Linux Rekoobe Operating with New, Undetected Malware
Samples

g
>

3¥¢* intezer.com/blog-linux-rekoobe-operating-with-new-undetected-malware-samples/

January 20, 2020

Get Free Account

Join Now

Introduction

Our research team has identified new versions of an old Linux malware known as Rekoobe,
a minimalistic trojan with a complex CNC authentication protocol originally targeting SPARC
and Intel x86, x86-64 systems back in 2015.

The new malware samples have lower detection rates than their predecessors. We believe
this malware ceased its operation in 2016 after it was reported, however, based on our
findings we can estimate the operators behind Rekoobe have resumed their operations
utilizing a newer version of the malware.

1/9

https://intezer.com/blog-linux-rekoobe-operating-with-new-undetected-malware-samples/
https://analyze.intezer.com/

Based on our research, we can estimate the new samples have been in the wild since
2018.

1 \l/ One engine detected this file

—— 2e2dc0328f6c19b033bb19c24e59e354e510606058af

756.38 KB 2019-07-23 03:43:21 UTC
b83idB049d162a8e3edd

Mmome/fwys/botnet/botnet-procedure/1 26

Comrmunity i

SCore

We will present a brief technical analysis of the new Rekoobe samples and explain why we
believe the new samples have lower detection rates despite previous versions of Rekoobe
being well-detected by different security vendors.

Technical Analysis

Linux Rekoobe was first reported by DrWeb in 2015. We believe this malware resumed its
operation some time between 2018 and 2019, based on CNC reverse DNS intelligence
from RisklQ, along with sample information from VirusTotal concerning the new variants.

RESOLUTIONS @

1-20f2 « Sort: Last Seen Descending v 25/ Page v Download Copy
Resolve First Last Source Tags

huawel.site 2015-08-22 2020-01-12 riskig

96.45.187.113.16clouds.com 2019-10-03 2019-12-03 riskig
1-20f2 v

It's important to mention that the new variants are statically compiled ELF binaries while
older variants were dynamically compiled.

This undeniably implies that on a code level these two generations of the same malware
are different. Since the compilation flags used by the GCC compiler differ between
dynamically and statically linked code, the compiler will generate different code accordingly.

We have also taken into consideration that if indeed these new implants were generated
after a three to four year gap, the GCC compiler version would also differ. Consequently, the
compiler will generate different code on an assembly level even though additional
compilation flags may not have been explicitly used.

It's important to mention that the authors of Linux Rekoobe have removed every attributive
string from older variants in their new samples. This explains why string-based signatures
have not been able to detect the new version of the malware.

2/9

https://vms.drweb.com/virus/?i=7754026&lng=en
https://community.riskiq.com/search/96.45.187.113

In previous Rekoobe variants, the malware would initially collect some preliminary
configuration saved in disk, masquerading this configuration to be a shared object, as
previously reported by DrWeb researchers. However, in the new variants, the need for this
configuration file has been completely removed, having hard-coded the subject artifacts
previously dependent on the configuration file.

xor eax, sax envp= dword ptr 10h

mov dword ptr [esp], offset aSecret ; "SECRET"

call read _config_var ; __unwind

mov ds:g_Secret, eax Old Rekobee lea ecx, [esptd] New Rekobee
mov dword ptr [esp], offset aMagic ; “MAGIC" and asp, OFFFFFFFOR

call read_config_var push dword ptr [ecx-4]

mov ds:dword_B8054AD4, eax push abp

mow dword ptr [esp], offset aProxyhost ; "PROXYHOST" marw abp, ssp

call read_config_var [push edi

mov ds:dword 8053A40, eax [push asi

mow dword ptr [esp], offset aProxyport ; "PROXYPORT' [push ebx

call read_config_wvar [push ecx

mow dword ptr [esp+8], OAh ; base sub asp, ICh

mov dword ptr [esp+d], 0 ; endptr mov ebx, [ecx+d]

mov [esp), sax § nptr maw aax, large gs:ldh

call _strtol moy [ebptvar_1C], eax

mowv ds:dword 8053A48, eax zoxr SAX, Sax

mov dword ptr [esp], offset aUsername ; "USERMAME" mov edx, [ebx]

call read_config_var mow ecx, OFFFFFFFFh

mow de:dword 8053Ad4d, eax mov adi, adx

mov dword ptr [esp], offset aPassword ; "PASSWORD" repne scasb

call redd_config_var mov eax, scx

mav dsidword_8054AD0, sax nat eax

mov dword ptr [esp], offset aEndpoint ; "ENDPOINT" sub eax, 1

(call read_config_wvar push aax 1 imt

mov ds:dword_BO5S4ADC, eax [push o 3 dat

mov dword ptr [esp], offset aServerPort ; "SERVER_PORT" [push adx } int

eall read_config_var call memsat

mowv dword ptr [esp+8], OAh ; base mov eax, [ebx]

