Dustman APT: Art of Copy-Paste

) ' swapcontext.blogspot.com/2020/01/dustman-apt-art-of-copy-paste.html

|# | FileNameByHash Jdext 000000014000105C 00D000B1
E scmInstalDriver Jdext 0000000140001150 00000060
E scmOpenDevice Jdext 00000001400011B0 00000092
|E| scmRemavelriver JSext 0000000140001244 00000041
|E| scmStartDriver Jext 0000000140001258 0000005A
|E| scmStopDriver Jtext 00000001400012E4 0000007FE
|E| RunAgentProcess Jgext 000000014000 15364 Q0000103
E TOLExplait Jdext 000000014000146C 0000034
E TOLGetProcAddress Jdext 0000000140001820 00000058
E _main dext 0000000140001878 0000023A
E TOLMapCriver_Modified Jdext 0000000140001AE4 00000310
|E| TOLResolveKernelImport JSext 0000000140001004 000000AT
|E| TOLStartVulnerableDriver Jext 0000000140001E7C 00000154
|E| TOLStopVulnerableDriver _Madified Jgext 0000000 14000 1FD3 Q00000C3
|E| TOLVEBoxInstalled Jdext 00000001400020A0 00000053
E _strcat_w Jdext 00000001400020F4 0000003C
E _Strompi_w Jdext 0000000140002130 000000ED
E _sirlen_w Jdext 00000001400021A0 00DD001E
[#1 supDetectObiectCallback Jdext 00000001400021C0 00D0004E

Dustman is a piece of data wiping malware with origin believed to be from Iran or if you like -
quote from zdnet.com "Iranian state-sponsored hackers".

There is a full technical overview of this malware ->
https://www.scribd.com/document/442225568/Saudi-Arabia-CNA-report, | wouldn't waste
time fully repeating it, as it gives a brief and enough description of this malware key
parameters and capabilities.

Usually | pay zero attention to typical APT hysterics and low quality malware pushed by
mass media/various fakeAv's as "incredible sophisticated" spyware/whatever. With exception
if there is anything related to my work, for example copy/pasted from it. Just like in this case.

This is believed shared code with another data wiper called "ZeroCleare" - and IBM did
analysis with 28 page PDF where they managed to copy-paste from my github repository
without even giving a single credit or link to original. Well, ok, fuck you too IBM IRIS rippers

&

Why this thing called Dustman? Well authors of this malware were lazy and left full pdb string
inside main dropper C:\Users\Admin\Desktop\Dustman\x64\Release\Dustman.pdb. This
doesn't look like fake and left because Visual Studio (and this one created in it) always sets
debug information to Release builds by default (Project settings->Linker->Debugging). It is
something from series of small tips just like if you are wondering why some of rootkits pdb
paths always at Z: drive - easy to use hotkey while debugging on VMware.

1/9

https://swapcontext.blogspot.com/2020/01/dustman-apt-art-of-copy-paste.html
https://www.zdnet.com/article/new-iranian-data-wiper-malware-hits-bapco-bahrains-national-oil-company/
https://www.scribd.com/document/442225568/Saudi-Arabia-CNA-report

Dustman main executable is a muldrop (SHA-1
e3ae32ebe8465c7df1225a51234113e8a44969cc).

It contain three more files stored inside executable resource section. They are encrypted with
simple xor.

for (ULONG i = 0; i < (ResourceSize / sizeof(ULONG_PTR)); i++)
Bufferfi] = 0x7070707070707070;

Resource with id 1 (decrypted SHA-1 7¢c1b25518dee1e30b5abeaalea8e4a3780c24d0c) is a
VirtualBox driver. It is ripped by me from WinNT/Turla (another APT, this time "believed" to
be from GRU GS AF RF, that one by the way also had some references/inspirations of
my/our previous work). Dustman author(s) got it from my github repository called TDL - Turla
Driver Loader (https://github.com/hfirefOx/TDL), well not only that driver, half of their work
actually blatant copy-paste of this repository.

Resource with id 103 (decrypted SHA-1 a7133¢c316¢534d1331¢801bbcd3f4c62141013a1) is
Eldos RawDisk modified driver (version 3.0.31.121). It is modified by Dustman authors by
removing digital certificate from it. Currently | have no answer why they did this, except Eldos
RawDisk certificate is widely blacklisted or detected by intrusion prevention systems/AV as
possible sign of threat as it was used before multiple times in different malwares
(https://attack.mitre.org/software/S0364/)

Resource with id 106 (decrypted SHA-1 20d61¢c337653392ea472352931820dc60c37b2bc)
is malware agent application that is intended to work with Eldos RawDisk to perform data
wipe. It contain pdb string
C:\Users\Admin\Desktop\Dustman\Furutaka\drv\agent.plain.pdb which is giving you
insides on VS solution structure. Furutaka is an internal name that | gave to TDL project
executable.

