
1/9

Dustman APT: Art of Copy-Paste
swapcontext.blogspot.com/2020/01/dustman-apt-art-of-copy-paste.html

Dustman is a piece of data wiping malware with origin believed to be from Iran or if you like -
quote from zdnet.com "Iranian state-sponsored hackers".

There is a full technical overview of this malware ->
https://www.scribd.com/document/442225568/Saudi-Arabia-CNA-report, I wouldn't waste
time fully repeating it, as it gives a brief and enough description of this malware key
parameters and capabilities.

Usually I pay zero attention to typical APT hysterics and low quality malware pushed by
mass media/various fakeAv's as "incredible sophisticated" spyware/whatever. With exception
if there is anything related to my work, for example copy/pasted from it. Just like in this case.

This is believed shared code with another data wiper called "ZeroCleare" - and IBM did
analysis with 28 page PDF where they managed to copy-paste from my github repository
without even giving a single credit or link to original. Well, ok, fuck you too IBM IRIS rippers
💩

Why this thing called Dustman? Well authors of this malware were lazy and left full pdb string
inside main dropper C:\Users\Admin\Desktop\Dustman\x64\Release\Dustman.pdb. This
doesn't look like fake and left because Visual Studio (and this one created in it) always sets
debug information to Release builds by default (Project settings->Linker->Debugging). It is
something from series of small tips just like if you are wondering why some of rootkits pdb
paths always at Z: drive - easy to use hotkey while debugging on VMware.

https://swapcontext.blogspot.com/2020/01/dustman-apt-art-of-copy-paste.html
https://www.zdnet.com/article/new-iranian-data-wiper-malware-hits-bapco-bahrains-national-oil-company/
https://www.scribd.com/document/442225568/Saudi-Arabia-CNA-report

2/9

Dustman main executable is a muldrop (SHA-1
e3ae32ebe8465c7df1225a51234f13e8a44969cc).

It contain three more files stored inside executable resource section. They are encrypted with
simple xor.

for (ULONG i = 0; i < (ResourceSize / sizeof(ULONG_PTR)); i++)
 Buffer[i] ^= 0x7070707070707070;

Resource with id 1 (decrypted SHA-1 7c1b25518dee1e30b5a6eaa1ea8e4a3780c24d0c) is a
VirtualBox driver. It is ripped by me from WinNT/Turla (another APT, this time "believed" to
be from GRU GS AF RF, that one by the way also had some references/inspirations of
my/our previous work). Dustman author(s) got it from my github repository called TDL - Turla
Driver Loader (https://github.com/hfiref0x/TDL), well not only that driver, half of their work
actually blatant copy-paste of this repository.

Resource with id 103 (decrypted SHA-1 a7133c316c534d1331c801bbcd3f4c62141013a1) is
Eldos RawDisk modified driver (version 3.0.31.121). It is modified by Dustman authors by
removing digital certificate from it. Currently I have no answer why they did this, except Eldos
RawDisk certificate is widely blacklisted or detected by intrusion prevention systems/AV as
possible sign of threat as it was used before multiple times in different malwares
(https://attack.mitre.org/software/S0364/)

Resource with id 106 (decrypted SHA-1 20d61c337653392ea472352931820dc60c37b2bc)
is malware agent application that is intended to work with Eldos RawDisk to perform data
wipe. It contain pdb string
C:\Users\Admin\Desktop\Dustman\Furutaka\drv\agent.plain.pdb which is giving you
insides on VS solution structure. Furutaka is an internal name that I gave to TDL project
executable.

Initial dropper is a modified version of original TDL (Furutaka) version 1.1.5, so it is relatively
new, as this is final version in that repository before it was archived at April 2019. Just to
show you how much Dustman authors copy-pasted, here is a screenshot of functions which I
was able to identify in this malware (while rest of them are various trash from MS runtime).

https://github.com/hfiref0x/TDL
https://attack.mitre.org/software/S0364/

3/9

Pic 1. Dustman dropper functions.