mov dword ptr [esp+d], 0 ; endptr mov dword ptr [eax], bil/'
mov [esp], sax § mptr mov dword ptr [eax+d], 'sys/’ -
call _strtol maov dword ptr [eax+8], 'dmet’ / Rewriting argv[0]
mowv ds:dword_S8054ADE, eax mov dword ptr [eax+0Ch], 'sys/'
mov dword ptr [esp], offset aConnectBackDel ; "CONNECT BACK DELAY" mav dword ptr [eax+10h], 'dmet'
call read_config_var mov dword ptr [eax+18h], 'edu-'
mov dword ptr [esp+8], OAh ; base mov word ptr [eax+18h], 'dv’
mov dword ptr [esp+d], O ; endptr mov byts ptr [eax+1Rh], O

mow [esp], eax j nptr loall fork

(call _strtol add asp, 10k

mov de:seconds, eax tast @AX, SAX

call _fork_ is loc_S804DIFA

Main function comparison between Rekoobe variants

Among the hardcoded artifacts we can find the CNC IP and port, in addition to the shared
‘secret’ used to authenticate the CNC and client.

A new feature was added to the new Rekoobe variants to rewrite argv[0], as an attempt to
rename the process name (as shown in the picture above) since some forensics tools do
retrieve the process name from this location.

The names to rewrite argv[0] chosen by the authors were:

o /lib/sys/temd/sys/temd-udevd
e /bin/bash

*J [test edx, mdx
¥ jnz loc_804DIFF

ol it 2 Old Rekobee J ™1 New Rekobee

h]
T loc_BO4EIFS: I
— [ebptvar_14], eax mov dword ptr [esp+8], € e
|xex oeax, eax mow eax, ds:dword_B8054AD4 sub asp, OCh
lmov dword ptr [esp], offset aSecret ; "SECRET” e [esptd], sax ~ ; buf [push 3
lcall read_config_var mov sax; dasfd call alarm
[may duig_gearat, eax mov [esp], sax 3 £4 add
—_ call _writs push s_IdontKnow 1 "idontiknew
dword pt 3 conds pus! e 3
— mal PLx [065). 3 2 =a call enc_handshake
—q add esp, 10h
i cmp eax, 1

i L iz short loc_804D361

mov lesp], eax 3 £d T

eall enc_handshake . -

cnp eax, 1

j= short loc_B804E4SS

3/9

Shared secret retrieval comparison between different Rekoobe versions

Another noticeable difference is that in previous variants a magic value was retrieved from
the configuration file and sent to the CNC prior to the handshake mechanism. It seems that
the authors removed this preliminary packet on the new Rekoobe variants.

The remaining code resembles previous variants of Rekoobe. The following is a simplified
overview of the network protocol used by the new Rekoobe samples, mostly shared with
older Rekoobe variants:

Client Server

Send AES128_HMAC_SHA1 context initialization for encryption and decryption

F s

Send CNC integrity packet

-~

If integrity packet was valid, send back the integrity packet to verify client

b 4

Send command ID

-~

The following is a brief description of the most relevant steps in the authentication
mechanism:

1. The client will read a stream of 40-bytes from the server. This packet will be divided into
two blocks of 20-bytes that will be utilized to initialize two AES128 HMAC_SHA1 contexts.
The HMAC SHA1 pair will be generated against each of the 20-byte streams using a given
shared secret (“idontknow” hardcoded string in newer variants) and they will be used as
AES128 keys for encryption and decryption of future packets.

These computed keys will be used throughout the communication process to decrypt the
received packets and to encrypt the packets to be sent by the client with different keys. This
implies that if this preliminary packet is not retrieved and the shared secret is not known,
then the remaining traffic will unlikely be decryptable.

4/9

lea eax, [ebx#ZIZR]