Initial dropper is a modified version of original TDL (Furutaka) version 1.1.5, so it is relatively
new, as this is final version in that repository before it was archived at April 2019. Just to
show you how much Dustman authors copy-pasted, here is a screenshot of functions which |
was able to identify in this malware (while rest of them are various trash from MS runtime).

2/9

https://github.com/hfiref0x/TDL
https://attack.mitre.org/software/S0364/

Function name

FunctionMameByHash
FileMameByHash
scmlnstallDriver
scmOpenDevice
scmRemovelriver
scStartDriver
scmStopDriver
RunAgentProcess
TOLExploit
TOLGetProcAddress
_main
TOLMapOriver_Madified
TOLResolvekernellmpaort
TOLStartVulnerableDriver
TOLStopVulnerableDriver_Modified
TDLVBoxInstalled

F| _strcat_w

_strcmpi_w

_strlen_w

| supDetectObjectCallback
f | supEnumSystemObjects
supGetMtOsBase

H‘

[
w
=

=)
[y
m
A

—
w
o
2
=
a

¥ | suplsObjectExists

¥ | supQueryResourceData_Modified
| supStopVBoxService
sup\WriteBufferToFile

sub_ 140002460

|
5
g
&
2
3

F| sub_140002C20
RtiCopyMemory
sub_140003075

F | oo 1AnANIIAN

o] Y G Y [

Segrment Start
Jdext 0000000140001000
Jdext 000000014000109C
Jdext 0000000140001150
Jdext 0000000140001160
Jdext 0000000140001244
Jdext 0000000140001238
Jdext 00000001400012E4
Jdext 0000000140001354
Jdext 000000014000 146C
Jdext 0000000140001820
dext 0000000140001878
Jdext 000000014000 1AB4
Jdext 00000001400010D4
Jdext 0000000140001E7C
Jdext 0000000140001FDE
Jdext 0000000 140002040
Jdext 000000014000 20F4
Jdext 0000000140002130
Jdext 0000000140002 140
Jdext 00000001400021C0
Jdext 0000000140002210
Jdext 0000000140002414
Jdext 0000000140002454
Jdext 0000000140002504
Jdext 0000000140002543
Jdext 0000000140002 18
Jdext 0000000140002798
Jdext 000000014000 2460
dext 0000000140002A80
Jdext 0000000140002C20
dext 0000000140002C40
Jdext 0000000140003073
tawt [T T T T T Tt P T T T = e T |

Length

Q0000099
00000061
00000050
00000092
00000041
00000054
0000007
Q0000108
Q0000364
00000058
0000023A
00000310
000000AT
00000154
000000Cs
00000053
Q000003C
000000sD
Q00000 1E
Q000004E
00000201
0000003E
000000E0
Q0000044
Q0000nCh
00000130
00000244
00000010
00000190
00000013
00000435
Q0000208

AnnnnnT 1

Pic 1. Dustman dropper functions.

It seems Dustman author(s) simple took TDL solution and then modified it by removing

console/debug output in code and adapting it for their specific tasks - decrypt, drop

resources to the disk, load RawDisk driver and start agent application at final stage. Lets

take a look on modifications made by Dustman author(s).

At main (which is a heavily modified TDLMain from original TDL) right at the beginning
Dustman attempts to block multiple copies from installing VirtualBox/mapping Eldos driver by
setting mutex with a very specific name "Down With Bin Salman". | do not want to dig into
politics and other bullshit but | would like to suggest in case if this is false flag operation
(surprise, but we will never know this) use something more creative - like for example
"Coded by Soleimani" or "(c) 2019 IRGC", "covfefe" is fine too. If | would doing APT of such
kind | would at first refrain from creating such wrong and stupid mutexes or build their unique
names based on current environment without using any idiotic constants. Another fun

3/9

https://1.bp.blogspot.com/-wMolkmBbMeQ/XiWEuw3QP3I/AAAAAAAAAHQ/2DUzQ1qdqkMQk54TsyLc2j_bEtMAhMOnACLcBGAsYHQ/s1600/tdl_r1.png

message hidden inside agent executable (dropper resource 106 as mentioned above) "Down
With Saudi Kingdom Down With Bin Salman" - very creative (not). Eldos license key is

hardcoded in agent executable as
"b4b615¢c28ccd059cf8ed1abf1c71fe03c0354522990af63adf3c911e2287a4b906d47d".

