
1/10

Johnny Shaw January 21, 2021

Herpaderping: Security Risk or Unintended Behavior?
crowdstrike.com/blog/herpaderping-security-risk-or-unintended-behavior/

 The answer to that question often depends on who you ask.

By definition, process herpaderping is a hacking technique in which digital adversaries
modify on-disk content after the image has been mapped in order to obscure the process.
This obscurity can confuse security products or the operating system itself, sometimes
allowing malicious code to be executed. For more information on process herpaderping,
please read my earlier explainer post here.

At a Glance: How Process Herpaderping Occurs

1. Write target binary to disk, keeping the handle open. This is what will execute in
memory.

2. Map the file as an image section (NtCreateSection, SEC_IMAGE).
3. Create the process object using the section handle (NtCreateProcessEx).
4. Using the same target file handle, obscure the file on disk.
5. Create the initial thread in the process (NtCreateThreadEx). At this point the process

creation callback in the kernel will fire. The contents on disk do not match what was
mapped. Inspection of the file at this point will result in incorrect attribution.

https://www.crowdstrike.com/blog/herpaderping-security-risk-or-unintended-behavior/
https://github.com/jxy-s/herpaderping
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga

2/10

6. Close the handle. IRP_MJ_CLEANUP will occur here. Since we’ve hidden the contents
of what is executing, inspection at this point will result in incorrect attribution.

From an OS’s perspective, herpaderp attacks are often categorized as unintentional activity.
But from a developer’s point of view, it’s a clear security threat—and a potent one at that.

To illustrate this principle, let’s take a look at a recent example. Over the summer, it may
have appeared that Google distributed a signed copy of Mimikatz. Sounds strange? It should
because Google did not distribute a signed copy of Mimikatz. Rather, if you saw this, you
were witnessing a case of process herpaderping, an exploit technique that obscures the
intentions of a process by modifying the content on disk after the image has been mapped.

My team disclosed this process herpaderping attack to the Microsoft Security Response
Center (MSRC) in mid-July. A case was opened a few days later. MSRC concluded their
investigation near the end of August and determined the findings of the MSRC investigation
were valid but did not require immediate servicing.

And with that, the case was closed—without a real resolution or timeline for future review,
despite our reiterated belief to MSRC that this bug is severe.

Review the details here.

What Does Herpaderping Mean for Developers?

The consensus from the cybersecurity community and researchers sees the situation quite
differently. The POC shows this is exploitable and as a “defense evasion” or “masquerading”
technique.

When an attack of this nature is miscategorized by an OS as unintentional activity it has
major cybersecurity implications for any and all developers, not just security vendors. For
example, where a Microsoft OS categorizes this attack as unintentional, Microsoft Defender
Antivirus scans completed on the image backing the process may not prevent execution by a
known malicious binary. Once the file is copied to the desktop, Microsoft Defender will likely
realize there is a problem, but by then, the damage is done.

Many antivirus vendors are thought to be vulnerable to this type of attack, which means that
many organizations are at risk of experiencing a herpaderping attack.

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-cleanup
https://github.com/jxy-s/herpaderping/blob/main/res/SurivDemo.gif

3/10

Herpaderping: How It’s Done

When the OS characterizes herpaderping as unintentional activity, it fails to address such
exploits, and thus the burden of the solution falls on developers, both cybersecurity vendors
and general app developers. But in order to defend against such attacks, we must first
understand how they work.

Generally, a security product takes action on process creation by registering a callback in the
OS kernel (PsSetCreateProcessNotifyRoutineEx). At this point, a security product may
inspect the file that was used to map the executable and determine if this process should be
allowed to execute. However, the kernel callback is invoked when the initial thread is
inserted, not when the process object is created.

Because of this disconnect, an actor can create and map a process, modify the content of
the file, then create the initial thread. A product that does inspection at the creation callback
would then see the modified content.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderping-Figure-1-rev.png

4/10

Click image to enlarge

In addition, some products use an on-write scanning approach that consists of monitoring for
file writes. A familiar optimization is recording the file as written and deferring the actual
inspection until IRP_MJ_CLEANUP occurs (e.g. the file handle is closed). Thus, an actor
using a write -> map -> modify -> execute -> close workflow will subvert on-write scanning
that solely relies on inspection at IRP_MJ_CLEANUP.

To abuse this convention, adversaries first write a binary to a target file on disk. Then, they
map an image of the target file and provide it to the OS to use for process creation. The OS
then maps the original binary. Using the existing file handle, and before creating the initial
thread, the adversary then modifies the target file content to obscure or fake the file backing
the image. Later, the initial thread is created in order to begin execution of the original binary.
Finally, the target file handle can be closed.

https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderping-Figure-1-rev.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-cleanup
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-cleanup

5/10

Let’s look at an example of herpaderping in action.