It seems Dustman author(s) simple took TDL solution and then modified it by removing
console/debug output in code and adapting it for their specific tasks - decrypt, drop
resources to the disk, load RawDisk driver and start agent application at final stage. Lets
take a look on modifications made by Dustman author(s).

At main (which is a heavily modified TDLMain from original TDL) right at the beginning
Dustman attempts to block multiple copies from installing VirtualBox/mapping Eldos driver by
setting mutex with a very specific name "Down With Bin Salman". I do not want to dig into
politics and other bullshit but I would like to suggest in case if this is false flag operation
(surprise, but we will never know this) use something more creative - like for example
"Coded by Soleimani" or "(c) 2019 IRGC", "covfefe" is fine too. If I would doing APT of such
kind I would at first refrain from creating such wrong and stupid mutexes or build their unique
names based on current environment without using any idiotic constants. Another fun

https://1.bp.blogspot.com/-wMolkmBbMeQ/XiWEuw3QP3I/AAAAAAAAAHQ/2DUzQ1qdqkMQk54TsyLc2j_bEtMAhMOnACLcBGAsYHQ/s1600/tdl_r1.png

4/9

message hidden inside agent executable (dropper resource 106 as mentioned above) "Down
With Saudi Kingdom Down With Bin Salman" - very creative (not). Eldos license key is
hardcoded in agent executable as
"b4b615c28ccd059cf8ed1abf1c71fe03c0354522990af63adf3c911e2287a4b906d47d".

Back to initial dropper, supQueryResourceData
(https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/sup.c#L99) is modified by
adding xor decryption loop mentioned above. Below is screenshot of
TDLStartVulnerableDriver routine slightly modified by removing console output, code
responsible for backup and new file name for dropped file.

https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/sup.c#L99

5/9

Pic 2. TDLStartVulnerableDriver copy-paste.

Original routine https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/main.c#L498

Assistant.sys here is VirtualBox driver which is loaded as shown on picture above. Have no
idea why Dustman authors left VirtualBox USB/Network drivers unload code intact. In original
TDL this is required to load driver on machine with VirtualBox installed and this is

https://1.bp.blogspot.com/-41xKk7WLbYM/XiWJcc0rgSI/AAAAAAAAAHc/_WbgO6MjrZoEf0EdAVqT3UePbXSEb9kWwCLcBGAsYHQ/s1600/tdl_r2.png
https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/main.c#L498

6/9

requirement because VBoxHardenedLoader is depends on this. However this is not required
in APT and can be removed, but it seems Dustman author(s) had mediocre understanding of
what they are doing. It is a little doubtful that target machines has VirtualBox running which
can produce incompatibilities with TDL.

Our next stop is TDLMapDriver routine. In original TDL proof-of-concept it setups shellcode
that next will be executed in kernel by VBoxDrv, maps input file, processes it imports and
merges it with shellcode. Next VBoxDrv memory mapping executed and finally exploit called.
In shellcode original TDL allocates memory for driver mapping using
ExAllocatePoolWithTag routine with tag 'SldT' (Tdl Shellcode), processes image relocs,
creates system thread (PsCreateSystemThread) with parameter set to driver entry. TDL
mapped drivers must be specially designed as DriverEntry parameters in such way of
loading will be invalid. Finally thread handle closed with ZwClose. Function pointers passed
to shellcode through registers by small bootstrap code which is constructed in user mode.
Dustman author(s) modified this loading scheme in the following way:

1) Encryption for module/function names, funny note that the following string used to decrypt
strings in runtime "I'm 22 and looking for fulltime job!". Because this is copy-paste from open
source and original TDL is very well detected by various fakeAVs
(https://www.virustotal.com/gui/file/37805cc7ae226647753aca1a32d7106d804556a98e1a21
ac324e5b880b9a04da/detection) this maybe an attempt to remove some of these detections.
2) They remember ExAllocatePoolWithTag, PsCreateSystemThread and IoCreateDriver
however they never use PsCreateSystemThread despite checking it resolving success and
instead in their shellcode simple call IoCreateDriver with pointer to driver entry point as
InitializationFunction param.