Back to initial dropper, supQueryResourceData
(https://github.com/hfirefOx/TDL/blob/master/Source/Furutaka/sup.c#L99) is modified by
adding xor decryption loop mentioned above. Below is screenshot of
TDLStartVulnerableDriver routine slightly modified by removing console output, code
responsible for backup and new file name for dropped file.

4/9

https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/sup.c#L99

__inte4 fastcall TDLStartVulnerableDriver(LPWSTR lpBuffer)
l

LPWSTR w1; // rbx

_QWORD *w2; /[rsi

SC_HANDLE wv4; // rdi

int v5; // eax

unsigned int v6; // [rsp+58h] [rbp+18h]
__int64 v7; /[[rsp+66h] [rbp+18h]

v6 = @;

vl = lpBuffer;

v7 = -1i64;

v2 = supQueryResourceData Modified(1i64, g _hInstance, &v6);
if (w2)
return -1i64;
memset(vl, 8, Ox104uisd);
if { GetCurrentDirectoryW(@x1€4u, v1))
1

il

OpenSCManageril(0164, 8164, 8xFPO3Fu);

if E vd)

if (supIsObjectExists(L"\\Device", L"VBoxDrv"))
{

==

supStopVBoxService(v4, L"VBoxUSBMon");
supStopVBoxService(v4, L"VBoxNetAdp");
supStopVBoxService(v4, L"VBoxNetLwf");
Sleep(Bx3E8u);
supStopVBoxService(v4, L"VBoxDrv");

¥

strcat_w(vl, L"\\assistant.sys");

v5 = supWriteBufferToFile(vl, v2, vG, @, 8);

if { vh == vb)

1

if (!'g VBoxInstalled)
scmInstallDriver(vd, L"VBoxDrv", vi1);

if (scmStartDriver(v4, L"VBoxDrv"))
scmOpenDevice(L"VBoxDrv", &v7);

¥

CloseServiceHandle(v4);

Pic 2. TDLStartVulnerableDriver copy-paste.

Original routine https://github.com/hfirefOx/TDL/blob/master/Source/Furutaka/main.c#L.498

Assistant.sys here is VirtualBox driver which is loaded as shown on picture above. Have no
idea why Dustman authors left VirtualBox USB/Network drivers unload code intact. In original
TDL this is required to load driver on machine with VirtualBox installed and this is

5/9

https://1.bp.blogspot.com/-41xKk7WLbYM/XiWJcc0rgSI/AAAAAAAAAHc/_WbgO6MjrZoEf0EdAVqT3UePbXSEb9kWwCLcBGAsYHQ/s1600/tdl_r2.png
https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/main.c#L498

requirement because VBoxHardenedLoader is depends on this. However this is not required
in APT and can be removed, but it seems Dustman author(s) had mediocre understanding of
what they are doing. It is a little doubtful that target machines has VirtualBox running which
can produce incompatibilities with TDL.

Our next stop is TDLMapDriver routine. In original TDL proof-of-concept it setups shellcode
that next will be executed in kernel by VBoxDrv, maps input file, processes it imports and
merges it with shellcode. Next VBoxDrv memory mapping executed and finally exploit called.
In shellcode original TDL allocates memory for driver mapping using
ExAllocatePoolWithTag routine with tag 'SIdT' (Tdl Shellcode), processes image relocs,
creates system thread (PsCreateSystemThread) with parameter set to driver entry. TDL
mapped drivers must be specially designed as DriverEntry parameters in such way of
loading will be invalid. Finally thread handle closed with ZwClose. Function pointers passed
to shellcode through registers by small bootstrap code which is constructed in user mode.
Dustman author(s) modified this loading scheme in the following way:

1) Encryption for module/function names, funny note that the following string used to decrypt
strings in runtime “I'm 22 and looking for fulltime job!". Because this is copy-paste from open
source and original TDL is very well detected by various fakeAVs

(https://www.virustotal.com/gui/file/37805cc7ae226647753aca1a32d7106d804556a98e1a21

ac324e5b880b9al4da/detection) this maybe an attempt to remove some of these detections.

2) They remember ExAllocatePoolWithTag, PsCreateSystemThread and loCreateDriver
however they never use PsCreateSystemThread despite checking it resolving success and
instead in their shellcode simple call loCreateDriver with pointer to driver entry point as
InitializationFunction param.