mov dword ptr [ebx+214h], 36363636h
mov dword ptr [eax+4], 36363636h
mov dword ptr [eax+8], 36363636h
mov dword ptr [eax+0Ch], 36363636h
e MEWAM pRA WO vt THA_mwtE)p wma mov dword ptr [eax+10h], 36363636h
sub esp, 4 mov dword ptr [eax+14h], 36363636h
lea eax, [esp+40h+saltl] mov dword ptr [eax+18h], 36363636h
push eax ; salt mov dword ptr [eax+1Ch], 36363636h
push edi ; secret mov dword ptr [eax+20h], 36363636h
push offset g_Hmac_1l ; buffer mov dword ptr [eax+24h], 36363636h
call aesl28_hmac_shal mov dword ptr [eax+28h], 36363636h
add esp, OCh mov dword ptr [eax+2Ch], 36363636h
lea eax, [esp+40h+saltl] mov dword ptr [eax+30h], 36363636h
push eax ; salt mov dword ptr [eax+34h], 36363636h
push edi ; secret mov dword ptr [eax+38h], 36363636h
push offset g_Hmac_2 ; buffer mov dword ptr [eax+3Ch], 36363636h
[Jeall 1 c_shal — mov dword ptr [ebx+254h], 5C5C5C5Ch
add esp, OCh mov dword ptr [ebx+258h], 5C5C5C5Ch
lea eax, [esp+40h+recv_size] mov dword ptr [ebx+25Ch], 5C5C5C5Ch
push eax ; arg_8 mov dword ptr [ebx+260h], 5C5C5C5ch
push offset g_Rov_buffer ; recv_buff mov dword ptr [ebx+264h], 5C5C5C5Ch
push esi ; £d mov dword ptr [ebx+268h], 5C5C5C5Ch
call cnc_recv_data mov dword ptr [ebx+26Ch], 5C5C5C5Ch
add aan . 10h mov dword ptr [ebx+270h], 5C5C5C5cCh
mov dword ptr [ebx+274h], 5C5C5C5Ch
mov dword ptr [ebx+278h], 5c5C5C5ch
mov dword ptr [ebx+27Ch], 5C5C5C5Ch
mov dword ptr [ebx+280h], 5C5C5C5Ch
mov dword ptr [ebx+284h], 5C5C5C5Ch
mov dword ptr [ebx+288h], 5C5C5C5Ch
mov dword ptr [ebx+28Ch], 5C5C5C5Ch
mov dword ptr [ebx+290h], 5c5cC5c5ch
-aa - 1AL

opad ipad hmac padding

AES128 HMAC _SHA1 context generation

2. After AES128 HMAC_SHA1 context initialization is achieved there will be a CNC
authentication procedure similar to a Challenge-Handshake Authentication Protocol
(CHAP). The client will read an additional stream of 16-bytes that will then decrypt using
AES128 with the corresponding and previously generated SHA1 hash as key. It will xor
decode the stream to retrieve information of the next packet to be read. This process will be
repeated every time the client and server sends an additional packet.

3. Every other packet will be subject to HMAC integrity checks to verify the integrity of the
packets. Two layers of SHA1 will be computed against the subject packet with two
additional salts. This computed SHA1 hash will be then compared with the first 20-bytes of
the received packet which contains the pre-computed SHA1 of the AES encrypted packet’s
payload.

If the computed SHA1 hash does not match with the hardcoded hash delivered in the
packet, the client will cease execution since it would imply that the integrity of that packet
has been compromised; otherwise the client will proceed to AES128 decrypt the packet’s
payload and then apply an xor layout.

5/9

call shal_init

add esp, OCh

push 40h

push coffset g_Shal_ wvall
push esi

call shal update

add esp, OCh

push ebx ; int
push offset g_Rev_buffer
push esi

call shal update

add esp, 8

lea ebx, [esp+0Dih+computed_ shal_ hash]
push ebx ; a2
push esi ; al
call shal final

mov [esp+0DCh+var DC],; esi
call shal init

add esp, OCh

push 40h

push offset g_Shal wvall
push esi

call shal update

add esp, OCh

push 14h ;i int
push ebx

push esi

call shal_update

add esp, 8

push ebx ; a2
push esi ; al
call shal final

add esp, OCh

push 14h ; a3
push ebx ; a2
lea eax, [esp+0DBh+packet_shal]
push eax ; al
call _mememp

add esp, 10h

test &ax, aax

j= short loc_804BFAF

SHA1 scheme applied to encrypted packet and comparison to hardcoded SHA1

4. After this packet has been decrypted, the contents will be compared against a hard-
coded byte sequence of 16-bytes in order to verify the integrity of the server.

Once again, if this sequence does not match, the handshake will fail.

5. If the sequence is correct, then this byte sequence will be AES128 encrypted with the
corresponding HMAC SHA1 as key, two layers of SHA1 will be computed with its
correspondent salts against the encrypted payload, and this SHA1 hash will be written on
the first 20-bytes of the packet itself to then be sent back to the CNC as the last verification
step, in this case to verify the integrity of the client.