Since IoCreateDriver expects DriverName as pointer to UNICODE_STRING modified
shellcode also contain "\Driver\elRawDsk" string stored as local array of bytes.
IoCreateDriver will create driver object with specified name and pass it to the
InitializationRoutine as parameter, exactly what Eldos RawDisk need at it driver entry. Thus
original TDL limitation bypassed and mapping code can work with usual drivers. As result of
successful exploitation Eldos RawDisk will be mapped to the kernel and it DriverEntry
executed.

https://github.com/hfiref0x/VBoxHardenedLoader
https://github.com/hfiref0x/TDL/blob/master/Source/Furutaka/main.c#L320
https://www.virustotal.com/gui/file/37805cc7ae226647753aca1a32d7106d804556a98e1a21ac324e5b880b9a04da/detection

7/9

Pic 3. Eldos driver object as seen by WinObjEx64.

Because driver was mapped without involving Windows loader it doesn't have corresponding
entry in PsLoadedModulesList therefore WinObjEx64 shows it driver object major functions
as belonging to unknown memory area which is always automatically suspicious and usually
mean kernel mode malware activity. While Eldos RawDisk DriverEntry execution it creates a
symbolic link to provide access for the applications. It also can be seen with WinObjEx64.

https://1.bp.blogspot.com/-plXuBV8nQTw/XiWRoVrmN2I/AAAAAAAAAH0/I1DXc8EzGMY8GEG75rX-wAYyVOfDbkZNACLcBGAsYHQ/s1600/elrawdsk.png

8/9

Pic 4. ElRawDisk symbolic link.

Here is a mystery or at least question. Why do they use TDL at all? If you look at Eldos
RawDisk previous versions, for example
https://www.virustotal.com/gui/file/c5c821f5808544a1807dc36527ef6f0248d6768ef9ac5ebab
ae302d17dd960e4/details you will notice it is digitally signed. As I said at the beginning of
this post there can be IPS/AV blocking Eldos driver by it certificate. However why use Eldos
RawDisk if you can write your own driver which will be much simpler/smaller (because it will
miss useless license check) and use it with TDL? It seems author(s) of Dustman prefer
simplest ways and incapable of writing anything beyond simple copy-pasting with small
additions. State sponsored hackers, rofl? It of course depends on effectiveness of such
methods but I think someone need a bigger budget. However if you take this entire Dustman
as false flag operation it looks pretty much ok, because Dustman thing can be built in 4-5
hours and cost almost nothing, while doing severe impact as informational warfare.

A little about agent application, a little because as fact there is nothing interesting inside. It is
built as typical C++ MS runtime based application full of ineffective code unrelated to main
purpose - wipe data on disk. To do this agent calls Eldos RawDisk with mentioned above

https://1.bp.blogspot.com/-I1oYfUYgNP4/XiWS0Ge8TeI/AAAAAAAAAIA/65R1N4jr-wIdYR6wu5JLdZNz5asz4j0cQCLcBGAsYHQ/s1600/elrawdsk2.png
https://www.virustotal.com/gui/file/c5c821f5808544a1807dc36527ef6f0248d6768ef9ac5ebabae302d17dd960e4/details

9/9

license. As data to fill it uses "Down With Saudi Kingdom Down With Bin Salman" string. If
agent launched without elevation it will crash with error due to its code quality, state
sponsored hackers do you remember?

Pic 5. Wipe in progress.

https://1.bp.blogspot.com/-EZxjwD76KUc/XiXOkv_GFBI/AAAAAAAAAIM/Xm4mqXbEidAhe98hc5d91J7xreIjV9kVwCLcBGAsYHQ/s1600/result.png