Since loCreateDriver expects DriverName as pointer to UNICODE_STRING modified
shellcode also contain "\Driver\elRawDsk" string stored as local array of bytes.
loCreateDriver will create driver object with specified name and pass it to the
InitializationRoutine as parameter, exactly what Eldos RawDisk need at it driver entry. Thus
original TDL limitation bypassed and mapping code can work with usual drivers. As result of
successful exploitation Eldos RawDisk will be mapped to the kernel and it DriverEntry
executed.

6/9

https://github.com/hfiref0x/VBoxHardenedLoader
https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/main.c#L320
https://www.virustotal.com/gui/file/37805cc7ae226647753aca1a32d7106d804556a98e1a21ac324e5b880b9a04da/detection

N .| windows Object Explorer 64-bit (Non-public version) (Administrator) = |EI|5|
_ File Miew ©Object Find Extras Flugins Help
Bl%|e
B2\ Name | Type | additional Information [-
d E] ObjectTypes -u["ACPI Driver [Opalisep Microsoft ACPT
£l Sessions X acP1_HAL Driver
E‘@ o) ‘,\'_;."AFD Driver Andillary Function Driver for W...
E@ DosDevices 'H}.:'AmdPPM Driver [Mpalisep npougccopa AMD
(3 00000000-9 oL amduata Driver Storage Filter Driver
++{[3) 00000000-0 | 4,
T BtapI Driver Kanan [DE
-3 00000000-0 | Bee e
3 oooooooo-0 | T ooP
! blrive =
- - X cdrom
{8 Windows j‘:'CLFS Basic Object | P.egstryl Type |
DosDevices 3 i)
a {5 BaseMamedObje b CmBatt [-Object Information
") Restricted || i CNG Field Value Additional Information
-{) BNOLINKS i compbatt hd DRIVER. OBJECT "
~{3) ArcName q}.:'CcmpoyheEus Type 0x0004 I0_TYPE_DRIVER
) NS Mcsc Size 0x0150
{3 GLOBAL?? -.}."DEGV DeviceObject OxFFFFFAS00233E250 \Device\EIRawDisk
-5 Windows B discache Flags 000000004 DRVO_BUILTIN_DRIVER
@ RPC Control F ""Disk DriverStart MNULL
~~{{3) KnownDls32 f‘:-DxGKrnI DriverSection NULL PLDR_DATA_TABLE_ENTRY
1) BaseNamedChjects “:-ElGGO DriverExtension OxFFFFFAS001DSDFCO PDRIVER_EXTENSION
{3 UMDFCommunicationPor aeﬁa D [Driverhame
{3 KnownDls 1 HardwareDatabase NULL
&) FieSystem '*i'_'_'ﬁ’e‘“" : FastloDispatch NULL PFAST_IO_DISPATCH
! {5) Kernelobiects imtidaudaddservice DriverTnit OxFFFFFABOD1FBA1CO !
{5 Callback “‘i"HD'ﬂ”dBUS DriverStartlo NULL
{2 Security et HTTP DriverUnload 0xFFFFFAB00 1786008
5[5 Device -,\E;'hwpolicy < MajorFunction .
Gove iaozon mowoeE
] X kbdclass [RP_MI CREATE NAMED PIPE
b g
] s, mpMicosE
E wa KSecDD
| [T — 3 | i Ty mPMIREAD
— N
RP M1OUFRY FA
|
QK I OTmeHa | MpHMEHHTE: |

Pic 3. Eldos driver object as seen by WinObjEx64.

Because driver was mapped without involving Windows loader it doesn't have corresponding
entry in PsLoadedModulesList therefore WinObjEx64 shows it driver object major functions
as belonging to unknown memory area which is always automatically suspicious and usually
mean kernel mode malware activity. While Eldos RawDisk DriverEntry execution it creates a
symbolic link to provide access for the applications. It also can be seen with WinObjEx64.

7/9

https://1.bp.blogspot.com/-plXuBV8nQTw/XiWRoVrmN2I/AAAAAAAAAH0/I1DXc8EzGMY8GEG75rX-wAYyVOfDbkZNACLcBGAsYHQ/s1600/elrawdsk.png

| == MemoryMap | [J/CallStack | s SEH | 18 Sopt | =] Symbols | M Source | & References | W Ihreads | =i Snowman | MO Handles | ¥ Irace |

n32_dll |

i

Windows Object Explorer 64-bit (Non-public version) (Ad

Filz Wiew ©bject Find Extras Plugins Help

Bl&q

=5 Name = | Type | Additional Information |

-{3) ObjectTypes mRawDisk SymbalicLink \Device \EIRawDisk

B3 Sessions @ Global SymbolicLink \Global??