As you can see in the demo linked above, Cmd.exe is used as the execution target. The first
run overwrites the bytes on disk with a pattern. The second run overwrites .exe with
ProcessHacker.exe.

The herpaderping tool then fixes the binary to look as close to ProcessHacker.exe as
possible, even retaining the original signature. Note the multiple executions of the same
binary and how the process looks to the user compared to what is in the file on disk.

Looking at this flow from Process Monitor, we observe the source file being written and the
OS mapping the image at the section creation. Using the same handle, the exploit overwrites
the source binary with whatever it likes before creating the initial thread. By the time the
process creation notification fires in the kernel the file backing the image is not what was
mapped:

https://github.com/jxy-s/herpaderping/blob/main/res/ProcessHerpaderp.gif

6/10

Click image to enlarge

The SECTION_OBJECT_POINTERS of the FILE_OBJECT play a key role here. The OS will
cache the initial image mapping and re-use the already mapped section, even if there is
active write access to the FILE_OBJECT. This also means that a user can open the original
file with exclusive access. While this won’t necessarily create an issue for the kernel
callback, it does affect downstream logic in that it assumes that when the user opens the file
with read access it will be broken. However, such logic does not apply, given that the file
content has been overwritten. Further, the kernel callback is hopeless too, since reading
directly from the file using that FILE_OBJECT will read the wrong data.

https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderping-Figure-2b.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_section_object_pointers
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object

7/10

This also means if a user tries to execute that process again it will result in a sharing
violation. From user mode, without access to that original target file handle, no one may
conventionally execute the process.

Resolving This Issue: A Short-term Fix and Long-term Solution

Unfortunately, there is not a clear fix for herpaderping attacks. It seems reasonable that
preventing an image section from being mapped/cached when there is write access to the
file should close the hole. However, that may or may not be a practical solution.

There is a frustration among the development community about the incoherency between
what is on disc and what it is going to execute, which is a common issue with all major
operating systems. As such, that is something that should be considered when designing a
security product.

While there isn’t a clear mechanism to guarantee that coherency, there are ways that
security vendors, as well as security engineers and analysts, can foresee this issue and
minimize the risk.

One way to detect this type of exploit is to look for write access to the related file object when
the process is created. The exploit seems achievable through a higher-level API call. That
said, the API juggling involved usually requires a native-call, which allows the attacker to
tightly control the process creation flow.

Another way to detect this type of exploit is checking for coherency between the file on disk
and the mapped process. Viewing the image coherency between the file on disk and the
mapped process may be seen in an addition I’ve made to Process Hacker, and also shows
the spoofed display of “Google” as the “signer” due to the exploit.

8/10

Click image to enlarge

Here is a link to the enhancement proposal I’ve made to Process Hacker:
https://github.com/processhacker/processhacker/issues/744

Process Tampering may also be seen through a recent addition to SysMon by Mark
Russinovich, CTO of Microsoft Azure, reproduced below and in this tweet.

https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderp-Figure-3.png
https://github.com/processhacker/processhacker/issues/744
https://twitter.com/markrussinovich/status/1328769178233237504?s=20

9/10

Click image to enlarge

Click image to enlarge

As for a long-term solution, that would require working with the OS to agree on a joint
approach. We’re hopeful that as the technique gains broader awareness, the OS vendors
will work with the cybersecurity community to adopt more stringent countermeasures directly
in the OS.

What are your thoughts? How do you reduce the risk of herpaderping in the short-term?
What steps do you think the OS community must take to address this issue more
systematically? For additional context and insight, see what industry professionals are saying
and join the conversation on Twitter.

https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderp-Figure-4.png
https://www.crowdstrike.com/wp-content/uploads/2021/01/Herpaderp-Figure-5.png

10/10

https://twitter.com/gentilkiwi/status/1321001331755286529?s=20

https://twitter.com/Mordor_Project/status/1320949216018112514?s=20

https://twitter.com/jxy__s/status/1320873966752329729?s=20

https://twitter.com/analyzev/status/1320914701514084352?s=20

https://twitter.com/markrussinovich/status/1328769178233237504?s=20

Does this work sound interesting to you? Visit CrowdStrike’s Engineering and Technology
page to learn more about our engineering team, our culture and current open positions:
https://www.crowdstrike.com/careers/engineering-technology-team/

https://twitter.com/gentilkiwi/status/1321001331755286529?s=20
https://twitter.com/Mordor_Project/status/1320949216018112514?s=20
https://twitter.com/jxy__s/status/1320873966752329729?s=20
https://twitter.com/analyzev/status/1320914701514084352?s=20
https://twitter.com/markrussinovich/status/1328769178233237504?s=20
https://www.crowdstrike.com/careers/engineering-technology-team/