6/9

e -

call cne_recv_data
add esp, 10h
omp eax, 1

jnz short loc_8049430

§ J |
FIEIE]

cmp [esp+3Ch+recv_size], 10h
jnz

short loc_80493F8

data:08104068 g Send buffer
data:08104068
data:08104069
data:0810406A
data:0810406B
data:0810406C
data:0810406D
data:0810406E
data:0810406F
data:08104070
data:08104071
data:08104072
data:08104073
data:08104074
data: 08104075
data:08104076
data:08104077

4 /,/
push o
Puh oetset[oSend butier] a2l
push offset 'g—Rev—bu al
call _memcmp
add esp, 10h
mov ebx, eax
test eax, eax
jz short loc 8049409
(ol =i
loc_B049409:
sub esp, 4
push 10h ; size
push offset g_Send buffer ; buffer
push esi ; £d
call enc_send_data
add esp, 10h
cmp eax, 1
jnz short loec_8049430
- w -

ldatas08104078—— _db o |

GEEEEEEEEEREERE &

58h ;

90h
OAEh
B6h
OFlh
0B9h
1ch
OF6h

29h ;

83h
95h

71h ;

1ph
ODEh

58h ;

0Dh

Hardcoded stream of 16-bytes the CNC and client authentication is based on

We assume this field would be an ideal choice for also identifying the campaign ID by the
operators, although it seems the value of this field was shared with previous variants.

6. If the handshake was successful, the client will proceed to listen for a command from the
CNC. The malware supports the same three different commands as it did in previous
variants, those being file upload, file download, and a reverse shell. The following picture
shows the command management implemented by the client after command packet has

been successfully decrypted:

7/9

aad eEp, vLno

laa aax, [abp+var 30]
push eax
push offset command id
push esi
call enc_recv_data
add esp, 10h
cmp oax, 1
jaz short loc B04D3IBE
e
cmp [abp+war 30], 1
jz short loc_804D3A0
e
loc_BOADIAD:
MOVEX eax, ds:command_id
‘cmp al, 2
iz short loc 804D3CE
e
cmp al, 3
iz short loc_B04D3DE
(] 15 =
mow abx, OCh
cmp al, 1
jaz short loc_ 804DIES
Y ' L]
e "™E e
sub asp, OCh
loc_BO4D3CH: push esi loc_BO4DIDE:
sub asp, OCh call upload file sub asp, OCh
push a8l mov ebx, sax push a8l
call download_file add asp, 10k call reverse_shall
mow ebx, sax jmp short loc 804D3IES mov ebx, sax
add asp, 10h add asp, 1l0h
jmp short loc_ 804DIES jmp short $+2
I I
Conclusion

We have provided a brief technical analysis of the new Linux Rekoobe samples,
highlighting some of the differences between these variants and previous samples. We
have also provided an overview of the network protocol.

We have provided several reasons for why the malware has gone undetected, even though
the code base of these new variants doesn’t appear to have been heavily modified on a
source code level from the original Rekoobe samples.

We do not believe this malware has been consistently operational since late 2015. In
contrast, we believe the malware may have operated intermittently over small periods of
time, since the newly discovered samples appear to be created in recent years, and there
appears to be a gap in 2017 where additional Rekoobe samples have not been found.

We have indexed the code from the new Linux Rekoobe variants in our Genetic Malware
Analysiss platform Intezer Analyze, and we have published a new YARA rule in order to
help the community to detect this threat.

8/9

https://www.intezer.com/intezer-analyze/
https://www.intezer.com//intezer-analyze/
https://github.com/intezer/yara-rules/blob/master/Rekoobe.yar

We expect Linux threats to pose a significant challenge to enterprise cloud security in the
near future. We have just released our new cloud security product, Intezer Protect, which is
based on our Genetic Malware Analysis technology and provides native cloud protection.
For more information, visit https://www.intezer.com//intezer-protect/.

I0Cs

80e5fec19843c32c6c3fc38aabdeb428c339b0dfce28023529144405b9¢72b33
C9eb46d00e11acb354b518f725412b88c69cc511ec8d5bd3cb03¢c1740f8a2936
2e2dc0328f6¢c19b033bb19c24e59e354e519606958afb93fd8049d162a8e3edd
E63c2e35a41¢c51e33b246f5b60c5d1b8da0d8c50bf7ec592383b61818217e8d7
7148ae1ab45e17889915100fdc203fe7941d8e9b946d44a3989ab8baeb6066e 1
1d0591049a65db6508a9517f72954541ef6b5a7fe9153c5edcb1bac1b70b991c
4B45E601D480124C38BEO6A706F7D8F4
F34119A442651945D5EFB33DB8901D9B

7xin.bitscan[.]win

huawel[.]site

96.45.187[.]113

119.3.22[.]174

Ignacio Sanmillan

Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer\'s malware hunting and investigation operations, analyzing
and documenting new undetected threats. Some of his latest research involves detecting
new Linux malware and finding links between different threat actors. Nacho is an adept ELF
researcher, having written numerous papers and conducting projects implementing state-of-
the-art obfuscation and anti-analysis techniques in the ELF file format.

9/9

https://www.intezer.com/blog/linux/elf-malware-analysis-101-linux-threats-no-longer-an-afterthought/
https://www.intezer.com//intezer-protect/
https://www.intezer.com//intezer-protect/