B0

B3 DosDevices
“+{5) 00000000-0
{{) 00000000-0
-{{) 00000000-0

{j} 00000000-0 SymbolicLink Properties]
B+ 1

@ Windows Basic Object | Process I Type I Securi’ryl

@ DosDevices e

EI@ BESENam?dObJE Field Value Additional Information ||

{2 Restricted I OBJECT SYMBOLIC, LINK

{2 BNOLINKS CreationTime Ox01D5CFSEFDEBSBSA 12:41:52, 20 Jan 2020

3 Archame < LinkTarget
S somn ooz
) Windows MaximumLength 0x0024
Buffer OxFFFFF8A001D35800 \Device\EIRawDisk

g E:C CT;"‘T:; DosDeviceDrivelndex 0x00000000
ownDlls:

[+-{Z) BaseNamedObjects
-{{5) UMDFCommunicationPor
{3 Knownblls

[#-{-5) FileSystem

~{J) KernelObjects

{3 Callback

askrnl.exs {3 Seaurity

i] [#-{:) Device

{3 Driver

=loix|

< | 2

=== |\‘§essions\ﬂ\DnsDevices\ﬂnnnnﬂnﬂ-nnnnﬂlﬁf\ElRawDisk

0K I OmvenHa [MpHMERHTE:

of43e£223be52e08fcdcE? Iran.dll.ddé4 Oms

Pic 4. EIRawDisk symbolic link.

Here is a mystery or at least question. Why do they use TDL at all? If you look at Eldos
RawDisk previous versions, for example
https://www.virustotal.com/qgui/file/c5¢c821f5808544a1807dc36527ef6f0248d6768ef9ac5ebab

ae302d17dd960e4/details you will notice it is digitally signed. As | said at the beginning of
this post there can be IPS/AV blocking Eldos driver by it certificate. However why use Eldos
RawDisk if you can write your own driver which will be much simpler/smaller (because it will
miss useless license check) and use it with TDL? It seems author(s) of Dustman prefer
simplest ways and incapable of writing anything beyond simple copy-pasting with small
additions. State sponsored hackers, rofl? It of course depends on effectiveness of such
methods but | think someone need a bigger budget. However if you take this entire Dustman
as false flag operation it looks pretty much ok, because Dustman thing can be built in 4-5
hours and cost almost nothing, while doing severe impact as informational warfare.

A little about agent application, a little because as fact there is nothing interesting inside. It is
built as typical C++ MS runtime based application full of ineffective code unrelated to main
purpose - wipe data on disk. To do this agent calls Eldos RawDisk with mentioned above

8/9

https://1.bp.blogspot.com/-I1oYfUYgNP4/XiWS0Ge8TeI/AAAAAAAAAIA/65R1N4jr-wIdYR6wu5JLdZNz5asz4j0cQCLcBGAsYHQ/s1600/elrawdsk2.png
https://www.virustotal.com/gui/file/c5c821f5808544a1807dc36527ef6f0248d6768ef9ac5ebabae302d17dd960e4/details

license. As data to fill it uses "Down With Saudi Kingdom Down With Bin Salman" string. If
agent launched without elevation it will crash with error due to its code quality, state

sponsored hackers do you remember?

