] https://youtu.be/ BfLSRjHW08?t=1252

(9 https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

[10] 18faf22d7b96bfdb5fd806d4fe6fd9124b665b57 1d89ch53975bc3e23dd75ff1

(1] https://x64dbg.com/

[12] https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount

[13] https://ghidra-sre.org/

[14] Thanks to Wesley Shields https://twitter.com/wxs for this critical signature technique.

12/13

https://malpedia.caad.fkie.fraunhofer.de/details/win.ryuk
https://searchsecurity.techtarget.com/news/252461071/Triple-threat-malware-campaign-combines-Emotet-TrickBot-and-Ryuk
https://malpedia.caad.fkie.fraunhofer.de/details/win.trickbot
https://youtu.be/_BfLSRjHWo8?t=1252
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://x64dbg.com/
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount
https://ghidra-sre.org/
https://twitter.com/wxs

[15] https://www.reversinglabs.com/technology/reversinglabs-hash-algorithm

MORE BLOG ARTICLES

13/13

https://www.reversinglabs.com/technology/reversinglabs-hash-algorithm