[Buwneprec: R
g File Edit Search Navigation View Tools Spedalst Options Window Help 19.7x85 - |8 x|
(DRSS p g| @ AdMBE | o B e s dmm D® & | &
Drive C: I
1 ag 0+0+2 files, 1 dir.
| |Mame & Ext. Size Created Modified Record changed Attr, 1st sector
{Root directory) 0B out of bounds T out of bounds T out of bounds T
“Free space [net) 20,1 6B out of bounds T out of bounds T out of bounds T
; dle space ?jout of bounds T out of bounds T out of bounds T
1
|
|
Offset 0 1 2 3 4 5 & 7 8 910 11 12 13 14 15| /| ANSI ASCII — 63% frea
00000008128| 00 00 OO0 OO0 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 = TheEE T3
00000008144| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000008160| 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 Default Edit Mode
lloooooo08176| 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 Q0 GO0 State: original
llooo00008192(20 24 2B 2B 23 2B 2B 2B 2R 2R 2B 2R 2R 2B 2L 20 | Freesesseassas Undo level: .
| 00000008208| 44 6F 77 6E 20 57 69 74 €8 20 53 61 75 €4 69 20 | Down With Saudi e na
llonooo008224| 4B 62 6E 67 64 6F 6D 2C 20 44 &F 77 6E 20 57 69 | Kingdom, Down Wi
{00000008240| T4 68 20 42 69 GE 20 53 61 6C 6D 61 6E 20 24 24| th Bin Salman ** Alloc, of visible drive space:
ll00000008256| 2R 23 22 22 2A 23 2A 2B 2A 23 2B 2B 20 00 20 2A | *REARFRaERaR * Cluster No.: 5
{00000008272| 2R 2R 23 24 2A 2A 2A 2A 2R 2A 2h 2B 2R 20 44 6F | #x*ssssxsxxxx Do j
| 00000008288| 77 6E 20 57 69 74 68 20 53 61 75 64 69 20 4B 69 | wn With Saudi Ki :
1 00000008304| 6E 67 64 &F 6D 2C 20 44 &F 77 6E 20 57 69 74 68 | ngdom, Down With
lloo000008320| 20 42 63 6E 20 53 61 6C 6D 61 6E 20 2A 24 2A 2R | Bin Salman **%* Snapshet taken 1min. ago
|00000008336| 2R 2R 2R 23 2R 2R 2R 2L 2R 2R 20 00 20 2R 2L 2L | #wkereewsss HHE Logical sector No.: 15
| 00000008352| 2R 2R 2A 23 2A 2A 24 24 2A 2A 2B 30 44 6F 77 GE | #=x####¥wa#%x% Down Physical sector No.: 206 864
1 00000008368| 20 57 69 74 68 20 53 61 75 64 69 20 4B 69 6E &7 | With Saudi King
| 00000008384 64 6F 6D 2C 20 44 6F 77 6E 20 57 69 74 68 20 42 dom, Down With B Used space: 11,8 GB
1 00000008400| 69 6E 20 53 61 6C 6D 61 6E 20 2B 24 2R 2R 2A 25 | in Salman ****#% 12557 242 112 bytes
| 00000008416| 2R 2A 23 24 2A 2A 2A 2A 20 00 20 2B 2A 2A ZA 2R | xxxsxexx #o R Free space: 20,168
' 00000008432 2R 2R 2R 23 2R 2R 2R 24 2L 20 44 6F 77 6E 20 57 | ##%###%%% Down W 21 595 537 408 bytes
{00000008448| 69 74 68 20 53 61 75 64 69 20 4B 69 6E 67 64 &F | ith Saudi Kingdo
| . - Total capadty: 31,9GB
| 00000008464| 6D 2C 20 44 6F 77 6E 20 57 69 74 68 20 42 69 6E | m, Down With Bin
/00000008480| 20 53 61 6C 6D 61 6E 20 2A 24 2A 2B 2A 2A 2A 2A | Salman =**wx#x* BRI T
l00000008496| 2B 24 2B 2B 23 23 20 00 20 2R 2B 2B 24 2R 2B 24| ##swex skssess R - 4095
'00000008512| 2R 2R 2R 24 2A 2A 2A 20 44 6F 77 6E 20 57 69 74 | ***=*** Down Wit Free dusters: 5272 343
looooo008528| 68 20 53 61 75 64 €9 20 4B 69 6E 67 64 6F 6D 2C | h Saudi Kingdom, Total clusters: 5 367 495
00000008544| B0 44 6F 77 6E 20 57 69 74 68 20 42 6% 6E 20 53 | Joown With Bin 5
| 00000008560| 61 6C 6D 61 6E 20 2A 2R 2R 24 24 2h 24 2A ZA 2L | alman sEARREEARE e R sz
| 00000008576| 25 25 2A 2A 20 00 20 2A 2A 2R 25 24 2R 2R 2B A | *ewx wesssesws FEETELE HraEe Al
|00000008592| 2R 2R 2R 2R 2A 20 44 6F 77 6E 20 57 63 74 68 20 | **+=*+ Down With o Physical disk: o
1 b
! Sector 16 of 66 899 960 | Offset: 8544 | =32 | Block: nfa | Size: nfa |

Pic 5. Wipe in progress.

9/9

https://1.bp.blogspot.com/-EZxjwD76KUc/XiXOkv_GFBI/AAAAAAAAAIM/Xm4mqXbEidAhe98hc5d91J7xreIjV9kVwCLcBGAsYHQ/s1600/result.png

